dc.contributorMúnera Ramirez, Marcela Cristina
dc.contributorCifuentes García, Carlos Andrés
dc.creatorValenzuela Prada, Valeria
dc.date.accessioned2021-06-17T13:21:37Z
dc.date.accessioned2022-09-22T14:38:28Z
dc.date.available2021-06-17T13:21:37Z
dc.date.available2022-09-22T14:38:28Z
dc.date.created2021-06-17T13:21:37Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/31627
dc.identifierhttps://doi.org/10.48713/10336_31627
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3440768
dc.description.abstractStroke remains a major public health problem in many countries, affecting nearly 15 million people worldwide each year according to the World Health Organization [1]. Of this number, 5 million die and another 5 million have some type of disability resulting from stroke [2]. Although the medical care for the rehabilitation of stroke survivors is considerable and has increased over time, many patients continue to live with significant locomotor impairments. Mainly, the successful recovery of gait after stroke remains a challenge for patients and rehabilitation specialists. The lower limb rehabilitation processes are developed with the use of different techniques, including the use of robotic orthoses and functional electrical stimulation (FES) .However, rehabilitation with orthoses is physically exhausting for the patient, as well as the interaction physical and cognitive of it. On the other hand, FES leads to early fatigue of the muscles and has poor control of joint trajectories and difficulties in portability. For this reason, in this document the development of an investigation of the different active robotic ankle orthoses, functional electrical stimulation systems and hybrid exoskeletons that are currently developed is registered. Based on the literature, a comparison is made regarding their limitations and advantages as devices used independently and integrated as a hybrid exoskeleton. This study allows to have foundations and concrete bases to present the design of an integration of FES with the robotic exoskeleton (T-FLEX), which manages to overcome the limitations of both devices and potentiate their benefits to help in the restoration of gait. In addition to this, an analysis is carried out focused on two studies that were carried out previously, in which the design opportunities and deficiencies of the use of the developed systems were mainly found. The T-FLEX orthosis did not demonstrate statistically significant gait improvements, instead, it did demonstrate a decrease in speed and cadence. For the use of FES, no statistically significant values ​​were found in any of the parameters, however, if it could be observed that with the assistance of the device an improvement was achieved in the parameters of stride length, cadence and speed, compared to gait in the basal state. On the other hand, a comparison of independent samples is made between the percentage of difference in gait in basal and assisted state with each device. Where only a significant difference was found in cadence, this being a value that decreased with the use of T-FLEX and that increased with the use of a functional electrical stimulation device (H-GAIT). Finally, the design of the an experimental protocol for the evaluation of the ankle exoskeleton (T-FLEX) integrated with a Functional Electrical Stimulation system. With this protocol, it is expected to observe an improvement in gait propulsion and to validate the effect that the integrated systems have on the patient, in terms of kinematics with respect to the use of each system independently.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherIngeniería Biomédica
dc.publisherEscuela de Medicina y Ciencias de la Salud
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourceW. H. Organization et al., «The atlas of heart disease and stroke,» vol. 19(6), págs. 505-505, 2004. doi: 10.1038/sj.jhh.1001852.
dc.sourceD. Mukherjee and C. G. Patil, «Epidemiology and the global burden of stroke,» World Neurosurg, vol. 76, 285-s90, 2011. doi: 10.1016/j.wneu.2011.07.023.
dc.sourceM. Katan and A. Luft, «Global Burden of Stroke,» Semin Neurol, vol. 38, págs. 208-211, 2018. doi: 10.1055/s-0038-1649503.
dc.sourceM. E. Clément et al., «Incidence of cerebrovascular disease in adults: A prospective epidemiological study based on a captive population in Argentina,» Neurol. Argentina, vol. 10, 2017. doi: 10.1016/j.neuarg.2017.09.002.
dc.sourceA. Kottink, L. Oostendorp, J. Buurke, A. Nene, H. Hermens and M. IJzerman, «The Orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a Dropped Foot: A systematic review,» Int. Cent. Artif. Organs Transplant., vol. 28, págs. 577-586, 2004. doi: 10.7507/1672-2531.20130130.
dc.sourceA. Thibaut, C. Chatelle, E. Ziegler, M. A. Bruno, S. Laureys, and O. Gosseries, «Spasticity after stroke: Physiology, assessment and treatment,» Brain Inj., vol. 27, págs. 1093-1105, 2013. doi: 10.3109/02699052.2013.804202.
dc.sourceF. Berenpas, A. C. Geurts, J. den Boer, R. van Swigchem, F. Nollet, and V. Weerdesteyn, «Surplus value of implanted peroneal functional electrical stimulation over ankle-foot orthosis for gait adaptability in people with foot drop after stroke,» Gait Posture, vol. 71, págs. 157-162, 2013. doi: 10.1016/j.gaitpost.2019.04.020.
dc.sourceP. Müller, A. J. Del Ama, J. C. Moreno, and T. Schauer, «Adaptive multichannel FES neuroprosthesis with learning control and automatic gait assessment,» J. Neuroeng. Rehabil., vol. 17, págs. 1-21, 2020. doi: 10.1186/s12984-020-0640-7.
dc.sourceF. Anaya, P. Thangavel, and H. Yu, «Hybrid FES–robotic gait rehabilitation technologies: a review on mechanical design, actuation, and control strategies,» Int. J. Intell. Robot., vol. 2, págs. 1-28, 2018. doi: 10.1007/s41315-017-0042-6.
dc.sourceManchola, Miguel and Serrano, Daya and Gómez, Daniel and Ballen, Felipe and Casas, Diego and Munera, Marcela and Cifuentes, Carlos A, «T-FLEX: Variable stiffness anklefoot orthosis for gait assistance,» en International Symposium on Wearable Robotics, Springer, 2018, págs. 160-164.
dc.sourceA. J. Del-Alma, J. C. Moreno, A. Gil-Agudo, A. De-los-Reyes, and J. L. Pons, «Online assessment of human-robot interaction for hybrid control of walking,» Sensors, vol. 12, págs. 215-225, 2012. doi: 10.3390/s120100215.
dc.sourceS. F. Tyson, E. Sadeghi-Demneh, and C. J. Nester, «A systematic review and metaanalysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke,» Clin. Rehabil, vol. 27, págs. 879-891, 2013. doi: 10.1177/0269215513486497.
dc.sourceA. J. Del-Alma, A. D. Koutsou, J. C. Moreno, A. De-Los-Reyes, A. Gil-Agudo, and J. L. Pons, «Review of Hybrid Exoskeletons to Restore Gait Following Spinal Cord Injury,» J. Rehabil. Res. Dev., vol. 49, págs. 497-514, 2012.
dc.sourceA. J. Del-Alma, Á. Gil-Agudo, J. L. Pons, and J. C. Moreno, «Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton,» J. Neuroeng. Rehabil., vol. 11, págs. 1-15, 2014. doi: J.Neuroeng.Rehabil..
dc.sourceJ. Chae, L. Sheffler, and J. Knutson, «Neuromuscular electrical stimulation for motor restoration in hemiplegia,» Top. Stroke Rehabil., vol. 15, págs. 412-426, 2008. doi: 10.1310/tsr1505-412
dc.sourceN. R. García, «Diseño y Evaluación Ergonómica de Interfaces Físicas para la Órtesis Robótica de Tobillo (T-FLEX) a través de la Integración de Superficies Blandas,» 2019.
dc.sourceDaniel Gomez-Vargas, Felipe Ballen-Moreno, Patricio Barria, Rolando Aguilar, José M. Azorín, Marcela Munera and Carlos A. Cifuentes, «Actuation system of the ankle exoskeleton T-FLEX: first use experimental validation in people with stroke,» vol. 04249349, 2020.
dc.sourceA. D. P. López, «Development of a Serious Game for Ankle Rehabilitation with TFLEX,» 2020.
dc.sourceP. de salud, «Flexión plantar y flexión dorsal del pie,» 2018.
dc.sourceKena Zaragoza-Velasco; Sergio Fernández-Tapia, «Ligamentos y tendones del tobillo: anatomía y afecciones más frecuentes analizadas mediante resonancia magnética,» Anales de Radiología México, vol. 2, págs. 81-94, 2013.
dc.sourceEntrenamientos, 2019.
dc.sourceSous Sánchez, José O.; Navarro Navarro, R.; Navarro García, R.; Brito Ojeda, E.; Ruiz Caballero, J.A., «Bases Biomecánicas del Tobillo,» Canarias médica y quirúrgica, 2011.
dc.sourceCaicedo Rodríguez, Pablo and Vargas, Laura and Salinas, Sergio and Sierra, Wilson and Rodriguez Cheu, Luis, «Protocolo de Evaluación de un Sistema para Medición de Parámetros de Tiempo de la Marcha Humana,» nov. de 2017.
dc.sourceAdriana Villa Moreno, Eduardo Gutiérrez Gutiérrez, Juan Carlos Pérez Moreno, «Consideraciones para el Análisis de la Marcha Humana. Técnicas de Videoframetría, Electromiografía y Dinamometría,» Revista Ingeniería Biomédica, vol. 2, 2008.
dc.sourceRenzo Fabrizzio Calderón Flores, «Desarrollo de un sistema portátil de estimulación eléctrica funcional (FES) para pacientes con síndrome de pie caído,» Pontificia universidad Cattólica del Perú, 2019.
dc.sourceJavier Ruiz Escobar, Ramón Viladot Pericé, Fernando Álvarez Goenaga, «Tratamiento conservador de la enfermedad de Müller-Weiss. A propósito de un caso,» Conservative treatment of Müller-Weiss disease, vol. 33(1), págs. 49-54, 2019. doi: 10.24129/j.rpt. 3301.fs1812020
dc.sourceD. A. G. Vargas, «Development of control strategies for a variable stiffness ankle exoeskeleton for gait rehabilitation,» nov. de 2020
dc.sourceFrancisco Saavedra, Pablo Aqueveque, and Esteban Pino, «Estimulador Eléctrico Funcional de Bajo Costo para Mejorar la Marcha en Personas con Pie Caído,» 2016.
dc.sourceM. F. C. Pastor, «Instrumentación para dispositivo biomecánico corrector de pie caído tipo AFO,» 2017.
dc.sourceRomero AJAC, Martínez UN, «Tratamiento del pie equino varo aducto mediante la incisión tipo Cincinnati en el Hospital para el Niño Poblano,» Acta Ortop Mex, 2006.
dc.sourceM.D. Romero Torres, J. Sánchez Palacios, J.M. Delgado Mendilivar y J.A. Conejero Casares, «Ortesis pasiva tobillo-pie de uso nocturno en la prevención del pie equino en la parálisis cerebral,» Rehabilitación, vol. 49, págs. 156-161, 2015.
dc.sourceCioni, M., Esquenazi, A., and Hirai, B., «Effects of Botulinum Toxin-A on Gait Velocity, Step Length, and Base of Support of Patients with Dynamic Equinovarus Foot,» American Journal of Physical Medicine & Rehabilitation, vol. 85(7), págs. 600-606, 2006.
dc.sourceMazlina Mazlan, Norhamizan Hamzah, and Kumaran Ramakrishnan, «Unilateral ankle dorsiflexor spasticity: an uncommon, disabling complication of transverse myelitis,» Archives of Medical Science, vol. 8(5), págs. 939-941, 2012.
dc.sourceEngsberg, J. R., Ross, S. A., Olree, K. S., and Park, T. S, «Ankle spasticity and strength in children with spastic diplegic cerebral palsy,» Development Medicine & Child Neorology, vol. 42(1), págs. 42-47, 2007.
dc.sourceDel-Ama Antonio J., Aikaterini D. Koutsou, Juan C. Moreno, Ana De-Los-Reyes, Ángel Gil-Agudo, and José L. Pons, «Review of Hybrid Exoskeletons to Restore Gait Following Spinal Cord Injury,» Rehabilitation research and development, 2012.
dc.sourceE. F. Concepción, «Eficacia de la estimulación eléctrica funcional para la extremidad inferior en la Esclerosis Múltiple,» jul. de 2016.
dc.sourceDel-Ama Antonio J., Ángel Gil-Agudo, José L. Pons, and Juan C. Moreno, «Hybrid FES-Robot Cooperative Control of Ambulatory Gait Rehabilitation Exoskeleton,» Journal of NeuroEngineering and Rehabilitation, 2014.
dc.sourceChae, John, Lynne Sheffler, and Jayme Knutson, «Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia,» Topics in Stroke Rehabilitation, 2008
dc.sourceLyons, Christian, Joel Robb, James Irrgang, and G. Kelley Fitzgerald, «Differences in Quadriceps Femris Muscle Torque When Using a Clinical Electrical Stimulator Versus a Portable Electrical Stimulator,» 2005.
dc.sourceE. F. Concepción, «Eficacia de la estimulación eléctrica funcional para la extremidad inferior en la Esclerosis Múltiple,» Universidad de la Laguna, jul. de 2016.
dc.sourcePablo Aqueveque, Paulina Ortega, Esteban Pino, Francisco Saavedra, Enrique Germany and Britam Gómez, «After Stroke Movement Impairments: A Review of Current Technologies for Rehabilitation, Physical Disabilities - Therapeutic Implications,» 2017. doi: 10.5772/67577
dc.sourceB. A. G. Arias, «Identificación de los estados de la marcha humana utilizando unidades de medición inercial para el control de un estimulador de pie caído,» 2017.
dc.sourceLori Mayer, MSN, MSCN, CCRP; Tina Warring, PT; Stephanie Agrella, ANP-BC, MSCN; Helen L. Rogers, PT, PhD; Edward J. Fox, MD, PhD, «Effects of Functional Electrical Stimulation on Gait Function and Quality of Life for People with Multiple Sclerosis Taking Dalfampridine,» Int J MS Care, vol. 17, págs. 35-41, 2015. doi: 10.7224/1537-2073.2013-03
dc.sourcevan der Linden ML, Scott SM, Hooper JE, Cowan P, Mercer TH., «Gait kinematics of people with multiple sclerosis and the acute application of functional electrical stimulation.,» Gait Posture, vol. 39(4), págs. 1092-6, 2014. doi: 10.1016/j.gaitpost.2014. 01.016.
dc.sourcevan der Linden ML, Hooper JE, Cowan P, Weller BB, Mercer TH, «Habitual functional electrical stimulation therapy improves gait kinematics and walking performance, but not patient-reported functional outcomes, of people with multiple sclerosis who present with foot-drop,» PLoS One, vol. 18;9(8), 2014. doi: 10.1371/journal.pone.0103368.
dc.sourceAvramescu Elena Taina, Professor, MD, Ph.D, Neamtu Marius Cristian, Assistent MD, Ph.D student, Rusu Ligia, Professor, MD. Ph.D, Mangra Gabriel, Lecturer, Ph.D., «New methods of data aquisition and walking analysis in multiple sclerosis after functional electrical stimulation.,» Ovidius University Annals, Series Physical Education & Sport/Science, Movement & Health, vol. 10, 2010.
dc.sourceA. Viladot Voegeli, «Anatomía funcional y biomecánica del tobillo y el pie,» Rev Esp Reumatol, 2003.
dc.sourceTyson SF, Sadeghi-Demneh E, Nester CJ, «A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke,» Clin Rehabil, vol. 27, págs. 879-891, 2013. doi: 10.1177/0269215513486497.
dc.sourcedel-Ama, A. J., Koutsou, A. D., Moreno, J. C., de-los-Reyes, A., Gil-Agudo, Angel, and Pons, J. L., «Review of hybrid exoskeletons to restore gait following spinal cord injury,» The Journal of Rehabilitattion Research and Development, vol. 49, págs. 497-514, 2012.
dc.sourceChen, B., Zi, B., Zeng, Y., Qin, L., and Liao, W.-H., «Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges.,» Mechatronics, vol. 53, págs. 241-250, 2018. doi: 10.1016/j.mechatronics.2018.06.014.
dc.sourceI. A. C. Morshed Alam y A. B. Mamat, «Mechanism and Design Analysis of Articulated Ankle Foot Orthoses for Drop-Foot,» The Scientific World Journal, pág. 14, 2014.
dc.sourceChen, B., Zi, B., Zeng, Y., Qin, L., and Liao, W.-H., «Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges,» Mechatronics, vol. 53, págs. 241-250, 2018. doi: 10.1016/j.mechatronics.2018.06.014.
dc.sourceJ. A. Ramsey, «Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness,» Prosthetics and Orthotics International, vol. 35, págs. 54-69, 2011. doi: 10.1177/0309364610394477.
dc.sourceAllard, «Foot and Ankle,» nov. de 2017.
dc.sourceOttobock, «Orthopaedic Neurorehab,» nov. de 2017.
dc.sourceFurusho J, Kikuchi T, Tokuda M, Kakehashi T, Ikeda K, Morimoto S, Hashimoto Y, Tomiyama H, Nakagawa A, Akazawa Y, «Development of shear type compact MR brake for the intelligent ankle-foot orthosis and its control,» IEEE 10th international conference on rehabilitation robotics, págs. 89-94, 2007.
dc.sourceH. U. Svensson W, «Ankle-foot-orthosis control in inclinations and stairs,» IEEE international conference on robotics, automation and mechatronics, págs. 301-6, 2008.
dc.sourceH. H. Blaya JA, «Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait,» IEEE Trans Neural Syst Rehabil, vol. 12, págs. 24-31, 2004.
dc.sourceBoehler AW, Hollander KW, Sugar TG, Shin D., «Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO),» IEEE international conference on robotics and automation, págs. 2025-30, 2008.
dc.sourceH. B. Ferris DP Czerniecki JM, «An ankle-foot orthosis powered by artificial pneumatic muscles,» J Appl Biomech, vol. 21, págs. 89-97, 2005.
dc.sourceD. M. L. Sánchez, «Comparación de la eficacia del vendaje neuromuscular y las ortesis de tobillo-pie en la corrección del pie equinovaro post-ictus,» Trabajo de fin de grado, Universidade da Coruña, 2020.
dc.sourceCarse B, Bowers R, Meadows BC, Rowe P, «The immediate effects of fitting and tuning solid ankle-foot orthoses in early stroke rehabilitation,» Prosthet Orthot Int, vol. 39(6), págs. 454-62, 2015.
dc.sourceNikamp CDM, Hobbelink MSH, van der Palen J, Hermens HJ, Rietman JS, Buurke JH., «A randomized controlled trial on providing ankle-foot orthoses in patients with (sub- )acute stroke: Short-term kinematic and spatiotemporal effects and effects of timing,» Gait Posture, vol. 55, págs. 15-22, 2017.
dc.sourceKesikburun S, Yavuz F, Güzelküçük Ü, Yaşar E, Balaban B, «Effect of ankle-foot orthosis on gait parameters and functional ambulation in patients with cerebrovascular accident,» Turk J Phys Med Rehab, vol. 63(2), págs. 143-48, 2017.
dc.sourceKobayashi T, Orendurff MS, Hunt G, Gao F, Lecursi N, «The effects of an articulated ankle-foot orthosis with resistance-adjustable joints on lower limb joint kinematics and kinetics during gait in individuals post-stroke,» Clin Biomech, vol. 59, págs. 47-55, 2020.
dc.sourceDaryabor A, Arazpour M, Aminian G, «Effect of different designs of ankle-foot orthoses on gait in patients with stroke: A systematic review,» Gait Posture, vol. 62, págs. 268-79, 2018.
dc.sourceShahabi S, Shabaninejad H, Kamali M, Jalali M, Ahmadi Teymourlouy A., «The effects of ankle-foot orthoses on walking speed in patients with stroke: a systematic review and meta-analysis of randomized controlled trials,» Clin Rehabil, vol. 34(2), págs. 145-59, 2019.
dc.sourceNikamp CDM, van der Palen J, Hermens HJ, Rietman JS, Buurke JH., «The influence of early or delayed provision of ankle-foot orthoses on pelvis, hip and knee kinematics in patients with sub-acute stroke: A randomized controlled trial.,» Gait Posture, vol. 63, págs. 260-7, 2018.
dc.sourceM. Manchola, D. Serrano, D. Gómez, F. Ballen, D. Casas, M. Munera y C. A. Cifuentes, «T-FLEX: Variable stiffness ankle-foot orthosis for gait assistance,» en International Symposium on Wearable Robotics, Springer, 2018, págs. 160-164.
dc.sourceDaniel Gomez-Vargas, Felipe Ballen-Moreno, Patricio Barria, Rolando Aguilar, José M. Azorín, Marcela Munera and Carlos A. Cifuentes, «Actuation system of the ankle exoskeleton T-FLEX: first use experimental validation in people with stroke,» Brain Sciences, págs. 1-17,
dc.sourceSánchez Manchola, M.D.S., Pinto Bernal, M.J.P., Munera, M., Cifuentes, C.A, «Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals,» Sensors, vol. 19(13), 2019.
dc.sourceSánchez Manchola, M. D. S., Pinto Bernal, M. J. P., Munera, M., and Cifuentes, C. A., «Gait phase detection for lower-limb exoskeletons using foot motion data from a single inertial measurement unit in hemiparetic individuals,» Sensors, vol. 19(13), pág. 2988, 2019.
dc.sourceDel-Ama, Antonio J., Juan C. Moreno, Ángel Gil-Agudo, Ana De-los-Reyes, and José L. Pons. 2012, «Online Assessment of Human-Robot Interaction for Hybrid Control of Walking,» Sensors, 2012.
dc.sourceAnaya Francisco, Pavithra Thangavel, and Haoyong Yu, «Hybrid FES–Robotic Gait Rehabilitation Technologies: A Review on Mechanical Design, Actuation, and Control Strategies,» International Journal of Intelligent Robotics and Applications, 2018.
dc.sourceDel-Ama Antonio J., Ángel Gil-Agudo, Soraya Pérez Nombela, Elisa Piñuela Martín, José L. Pons, and Juan C. Moreno, «Recent Advances on Lower Limb Hybrid Wearable Robots,» IFESS, 2016.
dc.sourceZhang, D., Ren, Y., Gui, K., Jia, J., and Xu, W., «Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton,» vol. 11, 2017. doi: doi:10.3389/fnins.2017.00725.
dc.sourceKobetic R, Schnellenberger JR, Audu ML, Triolo RJ, «Design of a variable constraint hip mechanism for a hybrid neuroprosthesis to restore gait after spinal cord injury,» IEEE/ASME Trans Mechatron, vol. 13(2), págs. 197-205, 2008.
dc.sourceKobetic R, To CS, Schnellenberger JR, Audu ML, Bulea TC, Gaudio R, Pinault G, Tashman S, Triolo RJ, «Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury,» Rehabil Res Dev., vol. 46(3), págs. 447-62, 2009.
dc.sourceGoldfarb M, Korkowski K, Harrold B, Durfee W, «Preliminary evaluation of a controlled-brake orthosis for FES-aided gait,» IEEE Trans Neural Syst Rehabil, vol. 11(3), págs. 241-48, 2003.
dc.sourceFarris RJ, Quintero HA, Withrow TJ, Goldfarb M., «Design of a joint-coupled orthosis for FES-aided gait,» IEEE 11th International Conference on Rehabilitation Robotics, págs. 246-52, 2009.
dc.sourceFarris RJ, Quintero HA, Withrow TJ, Goldfarb M, «Design and simulation of a jointcoupled orthosis for regulating FES-aided gait,» IEEE 11th International Conference on Rehabilitation Robotics, págs. 1916-22, 2009
dc.sourceH. B. Gharooni S Tokhi MO, «The use of elastic element in a hybrid orthosis for swing phase generation in orthotic gait,» Proceedings of the Annual Conference of the International Functional Electrical Stimulation Society, 2000.
dc.sourceT. M. Gharooni S Heller B, «A new hybrid spring brake orthosis for controlling hip and knee flexion in the swing phase,» A. IEEE Trans Neural Syst Rehabil Eng, vol. 9(1), págs. 106-107, 2001.
dc.sourceR. A. Durfee WK, «Design and simulation of a pneumatic, stored-energy, hybrid orthosis for gait restoration.,» J Biomech Eng., vol. 127(6), págs. 1014-19, 2005.
dc.sourceD. W. Kangude BD Burgstahler B, «Engineering evaluation of the energy-storing orthosis FES gait system,» Conf Proc IEEE Eng Med Biol Soc., págs. 5927-30, 2010.
dc.sourceKangude A, Burgstahler B, Kakastys J, Durfee W., «Single channel hybrid FES gait system using an energy storing orthosis: preliminary design,» Conf Proc IEEE Eng Med Biol Soc., págs. 6798-801, 2009.
dc.sourceFukada S, Obinata G, Hase K, Nakayama A, Shimada Y, Matsunaga T, et al., «Development of a Hybrid Power Assist Orthosis with FES,» 11th Annual Conference of the International Functional Electrical Stimulation Society, págs. 12-15, 2006.
dc.sourceObinata G, Fukada S, Matsunaga T, Iwami T, Shimada Y, Miyawaki K, Hase K, Nakayama A, «Hybrid control of powered orthosis and functional neuromuscular stimulation for restoring gait,» Conf Proc IEEE Eng Med Biol Soc., págs. 4879-82, 2007.
dc.sourceStauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, Metrailler P, Brodard R, Reynard F., «The WalkTrainer—a new generation of walking reeducation device combining orthoses and muscle stimulation,» IEEE Trans Neural Syst Rehabil Eng., vol. 17(1), págs. 38-45, 2009
dc.sourceP. Barría, C. Cifuentes, A. Andrade, JM. Azorín, «Descripción biomecánica de la marcha asistida mediante ortesis dinámica de tobillo T-FLEX en personas con accidente cerebrovascular crónico,» Laboratorio de Análisis de Movimiento, Centro de Rehablilitación Club de Leones Cruz del Sur, 2019.
dc.sourceStephania Alejandra Yáñez Arias, Estudio Comparativo de Sistemas de Análisis de Marcha Basados en Sensores Inerciales y Cámaras Infrarrojas, Informe de Memoria de Título, 2018.
dc.sourceP. B. A, «Pruebas clínicas de dispositivo FES Neuroprótesis H-GAIT en personas con accidente cerebrovascular crónico (ACV),» 2019.
dc.sourceM. Loreiro, S. Brıétez, S. Casco, J. C. Moreno, J. L. Pons y F. Brunetti, «Neuroprosthetic device for functional training, compensation or rehabilitation of lower limbs during gait,» en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE, 2019, págs. 1183-1186. doi: 10.1109/ner.2019.8717008.
dc.sourceN. V. R. Zevallos, «Guía de análisis de movimiento patológico para evaluación post tratamiento quirpurgico de fractua de fémur,» 2012.
dc.sourceA. G. G. Sanmamed, «Análisis de la marcha patológica en pacientes con enfermedad de Parkinson,» Escuela profesional de medicina de la educación física y deporte, 2012.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectFES
dc.subjectDiseño
dc.subjectDispositivos robóticos
dc.subjectÓrtesis
dc.subjectMarcha
dc.subjectRehabilitación
dc.titleDiseño de integración de exoesqueleto de tobillo T-FLEX con estimulación eléctrica funcional en pacientes post ACV con disfunción de tobillo
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución