dc.contributorFlorez-Luna, Nestor
dc.creatorLópez Castaño, Jorge Andrés
dc.date.accessioned2020-01-30T02:42:46Z
dc.date.accessioned2022-09-22T14:30:06Z
dc.date.available2020-01-30T02:42:46Z
dc.date.available2022-09-22T14:30:06Z
dc.date.created2020-01-30T02:42:46Z
dc.date.issued2018
dc.identifierhttps://repository.urosario.edu.co/handle/10336/20740
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3439429
dc.description.abstractAquatic physical activity is presented as one of the best choices that reduce the effects of sedentary lifestyle in blind people, being one of the most attractive to this population. However, among the determinant barriers that hinder their development, is the lack of appropriate technologies of navigation that facilitate the displacement and the orientation in aquatic scenarios as swimming pool. Existing devices are primarily focused on obstacle recognition and were designed, mainly, as support tools for Paralympic athletes. In the framework of the applied research, following the methodology of design engineering and product design, a navigation system for the assistance of the physical activity in blind people which integrates both principles: the detection of obstacles and the orientation in space was developed. This process was performed in five stages: recognition of user needs, definition of product based on these needs, conceptual design, prototype construction and development of user interface. In accordance with metrics and requirements established during the stages of the process, in contrast with the available technologies, the system obtained included several features in its design, in addition to orientation and obstacle recognition, such as ergonomics, autonomy, ease of handling and measurement of the physical activity. Aspects such as security, reliability and availability will be evaluated in a subsequent stage of validation.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherMaestría en Actividad Física y Salud
dc.publisherEscuela de Medicina y Ciencias de la Salud
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsBloqueado (Texto referencial)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.source1. García Sánchez L, Ospina Rodríguez J. Imaginarios de las personas en situación de discapacidad en torno a la actividad física. Ciencias de la Salud. 2008;6(2):56-57.
dc.source2. Stuart M, Lieberman L, Hand K. Beliefs About Physical Activity Among Children Who Are Visually Impaired and Their Parents. Journal of Visual Impairment and Blindness. 2006;100(4):223-234.
dc.source3. Phoenix C, Griffin, M, Smith B. Physical activity among older people with sight loss: a qualitative research study to inform policy and practice. Public Health. 2015;129(2):124-130.
dc.source4. Shields N, Synnot A, Barr M. Perceived barriers and facilitators to physical activity for children with disability: a systematic review. British Journal of Sports Medicine. 2011;46(14):989-997.
dc.source5. Lieberman L. (2002). Fitness for Individuals Who Are Visually Impaired or Deafblind. RE view Rehabilitation and Education for Blindness and Visual Impairment. 2002;34(1):13-23.
dc.source6. Rodríguez A, Yebes J, Alcantarilla P, Bergasa L, Almazán J, Cela A. Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback. Sensors [Internet]. 2012;12(12):17476-17496. Available from: http://www.mdpi.com/1424-8220/12/12/17476
dc.source7. Erdtmann J, Bonifer P. American Red Cross swimming and water safety. 3rd ed. Yardley, PA: Stay Well; 2009. p.167.
dc.source8. MacGregor A, Leaman R, Macleod G. A Guide to Visually Impaired Friendly Sport. 1st ed. Leamington Spa: British Blind Sport; 2016. p.22.
dc.source9. Loomis J, Golledge R, Klatzky R. Navigation System for the Blind: Auditory Display Modes and Guidance. Presence: Teleoperators and Virtual Environments [Internet]. 1998;7(2):193-203.
dc.source10. Reyes Moreno F. Diseño y construcción de un dispositivo electrónico de ayuda y entretenimiento para personas con discapacidad visual a través de ondas vibratorias e interfaces audibles, para el proyecto Handeyes del banco de ideas del SENESCYT [Pregrado]. ESPE; 2016.
dc.source11. Santarelli J, Song S. Phineas Sensor System - Accessible Swimming [Internet]. 2013 [cited 2 August 2018]. Available from: https://www.youtube.com/watch?v=vC8Frws37cc
dc.source12. Avci A, Qureshi N. Electronic Swimming Coach (ESC) for Athletes who are Visually Impaired [Internet]. Carleton University; 2018. Available from: https://carleton.ca/read/wp-content/uploads/IDeA-final-report-swimming-coach.pdf
dc.source13. Conrado A. Adaptap Lane Navigation System [Internet]. Design for social betterment. 2011 [cited 2 August 2018]. Available from: http://sites.nd.edu/social-design/industrial-design-projects/adaptap-lane-navigation-system
dc.source14. MacGregor A. Visually Impaired Friendly Swimming. Leamington Spa: British Blind Sport; 2013. p.20-21.
dc.source15. SAMSUNG. Blind Cap, the first swimming cap with technology that helps blind swimmers [Internet]. 2016 [cited 2 August 2018]. Available from: http://www.blindcap.com/es/
dc.source16. Kothari C. Research methodology. 2nd ed. New Delhi: New Age International (P) Ltd., Publishers; 2004. p 3.
dc.source17. Behar Rivero D. Metodología de la investigación. Tucumán: Shalom; 2008. p 20.
dc.source18. Ortloff D, Schmidt T, Hahn K, Bieniek T, Janczyk G, Brück R. MEMS product engineering. Vienna: Springer Vienna; 2014. p 13.
dc.source19. Ulrich K, Eppinger S. Product design and development. 6th ed. New York, N.Y.: McGraw-Hill Education; 2016. p 4.
dc.source20. Seemungal B, Glasauer S, Gresty M, Bronstein A. Vestibular Perception and Navigation in the Congenitally Blind. Journal of Neurophysiology. 2007;97(6):4341-4356.
dc.source21. Scheidt R, Conditt M, Secco E, Mussa-Ivaldi F. Interaction of Visual and Proprioceptive Feedback During Adaptation of Human Reaching Movements. Journal of Neurophysiology. 2005;93(6):3200-3213.
dc.source22. Campus C, Brayda L, De Carli F, Chellali R, Famà F, Bruzzo C et al. Tactile exploration of virtual objects for blind and sighted people: the role of beta 1 EEG band in sensory substitution and supramodal mental mapping. Journal of Neurophysiology. 2012;107(10):2713-2729.
dc.source23. Bufacchi R, Liang M, Griffin L, Iannetti G. A geometric model of defensive peripersonal space. Journal of Neurophysiology. 2016;115(1):218-225.
dc.source24. Lin B, Lee C, Chiang P. Simple Smartphone-Based Guiding System for Visually Impaired People. Sensors. 2017;17(6):1371.
dc.source25. Mocanu B, Tapu R, Zaharia T. When Ultrasonic Sensors and Computer Vision Join Forces for Efficient Obstacle Detection and Recognition. Sensors. 2016;16(11):1807.
dc.source26. Ong S, Zhang J, Nee A. Assistive obstacle detection and navigation devices for vision-impaired users. Disability and Rehabilitation: Assistive Technology. 2013;8(5):409-416.
dc.source27. Ramya V, Raja L, Palaniappan B. Voice Assisted Embedded Navigation System for the Visually Impaired. International Journal of Computer Applications. 2013;64(13):42-48.
dc.source28. Elmannai W, Elleithy K. Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions. Sensors. 2017;17(3):565.
dc.source29. Bourne R, Flaxman S, Braithwaite T, Cicinell M. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. The Lancet. 2017;5:e889.
dc.source30. MaxBotix Inc. XL-MaxSonar-WR and XL-MaxSonar-WRC sensor series. MaxBotix Incorporated; 2017 p. 16.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectActividad física acuática
dc.subjectPersonas ciegas
dc.subjectSistemas de navegación
dc.subjectOrientación
dc.subjectDetección de obstáculos
dc.titleDesarrollo de un sistema de navegación para la asistencia de la actividad física acuática en personas ciegas
dc.typemasterThesis


Este ítem pertenece a la siguiente institución