dc.contributorPatarroyo, Manuel A.
dc.contributorSoto De León, Sara Cecilia
dc.creatorCamargo Pinzón, Sandra Milena
dc.date.accessioned2021-01-14T21:54:28Z
dc.date.available2021-01-14T21:54:28Z
dc.date.created2021-01-14T21:54:28Z
dc.identifierhttps://doi.org/10.48713/10336_30752
dc.identifierhttps://repository.urosario.edu.co/handle/10336/30752
dc.description.abstractSexually Transmitted Infections (STIs) are an important cause of morbidity, generating a great impact on public health due to the consequences to which they entail. Their persistence has been associated with progressive and continuous damage to the cervical architecture, which leads to the development of lesions that can progress to cervical neoplasia. The Human Papilloma Virus (HPV) is the most widely distributed sexually transmitted infection and associate with the development of Cervical Cancer (CC) being widely demonstrated. It has been described that additional factors, such as the sexual behavior of the host, intrinsic factors of HPV and the coexistence of other STIs, could be playing a relevant role in the development of cervical disease. In this study, the coexistence between HPV and two widely distributed STIs, Chlamydia trachomatis (Ct) and Human Immunodeficiency Virus (HIV), was analyzed. This research project was designed in two components; The first, was a longitudinal study, to determine the incidence of infection of C. trachomatis and its relationship with the presence and viral load of 6 types of high-risk HPV (HPV-AR-16, -18, -31, -33, -45 and -58), in women from three cities in Colombia. The results showed that HPV-18 and -31 were the most persistent types, while HPV-16 and -33 were eliminated in less time. Regarding viral load (VL), it was found that a VL-Low of HPV-16 and -31 was associated with a higher frequency of Squamous Intraepithelial Lesion (LEI). A quarter of the women in the study began with Ct infection, increasing its frequency throughout the follow-ups; women with factors such as the presence of multiple types of HPV, a greater number of sexual partners, and a history of abortion, had a higher risk of acquiring the bacterial infection. Regarding the effect of VL in the Ct infection, the results showed that variations in the number of viral copies influence the outcome of bacterial infections; additionally, the results showed that variations in VL affected bacterial infection outcome and depended on the viral type involved in such infection. The second component, was a cross-sectional study to establish the frequency of HPV infection in a group of Colombian women with and without HIV infection. The results showed in HIV-positive women had higher HPV prevalence and were more commonly infected with multiple HPV types. HPV detection and coinfection were associated with CD4 cell count and HIV viral load, while antiretroviral treatment was associated only with HPV infections. These results indicate that HPV infection and coinfection are influenced by a cervical microenvironment, in which host factors (such as sexual behavior) and the presence of other pathogens that share the same transmission route, coexist and they interact favoring the permanence, replication and integration of HPV in the host, and favouring the appearance of abnormality at the cervical level. The association between HPV and CC has been clearly established and considerable progress has been made in understanding it; however, it remains to be resolved why only a few HPV-infected women develop cervical lesions and the influence that additional factors have on this process. Considering coexistence with other pathogens will contribute towards knowledge regarding interactions at different levels and STI dynamics, posing new challenges concerning the approach to and carrying out control strategies.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherFacultad de Ciencias Naturales y Matemáticas
dc.publisherDoctorado en Ciencias Biomédicas y Biológicas
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsPARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe.
dc.rightshttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.rightsAtribución-SinDerivadas 2.5 Colombia
dc.sourceHodges AL, Holland AC. Common Sexually Transmitted Infections in Women. Nurs Clin North Am. 2018;53(2):189-202.
dc.sourceRowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu-Raddad LJ, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548-62P.
dc.sourceWHO. Global health sector strategy on sexually transmitted infections 2016–2021. Available at: https://apps.who.int/iris/bitstream/handle/10665/246296/WHO-RHR-16.09-eng.pdf?sequence=1. 2016.
dc.sourceWHO. Report on global sexually transmitted infection surveillance. Available at: https://www.who.int/reproductivehealth/publications/stis-surveillance-2018/en/. 2018
dc.sourceWHO. Progress report on HIV, viral hepatitis and sexually transmitted infections. Available at: https://www.who.int/hiv/strategy2016-2021/progress-report-2019/en/. 2019.
dc.sourceWorkowski KA, Berman SM. Centers for Disease Control and Prevention Sexually Transmitted Disease Treatment Guidelines. Clin Infect Dis. 2011;53 Suppl 3:S59-63.
dc.sourceKrupp K, Madhivanan P. Antibiotic resistance in prevalent bacterial and protozoan sexually transmitted infections. Indian J Sex Transm Dis. 2015;36(1):3-8.
dc.sourceGlasier A, Gulmezoglu AM, Schmid GP, Moreno CG, Van Look PF. Sexual and reproductive health: a matter of life and death. Lancet. 2006;368(9547):1595-607.
dc.sourceO'Connor EA, Lin JS, Burda BU, Henderson JT, Walsh ES, Whitlock EP. Behavioral sexual risk-reduction counseling in primary care to prevent sexually transmitted infections: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2014;161(12):874-83.
dc.sourceFenton KA, Lowndes CM. Recent trends in the epidemiology of sexually transmitted infections in the European Union. Sex Transm Infect. 2004;80(4):255-63.
dc.sourcede Martel C, Franceschi S. Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol. 2009;70(3):183-94.
dc.sourceOh JK, Weiderpass E. Infection and cancer: global distribution and burden of diseases. Ann Glob Health. 2014;80(5):384-92.
dc.sourceVedham V, Divi RL, Starks VL, Verma M. Multiple infections and cancer: implications in epidemiology. Technol Cancer Res Treat. 2014;13(2):177-94.
dc.sourceWHO. Report on global sexually transmitted infection surveillance 2013. Available at: http://apps.who.int/iris/bitstream/10665/112922/1/9789241507400_eng.pdf. 2014
dc.sourceWHO. Draft global health sector strategies: Sexually transmitted infections, 2016-2021. Available at: http://apps.who.int/gb/ebwha/pdf_files/EB138/B138_31-en.pdf. 2015.
dc.sourceElinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759-71
dc.sourceLujan AL, Croci DO, Gambarte Tudela JA, Losinno AD, Cagnoni AJ, Marino KV, et al. Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection. Proc Natl Acad Sci U S A. 2018;115(26):E6000-E9.
dc.sourceShima K, Kaeding N, Ogunsulire IM, Kaufhold I, Klinger M, Rupp J. Interferon-gamma interferes with host cell metabolism during intracellular Chlamydia trachomatis infection. Cytokine. 2018;112:95-101.
dc.sourcePagano JS, Blaser M, Buendia MA, Damania B, Khalili K, Raab-Traub N, et al. Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol. 2004;14(6):453-71.
dc.sourceVedham V, Verma M. Cancer-associated infectious agents and epigenetic regulation. Methods Mol Biol. 2015;1238:333-54.
dc.sourceHowley PM. Gordon Wilson Lecture: Infectious Disease Causes of Cancer: Opportunities for Prevention and Treatment. Trans Am Clin Climatol Assoc. 2015;126:117-32.
dc.sourceMazza JJ. Infectious disease and cancer. WMJ. 2010;109(2):66-9.
dc.sourceFerlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010.
dc.sourceBruni L, Barrionuevo-Rosas L, Albero G, Serrano B, Mena M, Gómez D, et al. ICO Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in the World. 2017;Summary Report 19 April 2017. Available at: https://www.hpvcentre.net/.
dc.sourceBray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
dc.sourceCapote L. Epidemiologia del Cancer de Cuello Uterino en America Latina. Programa de Oncología. Ministerio PP Salud.; 2014.
dc.sourceIbeanu OA. Molecular pathogenesis of cervical cancer. Cancer Biol Ther. 2011;11(3):295-306.
dc.sourceDelvenne P, Herman L, Kholod N, Caberg JH, Herfs M, Boniver J, et al. Role of hormone cofactors in the human papillomavirus-induced carcinogenesis of the uterine cervix. Mol Cell Endocrinol. 2007;264(1-2):1-5.
dc.sourceBaldwin P, Laskey R, Coleman N. Translational approaches to improving cervical screening. Nat Rev Cancer. 2003;3(3):217-26.
dc.sourceSolomon D, Davey D, Kurman R, Moriarty A, O'Connor D, Prey M, et al. The 2001 Bethesda System: terminology for reporting results of cervical cytology. JAMA. 2002;287(16):2114-9.
dc.sourceLowy DR, Schiller JT. Prophylactic human papillomavirus vaccines. J Clin Invest. 2006;116(5):1167-73.
dc.sourceBurd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1-17.
dc.sourceMishra GA, Pimple SA, Shastri SS. An overview of prevention and early detection of cervical cancers. Indian J Med Paediatr Oncol. 2011;32(3):125-32.
dc.sourceMurillo R AM, Pereira A, Ferrer E, Gamboa OA, Jeronimo J, et al. Cervical cancer screening programs in Latin America and the Caribbean. vaccine. aug 2008;19(26 suppl11):37-48.
dc.sourceMurillo R, Almonte M, Pereira A, Ferrer E, Gamboa OA, Jeronimo J, et al. Cervical cancer screening programs in Latin America and the Caribbean. Vaccine. 2008;26 Suppl 11:L37-48.
dc.sourceComparetto C, Borruto F. Cervical cancer screening: A never-ending developing program. World J Clin Cases. 2015;3(7):614-24.
dc.sourceAult KA. Epidemiology and natural history of human papillomavirus infections in the female genital tract. Infect Dis Obstet Gynecol. 2006;2006 Suppl:40470.
dc.sourceDel Rio-Ospina L, Soto-De Leon SC, Camargo M, Moreno-Perez DA, Sanchez R, Perez-Prados A, et al. The DNA load of six high-risk human papillomavirus types and its association with cervical lesions. BMC Cancer. 2015;15:100.
dc.sourceBouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. A review of human carcinogens--Part B: biological agents. Lancet Oncol. 2009;10(4):321-2.
dc.sourceGuan P, Howell-Jones R, Li N, Bruni L, de Sanjose S, Franceschi S, et al. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int J Cancer. 2012;131(10):2349-59.
dc.sourceSaslow D, Runowicz CD, Solomon D, Moscicki AB, Smith RA, Eyre HJ, et al. American Cancer Society guideline for the early detection of cervical neoplasia and cancer. CA Cancer J Clin. 2002;52(6):342-62.
dc.sourceSaslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain JM, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. J Low Genit Tract Dis. 2012;16(3):175-204.
dc.sourceBergeron C, Giorgi-Rossi P, Cas F, Schiboni ML, Ghiringhello B, Dalla Palma P, et al. Informed cytology for triaging HPV-positive women: substudy nested in the NTCC randomized controlled trial. J Natl Cancer Inst. 2015;107(2).
dc.sourceSherchand S, Ibana JA, Quayle AJ, Aiyar A. Cell Intrinsic Factors Modulate the Effects of IFNgamma on the Development of Chlamydia trachomatis. J Bacteriol Parasitol. 2016;7(4).
dc.sourceDoorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30 Suppl 5:F55-70.
dc.sourceConger KL, Liu JS, Kuo SR, Chow LT, Wang TS. Human papillomavirus DNA replication. Interactions between the viral E1 protein and two subunits of human dna polymerase alpha/primase. J Biol Chem. 1999;274(5):2696-705.
dc.sourceElena-Sophie Prigge MvKD, Miriam Reuschenbach. Clinical relevance and implications of HPV-induced neoplasia in different anatomical locations. Mutat Res Rev Mutat Res. 2016;722:51-66.
dc.sourceDoorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32 Suppl 1:S7-15.
dc.sourceBravo IG, Felez-Sanchez M. Papillomaviruses: Viral evolution, cancer and evolutionary medicine. Evol Med Public Health. 2015;2015(1):32-51.
dc.sourceSenapati R, Senapati NN, Dwibedi B. Molecular mechanisms of HPV mediated neoplastic progression. Infect Agent Cancer. 2016;11:59.
dc.sourceJagu S, Karanam B, Gambhira R, Chivukula SV, Chaganti RJ, Lowy DR, et al. Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines. J Natl Cancer Inst. 2009;101(11):782-92.
dc.sourcede Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology. 2004;324(1):17-27.
dc.sourceVilla L. Chapter 1: Biology of genital human papillomaviruses. Int J Gynaecol Obstet. 2006;94:S3-S7.
dc.sourcePopgeorgiev N, Temmam S, Raoult D, Desnues C. Describing the silent human virome with an emphasis on giant viruses. Intervirology. 2013;56(6):395-412.
dc.sourceMunger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78(21):11451-60.
dc.sourceWoodman CB CS, Winter H, Bailey A, Ellis J, Prior P. Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet. jun 2001;9(357):1831-6.
dc.sourceSolomon D DD, Kurman R, Moriarty A, O'Connor D, Prey M, et al. The 2001 Bethesda System: terminology for reporting results of cervical cytology. JAMA. apr 2002;287(16):2114-9.
dc.sourceBosch X HD. Prevention strategies of cervical cancer in the HPV vaccine era. virology journal. oct 2006;103(1):21-4.
dc.sourceBernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70-9.
dc.sourceTrottier H, Burchell AN. Epidemiology of mucosal human papillomavirus infection and associated diseases. Public Health Genomics. 2009;12(5-6):291-307.
dc.sourceBaldez da Silva MF, Chagas BS, Guimaraes V, Katz LM, Felix PM, Miranda PM, et al. HPV31 and HPV33 incidence in cervical samples from women in Recife, Brazil. Genet Mol Res. 2009;8(4):1437-43.
dc.sourceSoto-De Leon S, Camargo M, Sanchez R, Munoz M, Perez-Prados A, Purroy A, et al. Distribution patterns of infection with multiple types of human papillomaviruses and their association with risk factors. PLoS One. 2011;6(2):e14705.
dc.sourceJunes-Gill K, Sichero L, Maciag PC, Mello W, Noronha V, Villa LL. Human papillomavirus type 16 variants in cervical cancer from an admixtured population in Brazil. J Med Virol. 2008;80(9):1639-45.
dc.sourceTornesello ML, Losito S, Benincasa G, Fulciniti F, Botti G, Greggi S, et al. Human papillomavirus (HPV) genotypes and HPV16 variants and risk of adenocarcinoma and squamous cell carcinoma of the cervix. Gynecol Oncol. 2011;121(1):32-42.
dc.sourceJackson R, Rosa BA, Lameiras S, Cuninghame S, Bernard J, Floriano WB, et al. Functional variants of human papillomavirus type 16 demonstrate host genome integration and transcriptional alterations corresponding to their unique cancer epidemiology. BMC Genomics. 2016;17(1):851.
dc.sourceBotezatu A, Socolov D, Goia CD, Iancu IV, Ungureanu C, Huica I, et al. The relationship between HPV16 and HPV18 viral load and cervical lesions progression. Roum Arch Microbiol Immunol. 2009;68(3):175-82.
dc.sourceRamanakumar AV, Goncalves O, Richardson H, Tellier P, Ferenczy A, Coutlee F, et al. Human papillomavirus (HPV) types 16, 18, 31, 45 DNA loads and HPV-16 integration in persistent and transient infections in young women. BMC Infect Dis. 2010;10:326.
dc.sourceMcMurray HR, Nguyen D, Westbrook TF, McAnce DJ. Biology of human papillomaviruses. Int J Exp Pathol. 2001;82(1):15-33.
dc.sourceCastellsague X, Bosch FX, Munoz N. Environmental co-factors in HPV carcinogenesis. Virus Res. 2002;89(2):191-9.
dc.sourceQuint W, Jenkins D, Molijn A, Struijk L, van de Sandt M, Doorbar J, et al. One virus, one lesion--individual components of CIN lesions contain a specific HPV type. J Pathol. 2012;227(1):62-71.
dc.sourceMcLaughlin-Drubin ME, Meyers C. Evidence for the coexistence of two genital HPV types within the same host cell in vitro. Virology. 2004;321(2):173-80.
dc.sourceMejlhede N, Pedersen BV, Frisch M, Fomsgaard A. Multiple human papilloma virus types in cervical infections: competition or synergy? APMIS. 2010;118(5):346-52.
dc.sourceJosefsson AM, Magnusson PK, Ylitalo N, Sorensen P, Qwarforth-Tubbin P, Andersen PK, et al. Viral load of human papilloma virus 16 as a determinant for development of cervical carcinoma in situ: a nested case-control study. Lancet. 2000;355(9222):2189-93.
dc.sourceMoberg M, Gustavsson I, Wilander E, Gyllensten U. High viral loads of human papillomavirus predict risk of invasive cervical carcinoma. Br J Cancer. 2005;92(5):891-4.
dc.sourceBoulet GA, Benoy IH, Depuydt CE, Horvath CA, Aerts M, Hens N, et al. Human papillomavirus 16 load and E2/E6 ratio in HPV16-positive women: biomarkers for cervical intraepithelial neoplasia >or=2 in a liquid-based cytology setting? Cancer Epidemiol Biomarkers Prev. 2009;18(11):2992-9.
dc.sourceSoto-De Leon SC, Del Rio-Ospina L, Camargo M, Sanchez R, Moreno-Perez DA, Perez-Prados A, et al. Persistence, clearance and reinfection regarding six high risk human papillomavirus types in Colombian women: a follow-up study. BMC Infect Dis. 2014;14:395.
dc.sourceHorn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, et al. Illuminating the evolutionary history of chlamydiae. Science. 2004;304(5671):728-30.
dc.sourceHorn M. Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol. 2008;62:113-31.
dc.sourceCorsaro D, Valassina M, Venditti D. Increasing diversity within Chlamydiae. Crit Rev Microbiol. 2003;29(1):37-78.
dc.sourceHerrmann B, Pettersson B, Everett KD, Mikkelsen NE, Kirsebom LA. Characterization of the rnpB gene and RNase P RNA in the order Chlamydiales. Int J Syst Evol Microbiol. 2000;50 Pt 1:149-58.
dc.sourceSachse K, Bavoil PM, Kaltenboeck B, Stephens RS, Kuo CC, Rossello-Mora R, et al. Emendation of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species. Syst Appl Microbiol. 2015;38(2):99-103.
dc.sourcePillonel T, Bertelli C, Salamin N, Greub G. Taxogenomics of the order Chlamydiales. Int J Syst Evol Microbiol. 2015;65(Pt 4):1381-93.
dc.sourcePannekoek Y, Dickx V, Beeckman DS, Jolley KA, Keijzers WC, Vretou E, et al. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species. PLoS One. 2010;5(12):e14179.
dc.sourceLongbottom D, Coulter LJ. Animal chlamydioses and zoonotic implications. J Comp Pathol. 2003;128(4):217-44.
dc.sourceBlomqvist M, Christerson L, Waldenstrom J, Herrmann B, Olsen B. Chlamydia psittaci in Swedish wetland birds: a risk to zoonotic infection? Avian Dis. 2012;56(4):737-40.
dc.sourceChristerson L, Herrmann B. Guidelines for high-resolution genotyping of Chlamydia trachomatis using multilocus sequence analysis. Methods Mol Biol. 2012;903:51-64.
dc.sourceGravningen K, Christerson L, Furberg AS, Simonsen GS, Odman K, Stahlsten A, et al. Multilocus sequence typing of genital Chlamydia trachomatis in Norway reveals multiple new sequence types and a large genetic diversity. PLoS One. 2012;7(3):e34452.
dc.sourceChristerson L, Ruettger A, Gravningen K, Ehricht R, Sachse K, Herrmann B. High-resolution genotyping of Chlamydia trachomatis by use of a novel multilocus typing DNA microarray. J Clin Microbiol. 2011;49(8):2838-43.
dc.sourceBom RJ, Christerson L, Schim van der Loeff MF, Coutinho RA, Herrmann B, Bruisten SM. Evaluation of high-resolution typing methods for Chlamydia trachomatis in samples from heterosexual couples. J Clin Microbiol. 2011;49(8):2844-53.
dc.sourceIsaksson J, Christerson L, Blomqvist M, Wille M, Alladio LA, Sachse K, et al. Chlamydiaceae-like bacterium, but no Chlamydia psittaci, in sea birds from Antarctica. Polar Biology. 2015;38(11):1931-6.
dc.sourceNunes A, Gomes JP. Evolution, phylogeny, and molecular epidemiology of Chlamydia. Infect Genet Evol. 2014;23:49-64.
dc.sourceOmsland A, Sixt BS, Horn M, Hackstadt T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol Rev. 2014;38(4):779-801.
dc.sourceAbdelrahman YM, Belland RJ. The chlamydial developmental cycle. FEMS Microbiol Rev. 2005;29(5):949-59.
dc.sourceHerrmann B, Isaksson J, Ryberg M, Tangrot J, Saleh I, Versteeg B, et al. Global Multilocus Sequence Type Analysis of Chlamydia trachomatis Strains from 16 Countries. J Clin Microbiol. 2015;53(7):2172-9.
dc.sourceIsaksson J, Gallo Vaulet L, Christerson L, Ruettger A, Sachse K, Entrocassi C, et al. Comparison of multilocus sequence typing and multilocus typing microarray of Chlamydia trachomatis strains from Argentina and Chile. J Microbiol Methods. 2016;127:214-8.
dc.sourceRedgrove KA, McLaughlin EA. The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Front Immunol. 2014;5:534.
dc.sourceWHO. Prevalence and incidence of selected sexually transmitted infections. World Health Organization, Geneva. Available at: https://www.who.int/reproductivehealth/publications/rtis/9789241502450/en/. 2011.
dc.sourceO'Connell CM, Ferone ME. Chlamydia trachomatis Genital Infections. Microb Cell. 2016;3(9):390-403.
dc.sourceDean D, Rothschild J, Ruettger A, Kandel RP, Sachse K. Zoonotic Chlamydiaceae species associated with trachoma, Nepal. Emerg Infect Dis. 2013;19(12):1948-55.
dc.sourceShao R, Hu J, Billig H. Toward understanding Chlamydia infection-induced infertility caused by dysfunctional oviducts. J Infect Dis. 2013;208(4):707-9.
dc.sourceAnaene M, Soyemi K, Caskey R. Factors associated with the over-treatment and under-treatment of gonorrhea and chlamydia in adolescents presenting to a public hospital emergency department. Int J Infect Dis. 2016;53:34-8.
dc.sourceLallemand A, Bremer V, Jansen K, Nielsen S, Munstermann D, Lucht A, et al. Prevalence of Chlamydia trachomatis infection in women, heterosexual men and MSM visiting HIV counselling institutions in North Rhine-Westphalia, Germany - should Chlamydia testing be scaled up? BMC Infect Dis. 2016;16(1):610.
dc.sourceSherchand SP, Ibana JA, Zea AH, Quayle AJ, Aiyar A. The High-Risk Human Papillomavirus E6 Oncogene Exacerbates the Negative Effect of Tryptophan Starvation on the Development of Chlamydia trachomatis. PLoS One. 2016;11(9):e0163174.
dc.sourceJelocnik M, Bachmann NL, Seth-Smith H, Thomson NR, Timms P, Polkinghorne AM. Molecular characterisation of the Chlamydia pecorum plasmid from porcine, ovine, bovine, and koala strains indicates plasmid-strain co-evolution. PeerJ. 2016;4:e1661
dc.sourcePawlikowska-Warych M, Sliwa-Dominiak J, Deptula W. Chlamydial plasmids and bacteriophages. Acta Biochim Pol. 2015;62(1):1-6.
dc.sourceTam JE, Davis CH, Thresher RJ, Wyrick PB. Location of the origin of replication for the 7.5-kb Chlamydia trachomatis plasmid. Plasmid. 1992;27(3):231-6.
dc.sourcede Vries HJ, Schim van der Loeff MF, Bruisten SM. High-resolution typing of Chlamydia trachomatis: epidemiological and clinical uses. Curr Opin Infect Dis. 2015;28(1):61-71.
dc.sourceEverett KD, Bush RM, Andersen AA. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol. 1999;49 Pt 2:415-40.
dc.sourceStephens RS, Myers G, Eppinger M, Bavoil PM. Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. FEMS Immunol Med Microbiol. 2009;55(2):115-9.
dc.sourceClarke IN. Evolution of Chlamydia trachomatis. Ann N Y Acad Sci. 2011;1230:E11-8.
dc.sourcePannekoek Y, Morelli G, Kusecek B, Morre SA, Ossewaarde JM, Langerak AA, et al. Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol. 2008;8:42.
dc.sourceWHO. Global incidence and prevalence of selected curable sexually transmitted infections – 2008. Available at: https://www.who.int/reproductivehealth/publications/rtis/stisestimates/en/. 2008.
dc.sourceMorrison RP. New insights into a persistent problem -- chlamydial infections. J Clin Invest. 2003;111(11):1647-9.
dc.sourceAbdelsamed H, Peters J, Byrne GI. Genetic variation in Chlamydia trachomatis and their hosts: impact on disease severity and tissue tropism. Future Microbiol. 2013;8(9):1129-46.
dc.sourceFehlner-Gardiner C, Roshick C, Carlson JH, Hughes S, Belland RJ, Caldwell HD, et al. Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J Biol Chem. 2002;277(30):26893-903.
dc.sourceBhatla N, Puri K, Joseph E, Kriplani A, Iyer VK, Sreenivas V. Association of Chlamydia trachomatis infection with human papillomavirus (HPV) & cervical intraepithelial neoplasia - a pilot study. Indian J Med Res. 2013;137(3):533-9.
dc.sourceSingh V, Sehgal A, Satyanarayana L, Gupta MM, Parashari A, Chattopadhya D. Clinical presentation of gynecologic infections among Indian women. Obstet Gynecol. 1995;85(2):215-9.
dc.sourceSingh V, Parashari A, Satyanarayana L, Sodhani P, Gupta MM, Sehgal A. Biological behavior and etiology of inflammatory cervical smears. Diagn Cytopathol. 1999;20(4):199-202.
dc.sourcePaba P, Bonifacio D, Di Bonito L, Ombres D, Favalli C, Syrjanen K, et al. Co-expression of HSV2 and Chlamydia trachomatis in HPV-positive cervical cancer and cervical intraepithelial neoplasia lesions is associated with aberrations in key intracellular pathways. Intervirology. 2008;51(4):230-4.
dc.sourceKoskela P, Anttila T, Bjorge T, Brunsvig A, Dillner J, Hakama M, et al. Chlamydia trachomatis infection as a risk factor for invasive cervical cancer. Int J Cancer. 2000;85(1):35-9.
dc.sourceAnttila T, Saikku P, Koskela P, Bloigu A, Dillner J, Ikaheimo I, et al. Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA. 2001;285(1):47-51.
dc.sourceGravitt PE, Castle PE. Chlamydia trachomatis and cervical squamous cell carcinoma. JAMA. 2001;285(13):1703-4; author reply 5-6.
dc.sourceFan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, et al. Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med. 1998;187(4):487-96.
dc.sourceWilliams VM, Filippova M, Soto U, Duerksen-Hughes PJ. HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol. 2011;6(1):45-57.
dc.sourceJenkins WD, LeVault K, Sutcliffe S. Chlamydia trachomatis infection: possible cofactor for oropharyngeal cancer development? Oral Oncol. 2015;51(2):e8-9.
dc.sourcePaavonen J. Chlamydia trachomatis infections of the female genital tract: state of the art. Ann Med. 2012;44(1):18-28.
dc.sourceMylonas I. Female genital Chlamydia trachomatis infection: where are we heading? Arch Gynecol Obstet. 2012;285(5):1271-85.
dc.sourceIgietseme JU, Omosun Y, Stuchlik O, Reed MS, Partin J, He Q, et al. Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis. PLoS One. 2015;10(12):e0145198.
dc.sourceSimonetti AC, Melo JH, de Souza PR, Bruneska D, de Lima Filho JL. Immunological's host profile for HPV and Chlamydia trachomatis, a cervical cancer cofactor. Microbes Infect. 2009;11(4):435-42.
dc.sourceRawre J, Juyal D, Dhawan B. Molecular typing of Chlamydia trachomatis: An overview. Indian J Med Microbiol. 2017;35(1):17-26.
dc.sourceChernesky MA. The laboratory diagnosis of Chlamydia trachomatis infections. Can J Infect Dis Med Microbiol. 2005;16(1):39-44.
dc.sourceGallo Vaulet L, Entrocassi C, Portu AI, Castro E, Di Bartolomeo S, Ruettger A, et al. High Frequency of Chlamydia trachomatis Mixed Infections Detected by Microarray Assay in South American Samples. PLoS One. 2016;11(4):e0153511.
dc.sourcePedersen LN, Herrmann B, Moller JK. Typing Chlamydia trachomatis: from egg yolk to nanotechnology. FEMS Immunol Med Microbiol. 2009;55(2):120-30.
dc.sourceQuint KD, van Doorn LJ, Kleter B, de Koning MN, van den Munckhof HA, Morre SA, et al. A highly sensitive, multiplex broad-spectrum PCR-DNA-enzyme immunoassay and reverse hybridization assay for rapid detection and identification of Chlamydia trachomatis serovars. J Mol Diagn. 2007;9(5):631-8.
dc.sourceRuettger A, Feige J, Slickers P, Schubert E, Morre SA, Pannekoek Y, et al. Genotyping of Chlamydia trachomatis strains from culture and clinical samples using an ompA-based DNA microarray assay. Mol Cell Probes. 2011;25(1):19-27.
dc.sourceStothard DR. Use of a reverse dot blot procedure to identify the presence of multiple serovars in Chlamydia trachomatis urogenital infection. J Clin Microbiol. 2001;39(7):2655-9.
dc.sourceXia Y, Xiong L. Progress in genotyping of Chlamydia trachomatis. Chin Med J (Engl). 2014;127(22):3980-6.
dc.sourceKlint M, Fuxelius HH, Goldkuhl RR, Skarin H, Rutemark C, Andersson SG, et al. High-resolution genotyping of Chlamydia trachomatis strains by multilocus sequence analysis. J Clin Microbiol. 2007;45(5):1410-4.
dc.sourcePedersen LN, Podenphant L, Moller JK. Highly discriminative genotyping of Chlamydia trachomatis using omp1 and a set of variable number tandem repeats. Clin Microbiol Infect. 2008;14(7):644-52.
dc.sourceUNAIDS. Global Reports - UNAIDS report on the global AIDS epidemic. Available at: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_Global_Report_2013_en_1.pdf. 2013.
dc.sourceZulfiqar HF, Javed A, Sumbal, Afroze B, Ali Q, Akbar K, et al. HIV Diagnosis and Treatment through Advanced Technologies. Front Public Health. 2017;5:32.
dc.sourceRubio Mendoza ML, Jacobson JO, Morales-Miranda S, Sierra Alarcon CA, Luque Nunez R. High HIV Burden in Men Who Have Sex with Men across Colombia's Largest Cities: Findings from an Integrated Biological and Behavioral Surveillance Study. PLoS One. 2015;10(8):e0131040.
dc.sourceVillarreal JL, Gutierrez J, Palacio L, Penuela M, Hernandez R, Lemay G, et al. Characterization of HIV type 1 envelope sequence among viral isolates circulating in the northern region of Colombia, South America. AIDS Res Hum Retroviruses. 2012;28(12):1779-83.
dc.sourceFaria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science. 2014;346(6205):56-61.
dc.sourceHemelaar J, Gouws E, Ghys PD, Osmanov S. Global trends in molecular epidemiology of HIV-1 during 2000-2007. AIDS. 2011;25(5):679-89.
dc.sourceEngelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279-90.
dc.sourceLi G, Piampongsant S, Faria NR, Voet A, Pineda-Pena AC, Khouri R, et al. An integrated map of HIV genome-wide variation from a population perspective. Retrovirology. 2015;12:18.
dc.sourceHoffmann C, Rockstroh J, Kamps B. HIV Medicine: Pathogenesis of HIV-1 Infection. Paris FP, editor 2007.
dc.sourceLampejo T, Pillay D. HIV virology, testing and monitoring. Medicine. 2013;41(8):420-4.
dc.sourceFanales-Belasio E, Raimondo M, Suligoi B, Butto S. HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanita. 2010;46(1):5-14.
dc.sourceFeller L, Lemmer J. Aspects of immunopathogenic mechanisms of HIV infection. SADJ. 2007;62(10):432-6.
dc.sourceCarpenter RJ, Refugio ON, Adams N, O'Brien KP, Johnson MD, Groff HL, et al. Prevalence and factors associated with asymptomatic gonococcal and chlamydial infection among US Navy and Marine Corps men infected with the HIV: a cohort study. BMJ Open. 2013;3(5).
dc.sourceGarbuglia AR, Piselli P, Lapa D, Sias C, Del Nonno F, Baiocchini A, et al. Frequency and multiplicity of human papillomavirus infection in HIV-1 positive women in Italy. J Clin Virol. 2012;54(2):141-6.
dc.sourceLevi JE, Fernandes S, Tateno AF, Motta E, Lima LP, Eluf-Neto J, et al. Presence of multiple human papillomavirus types in cervical samples from HIV-infected women. Gynecol Oncol. 2004;92(1):225-31.
dc.sourceChirenje ZM. HIV and cancer of the cervix. Best Pract Res Clin Obstet Gynaecol. 2005;19(2):269-76.
dc.sourceEllerbrock TV, Chiasson MA, Bush TJ, Sun XW, Sawo D, Brudney K, et al. Incidence of cervical squamous intraepithelial lesions in HIV-infected women. JAMA. 2000;283(8):1031-7.
dc.sourceMcDonald AC, Denny L, Wang C, Tsai WY, Wright TC, Jr., Kuhn L. Distribution of high-risk human papillomavirus genotypes among HIV-negative women with and without cervical intraepithelial neoplasia in South Africa. PLoS One. 2012;7(9):e44332.
dc.sourceWang C, Wright TC, Denny L, Kuhn L. Rapid rise in detection of human papillomavirus (HPV) infection soon after incident HIV infection among South African women. J Infect Dis. 2011;203(4):479-86.
dc.sourceArany I, Tyring SK. Systemic immunosuppression by HIV infection influences HPV transcription and thus local immune responses in condyloma acuminatum. Int J STD AIDS. 1998;9(5):268-71.
dc.sourceHille JJ, Webster-Cyriaque J, Palefski JM, Raab-Traub N. Mechanisms of expression of HHV8, EBV and HPV in selected HIV-associated oral lesions. Oral Dis. 2002;8 Suppl 2:161-8.
dc.sourceDel Mistro A, Chieco Bianchi L. HPV-related neoplasias in HIV-infected individuals. Eur J Cancer. 2001;37(10):1227-35.
dc.sourceDillner J, Lehtinen M, Björge T, Luostarinen T, Youngman L, Jellum E, et al. Prospective seroepidemiologic study of human papillomavirus infection as a risk factor for invasive cervical cancer. J Natl Cancer Inst. 1997;89(17):1293-9.
dc.sourceChristensen ND. HPV disease transmission protection and control. Microb Cell. 2016;3(9):476-90.
dc.sourceVyshenska D, Lam KC, Shulzhenko N, Morgun A. Interplay between viruses and bacterial microbiota in cancer development. Semin Immunol. 2017;32:14-24.
dc.sourceBoda D, Docea AO, Calina D, Ilie MA, Caruntu C, Zurac S, et al. Human papilloma virus: Apprehending the link with carcinogenesis and unveiling new research avenues (Review). Int J Oncol. 2018.
dc.sourceMitra A, MacIntyre DA, Marchesi JR, Lee YS, Bennett PR, Kyrgiou M. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next? Microbiome. 2016;4(1):58.
dc.sourceShea S, Munoz M, Ward SC, Beasley MB, Gitman MR, Nowak MD, et al. Human Papillomavirus (HPV69/HPV73) Coinfection associated with Simultaneous Squamous Cell Carcinoma of the Anus and Presumed Lung Metastasis. Viruses. 2020;12(3).
dc.sourceAudirac-Chalifour A, Torres-Poveda K, Bahena-Roman M, Tellez-Sosa J, Martinez-Barnetche J, Cortina-Ceballos B, et al. Cervical Microbiome and Cytokine Profile at Various Stages of Cervical Cancer: A Pilot Study. PLoS One. 2016;11(4):e0153274.
dc.sourceMitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep. 2015;5:16865.
dc.sourceSoto-De León SC, Del Río-Ospina L, Camargo M, Sánchez R, Moreno-Pérez DA, Pérez-Prados A, et al. Persistence, clearance and reinfection regarding six high risk human papillomavirus types in Colombian women: a follow-up study. BMC Infect Dis. 2014;14:395.
dc.sourceMoberg M, Gustavsson I, Wilander E, Gyllensten U. High viral loads of human papillomavirus predict risk of invasive cervical carcinoma. Br J Cancer. 2005;92(5):891-4.
dc.sourceManawapat A, Stubenrauch F, Russ R, Munk C, Kjaer SK, Iftner T. Physical state and viral load as predictive biomarkersfor persistence and progression of HPV16-positive cervical lesions: results from a population based long-term prospective cohort study. Am J Cancer Res. 2012;2(2):192-203.
dc.sourceWang W, Zhang XH, Li M, Hao CH, Zhao ZM, Liang HP. Association between viral loads of different oncogenic human papillomavirus types and the degree of cervical lesions in the progression of cervical Cancer. Clin Chim Acta. 2018;483:249-55.
dc.sourceRousseau MN, Costes V, Konate I, Nagot N, Foulongne V, Ouedraogo A, et al. Viral load and genomic integration of HPV 16 in cervical samples from HIV-1-infected and uninfected women in Burkina Faso. J Med Virol. 2007;79(6):766-70.
dc.sourceGuha D, Shen C, Gupta P, Nandan R, Chatterjee R. High HPV load and sexually transmitted infections increase the risk of abnormal cervical cytology in HIVinfected women in India. Indian J of Exp Biol. 2018;56:305-13
dc.sourceO'Connor EA, Lin JS, Burda BU, Henderson JT, Walsh ES, Whitlock EP. Behavioral sexual risk-reduction counseling in primary care to prevent sexually transmitted infections: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2014;161(12):874-83.
dc.sourceCarmona-Gutierrez D, Kainz K, Madeo F. Sexually transmitted infections: old foes on the rise. Microb Cell. 2016;3(9):361-2.
dc.sourceSilva J, Cerqueira F, Medeiros R. Chlamydia trachomatis infection: implications for HPV status and cervical cancer. Arch Gynecol Obstet. 2014;289(4):715-23.
dc.sourceda Silva Barros NK, Costa MC, Alves RR, Villa LL, Derchain SF, Zeferino LC, et al. Association of HPV infection and Chlamydia trachomatis seropositivity in cases of cervical neoplasia in Midwest Brazil. J Med Virol. 2012;84(7):1143-50.
dc.sourceSafaeian M, Quint K, Schiffman M, Rodriguez AC, Wacholder S, Herrero R, et al. Chlamydia trachomatis and risk of prevalent and incident cervical premalignancy in a population-based cohort. J Natl Cancer Inst. 2010;102(23):1794-804.
dc.sourcede Abreu AL, Malaguti N, Souza RP, Uchimura NS, Ferreira É, Pereira MW, et al. Association of human papillomavirus, Neisseria gonorrhoeae and Chlamydia trachomatis co-infections on the risk of high-grade squamous intraepithelial cervical lesion. Am J Cancer Res. 2016;6(6):1371-83.
dc.sourcede Abreu AL, Nogara PR, Souza RP, da Silva MC, Uchimura NS, Zanko RL, et al. Molecular detection of HPV and Chlamydia trachomatis infections in Brazilian women with abnormal cervical cytology. Am J Trop Med Hyg. 2012;87(6):1149-51.
dc.sourceZhu H, Shen Z, Luo H, Zhang W, Zhu X. Chlamydia Trachomatis Infection-Associated Risk of Cervical Cancer: A Meta-Analysis. Medicine (Baltimore). 2016;95(13):e3077.
dc.sourceThorsteinsson K, Storgaard M, Katzenstein TL, Ladelund S, Ronsholt FF, Johansen IS, et al. Prevalence and distribution of cervical high-risk human papillomavirus and cytological abnormalities in women living with HIV in Denmark - the SHADE. BMC Cancer. 2016;16(1):866.
dc.sourceDenny LA, Franceschi S, de Sanjose S, Heard I, Moscicki AB, Palefsky J. Human papillomavirus, human immunodeficiency virus and immunosuppression. Vaccine. 2012;30 Suppl 5:F168-74.
dc.sourceCamargo M, Soto-De Leon SC, Sanchez R, Perez-Prados A, Patarroyo ME, Patarroyo MA. Frequency of human papillomavirus infection, coinfection, and association with different risk factors in Colombia. Ann Epidemiol. 2011;21(3):204-13.
dc.sourceChristerson L, de Vries HJ, Klint M, Herrmann B, Morre SA. Multilocus sequence typing of urogenital Chlamydia trachomatis from patients with different degrees of clinical symptoms. Sex Transm Dis. 2011;38(6):490-4.
dc.sourceSturm-Ramirez K, Brumblay H, Diop K, Gueye-Ndiaye A, Sankale JL, Thior I, et al. Molecular epidemiology of genital Chlamydia trachomatis infection in high-risk women in Senegal, West Africa. J Clin Microbiol. 2000;38(1):138-45
dc.sourceSilva J, Cerqueira F, Medeiros R. Chlamydia trachomatis infection: implications for HPV status and cervical cancer. Arch Gynecol Obstet. 2014;289(4):715-23.
dc.sourceBoulet GA, Benoy IH, Depuydt CE, Horvath CA, Aerts M, Hens N, et al. Human papillomavirus 16 load and E2/E6 ratio in HPV16-positive women: biomarkers for cervical intraepithelial neoplasia >or=2 in a liquid-based cytology setting? Cancer Epidemiol Biomarkers Prev. 2009;18(11):2992-9.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectVirus del Papiloma Humano
dc.subjectChlamydia trachomatis
dc.subjectVirus de la Inmunodeficiencia Humana
dc.subjectCáncer de Cérvix
dc.subjectInfecciones de Transmisión Sexual
dc.subjectFactores de riesgo en mujeres con papiloma
dc.titleAsociación del Virus del Papiloma Humano con la presencia de dos infecciones de transmisión sexual en mujeres colombianas
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución