dc.creatorCaicedo Dorado, Alexander
dc.creatorVaron, Carolina
dc.creatorVan Huffel
dc.creatorWidjaja, Devy
dc.date.accessioned2020-08-28T15:48:11Z
dc.date.accessioned2022-09-22T14:38:54Z
dc.date.available2020-08-28T15:48:11Z
dc.date.available2022-09-22T14:38:54Z
dc.date.created2020-08-28T15:48:11Z
dc.identifierISSN: 0276-6574
dc.identifierEISSN: 2325-8853
dc.identifierhttps://repository.urosario.edu.co/handle/10336/28434
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3440842
dc.description.abstractRecent studies show that principal component analysis (PCA) of heart beats generates well-performing ECG-derived respiratory signals (EDR). This study aims at improving the performance of EDR signals using kernel PCA (kPCA). Kernel PCA is a generalization of PCA where nonlinearities in the data are taken into account for the decomposition. The performance of PCA and kPCA is evaluated by comparing the EDR signals to the reference respiratory signal. Correlation coefficients of 0.630 ± 0.189 and 0.675 ± 0.163, and magnitude squared coherence coefficients at respiratory frequency of 0.819 ± 0.229 and 0.894 ± 0.139 were obtained for PCA and kPCA respectively. The Wilcoxon signed rank test showed statistically significantly higher coefficients for kPCA than for PCA for both the correlation (p = 0.0257) and coherence (p = 0.0030) coefficients. To conclude, kPCA proves to outperform PCA in the extraction of a respiratory signal from single lead ECGs.
dc.languageeng
dc.publisherEngineering in Medicine and Biology Society
dc.relationComputing in Cardiology,ISSN: 0276-6574; EISSN: 2325-8853 (2011)
dc.relationhttps://ieeexplore.ieee.org/abstract/document/6164498
dc.relationComputing in Cardiology
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsRestringido (Acceso a grupos específicos)
dc.sourceComputing in Cardiology
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.titleAn improved ECG-derived respiration method using kernel principal component analysis
dc.typearticle


Este ítem pertenece a la siguiente institución