dc.contributorRamírez, Juan David
dc.contributorGrupo de Investigaciones Microbiológicas UR (GIMUR)
dc.creatorRamírez, Juan David
dc.creatorVelasquez-Ortiz, Natalia
dc.creatorHernández, Carolina
dc.creatorCantillo Barraza, Omar
dc.creatorMedina, Manuel
dc.creatorMedina-Alfonso, Mabel
dc.creatorSuescun-Carrero, Sandra
dc.creatorMuñoz, Marina
dc.creatorVega, Laura
dc.creatorCastañeda, Sergio
dc.creatorCruz-Saavedra, Lissa
dc.creatorBallesteros , Nathalia
dc.creatorRamírez, Juan David
dc.date.accessioned2022-06-29T19:44:44Z
dc.date.accessioned2022-09-22T14:27:20Z
dc.date.available2022-06-29T19:44:44Z
dc.date.available2022-09-22T14:27:20Z
dc.date.created2022-06-29T19:44:44Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/34439
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3438958
dc.description.abstractChagas disease is considered a public health issue in Colombia, where many regions are endemic. Triatoma dimidiata is an important vector after Rhodnius prolixus, and it is gaining importance in Boyacá, eastern Colombia. Following the recent elimination of R. prolixus in the region, it is pivotal to understand the behavior of T. dimidiata and the transmission dynamics of T. cruzi. We used qPCR and Next Generation Sequencing (NGS) to evaluate T. cruzi infection, parasite load, feeding profiles, and T. cruzi genotyping for T. dimidiata specimens collected in nine municipalities in Boyacá and explored T. dimidiata population genetics. We found that T. dimidiata populations are composed by a single population with similar genetic characteristics that present infection rates up to 70%, high parasite loads up to 1.46 × 109 parasite-equivalents/mL, a feeding behavior that comprises at least 17 domestic, synanthropic and sylvatic species, and a wide diversity of TcI genotypes even within a single specimen. These results imply that T. dimidiata behavior is similar to other successful vectors, having a wide variety of blood sources and contributing to the circulation of different genotypes of the parasite, highlighting its importance for T. cruzi transmission and risk for humans. In the light of the elimination of R. prolixus in Boyacá and the results we found, we suggest that T. dimidiata should become a new target for vector control programs. We hope this study provides enough information to enhance surveillance programs and a future effective interruption of T. cruzi vector transmission in endemic regions.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherMaestría en Ciencias Naturales
dc.publisherFacultad de Ciencias Naturales
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightsRestringido (Temporalmente bloqueado)
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.source1. Rassi A Jr, Rassi A, Marcondes de Rezende J. American trypanosomiasis (Chagas disease). J Infect Dis Clin North Am. 2012; 26(2):275-91
dc.source2. Ramírez J, Hernández C. Trypanosoma cruzi I: Towards the need of genetic subdivision? Part II. Acta Trop [Internet]. 2018;184:53–8
dc.source3. Instituto Nacional de Salud INS. Protocolo de Vigilancia Entomológica y Control Vectorial de la Enfermedad de Chagas. Ministerio de Salud y Protección Salud, República de Colombia. 2014. Available from https://www.ins.gov.co/buscador/Informacin%20de%20laboratorio/Guía%20para%20la%20vigilancia%20por%20laboratorio%20de%20triatominos%20vectores%20de%20Chagas.pdf . Spanish.
dc.source4. Organización Panamericana de la Salud [OPS]. Guía de Atención Clínica de la enfermedad de Chagas. Ministerio de la Protección Social, Republica de Colombia, Organización Panamericana de la Salud. 2010. Spanish.
dc.source5. Hernández C, Salazar C, Brochero H, Teherán A, Buitrago L, Vera M, et al. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: parasite infection, feeding sources, and discrete typing units. Parasit Vectors; 2016; 9:620.
dc.source6. Zuriaga M, Blandón-Naranjo M., Valerio-Campos I., Salas R., Zeledón R., & Bargues, M. Molecular characterization of Trypanosoma cruzi and infection rate of the vector Triatoma dimidiata in Costa Rica. Parasitology Research. 2012; 111(4), 1615–1620.
dc.source7. Pech-May A, Mazariegos-Hidalgo C, Izeta-Alberdi A, López-Cancino S, Tun-Ku E, De la Cruz-F, et al. Genetic variation and phylogeography of the Triatoma dimidiata complex evidence a potential center of origin and recent divergence of haplogroups having differential Trypanosoma cruzi and DTU infections. PLoS Negl Trop Dis. 2019; 13(1): e0007044.
dc.source8. Ramírez-Sierra M, Dumonteil E. Infection Rate by Trypanosoma cruzi and Biased Vertebrate Host Selection in the Triatoma dimidiata (Hemiptera: Reduviidae) Species Complex. Journal of Medical Entomology, 2015; 1–6
dc.source9. Wong Y, Sornosa K, Guale D, Solorzano L, Ramirez-Sierra M, Herrera C, et al.E. Molecular epidemiology of Trypanosoma cruzi and Triatoma dimidiata in costal Ecuador. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2016; 41, 207–212.
dc.source10. Monroy C, Rodas A, Mejía M, Rosales R & Tabaru Y. Epidemiology of Chagas disease in Guatemala: infection rate of Triatoma dimidiata, Triatoma nitida and Rhodnius prolixus (Hemiptera, Reduviidae) with Trypanosoma cruzi and Trypanosoma rangeli (Kinetoplastida, Trypanosomatidae). Memórias do Instituto Oswaldo Cruz. 2003; 98(3), 305-310.
dc.source11. Zeledón R, Solano G, Burstin L, Swartzwelder J. Epidemiological pattern of Chagas' disease in an endemic area of Costa Rica. Am J Trop Med Hyg. 1975 Mar;24(2):214-25. DOI: 10.4269/ajtmh.1975.24.214. PMID: 804266.
dc.source12. Lima-Cordón R, Stevens L, Solórzano Ortíz E, Rodas G, Castellanos S, Rodas A, et al. Implementation science: Epidemiology and feeding profiles of the Chagas vector Triatoma dimidiata prior to Ecohealth intervention for three locations in Central America. PLoS Negl Trop Dis. 2018 Nov 28;12(11):e0006952. doi: 10.1371/journal.pntd.0006952. PMID: 30485265; PMCID: PMC6287883.
dc.source13. Torres-Montero J, López-Monteon A, Dumonteil E & Ramos-Ligonio A. House infestation dynamics and feeding sources of Triatoma dimidiata in central Veracruz, Mexico. The American journal of tropical medicine and hygiene. 2012; 86(4), 677–682.
dc.source14. Caranci A, Grieco J, Achee N, Hoel D, Bautista K, King R, et al. Distribution of Triatoma dimidiata sensu lato (Reduviidae: Triatominae) and Risk Factors Associated with Household Invasion in Northern Belize, Central America, Journal of Medical Entomology, Volume 59, Issue 2, 2022, Pages 764–771
dc.source15. Monteón V, Triana-Chávez O, Mejía-Jaramillo A, Pennignton P, Ramos-Ligonio Á., Acosta K, et al. Circulation of Tc Ia discrete type unit Trypanosoma cruzi in Yucatan Mexico. Journal of parasitic diseases : official organ of the Indian Society for Parasitology. 2016; 40(2), 550–554.
dc.source16. Orantes L, Monroy C, Dorn P, Stevens L, Rizzo D, Morrissey L, et al. Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PLoS Negl Trop Dis. 2018; 12(10): e0006730.
dc.source17. Dumonteil E, Ramírez-Sierra M, Pérez-Carillo S, The-Poot C, Herrera C, Gourbiére S, et al. . Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci Rep. 2018; 8:4140.
dc.source18. Gómez-Palacio A, Triana O, Jaramillo-O N, Dotson E, Marcet P. Eco-geographical differentiation among Colombian populations of the Chagas disease vector Triatoma dimidiata (Hemiptera: Reduviidae). Infect Genet Evol J. 2013; 20:352-61.
dc.source19. Dorn P, Monroy C, Curtis A. Triatoma dimidiata (Latreille, 1811): a review of its diversity across its geographic range and the relationship among populations. Infect Genet Evol. 2007; 7:343–352
dc.source20. Guhl F, Aguilera G, Pinto N, Vergara D. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en Colombia. Biomédica. 2007; 27:143–62. Spanish.
dc.source21. Grisales N, Triana O, Angulo V, Jaramillo N, Parra-Henao G, Panzera F, et al. Diferenciación genética de tres poblaciones colombianas de Triatoma dimidiata (Latreille, 1811) mediante análisis molecular del gen mitocondrial ND4. Biomédica. 2010;30(2):207. Spanish.
dc.source22. Esteban-Adarme, L. Variabilidad morfológica entre poblaciones de Triatoma dimidiata (Latreille 1811), procedentes de cuatro departamentos de Colombia. MSc Thesis. Universidad Nacional de Colombia. 2010. Spanish.
dc.source23. Piccinali R, Marcet P, Ceballos L, Kitron ., Gürtler R, Dotson E. Genetic variability, phylogenetic relationships and gene flow in Triatoma infestans dark morphs from the Argentinean Chaco. Infect. Genet. Evol. 2011; 11, 895–903.
dc.source24. Pfeiler E, Bitler B, Ramsey J, Palacios-Cardiel C, Markow T. Genetic variation, population structure, and phylogenetic relationships of Triatoma rubida and T. recurva (Hemiptera: Reduviidae: Triatominae) from the Sonoran Desert, insect vectors of the Chagas’ disease parasite Trypanosoma cruzi. Mol. Phylogenet. Evol. 2006; 41, 209–221.
dc.source25. Piccinali R, Marcet P, Noireau F, Kitron U, Gürtler R, Dotson E. Molecular population genetics and phylogeography of the Chagas disease vector Triatoma infestans in South America. J. Med. Entomol. 2009; 46, 796–809.
dc.source26. Gómez-Palacio A, Triana O. Molecular evidence of demographic expansion of the Chagas disease vector Triatoma dimidiata (Hemiptera, Reduviidae, Triatominae) in Colombia. PLoS Negl Trop Dis. 2014; 8: e2734.
dc.source27. Parra-Henao G, Restrepo M, Restrepo B, Domínguez J. Estudio de tripanosomiasis americana en dos poblados indígenas de la Sierra Nevada de Santa Marta. CES Med; 2004; 18:4. Spanish.
dc.source28. Parra-Henao G, Angulo V, Jaramillo N, Restrepo M. Factores de riesgo de infestación domiciliaria por Triatoma dimidiata. Biomédica. 2009; 29(supl.1):316. Memorias, XIV Congreso Colombiano de Parasitología y Medicina Tropical y X Simposio PECET). Spanish.
dc.source29. Cantillo-Barraza O, Gómez-Palacio A, Salazar D, Mejía-Jaramillo A, Calle J, Triana O. Distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en la Isla Margarita del departamento de Bolívar, Colombia. Biomédica. 2010; 30:382-9.
dc.source30. Cantillo-Barraza O, Medina M, Zuluaga S, Blanco M, Caro R, Jaimes-Dueñez J, et al. Distribution and natural infection status of synanthropic triatomines (Hemiptera: Reduviidae), vectors of Trypanosoma cruzi, reveals new epidemiological scenarios for Chagas disease in the highlands of Colombia. PLoS Negl Trop Dis. 2021;15(7):1–19
dc.source31. Gómez J, Montes N, Nivia Á & Diederix H. Geological Map of Colombia 2015. Scale 1:100000. Colombian Geological Survey, 2 sheets. Bogotá). 2015.
dc.source32. Lyman D, Monteiro F, Escalante A, Cordon C, Wesson D, Dujardin J, et al. Mitochondrial DNA sequence variation among Triatominae vectors of Chagas disease. Am J Trop Med Hyg. 1999;60:377-86.
dc.source33. Monteiro F, Barrett T, Fitzpatrick S, Cordon-Rosales C, Feliciangeli D & Beard C. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Molecular Ecology, 2003; 12(4), 997–1006.
dc.source34. Díaz S, Panzera F, Jaramillo-O N, Pérez R, Fernández R, Vallejo G, et al. Genetic, Cytogenetic and Morphological Trends in the Evolution of the Rhodnius (Triatominae: Rhodniini) Trans-Andean Group. PLoS ONE. 2014; 9(2): e87493.
dc.source35. Golosova O, Henderson R, Vaskin Y, Gabrielian A, Grekhov G, Nagarajan V, et al. .Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ 2014 2:e644.
dc.source36. Bandelt H, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol, 1999;16(1):37–48
dc.source37. Nguyen L, Schmidt H, von Haeseler A, Minh B. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol., 2015; 32:268-274.
dc.source38. Letunic I, Bork P. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293-W296.
dc.source39. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J, Guirao-Rico S, Librado P, Ramos-Onsins S, et al. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Mol. Biol. Evol. 2017; 34: 3299-3302.
dc.source40. Duffy T, Cura C, Ramírez J, Abate T, Cayo N, Parrado R, et al. Analytical performance of a multiplex real‑time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis. 2013; 7:e2000
dc.source41. Cruz L, Vivas A, Montilla M, Hernández C, Flórez C, Parra E, et al. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model. Infection, Genetics and Evolution, 2015; 29, 110–117.
dc.source42. Souto R, Fernandes O, Macedo A, Campbell D, Zingales B. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol. 1996; 83:141–52.
dc.source43. Wingett S, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018; 7:1338
dc.source44. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics, Volume 32, Issue 19, 1 October 2016, Pages 3047–3048, https://doi.org/10.1093/bioinformatics/btw354
dc.source45. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E, et al. QIIME allows analysis of high‑throughput community sequencing data. Nat Methods. 2010;7:335–6.
dc.source46. Cura C, Mejía-Jaramillo A, Duffy T, Burgos J, Rodriguez M, Cardinal M, et al. . Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. International Journal for Parasitology. 2010 40(14), 1599–1607.
dc.source47. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. 2016. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
dc.source48. Arias-Giraldo L, Muñoz M, Hernández C, et al. Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing. Parasites Vectors 13, 434 (2020).
dc.source49. Ministerio de Protección Social, Organización Panamerica de Salud, Instituto Nacional de Salud. Protocolo de vigilancia entomologica y control vectorial de la enfermedad de chagas. Researchgate. 2014;(April):12–3. Spanish.
dc.source50. García B, Rosas ARP, Blariza M, Grosso C, Fernández C, Stroppa M. Molecular Population Genetics and Evolution of the Chagas’ Disease Vector Triatoma infestans (Hemiptera: Reduviidae). Curr Genomics. 2013;14(5):316–23.
dc.sourceArgimón S, Abudahab K, Goater R, Fedosejev A, Bhai J, Glasner C, et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. 30/11/2016. M Gen 2(11): doi:10.1099/mgen.0.000093
dc.source52. Parra-Henao G, Cardona Á, Quirós-Gómez O, Angulo V & Alexander N. House-level risk factors for Triatoma dimidiata infestation in Colombia. American Journal of Tropical Medicine and Hygiene, 2015; 92(1), 193–200.
dc.source53. Reyes M, Torres A, Esteban L, Flórez M, Angulo V. Riesgo de transmisión de la enfermedad de Chagas por intrusión de triatominos y mamíferos silvestres en Bucaramanga, Santander, Colombia. Biomédica. 2017; 37(1): 68-7. Spanish.
dc.source54. Botto-Mahan C, Bacigalupo A, Correa J, Fontúrbel F, Cattan P, Solari A. Prevalence, infected density or individual probability of infection? Assessing vector infection risk in the wild transmission of Chagas disease. Proc. Biol. Sci. 2020. 287 (1922), 2019301
dc.source55. Coronado X, Rozas M, Botto-Mahan C, Ortiz S, Cattan P, Solari A. Molecular epidemiology of Chagas disease in the wild transmission cycle: the evaluation in the sylvatic vector Mepraia spinolai from an endemic area of Chile. Am. J. Trop. Med. Hyg. 2009. 81 (4), 656–659
dc.source56. Lima-Neiva V, Toma H, Aguiar L, Lopes C, Dias L, Gonçalves T, et al. The connection between Trypanosoma cruzi transmission cycles by Triatoma brasiliensis: A threat to human health in an area susceptible to desertification in the seridó, Rio grande do Norte, brazil. PLoS Neglected Tropical Diseases, 2021; 15(11).
dc.source57. Saavedra M, Bacigalupo A, Victoria M, Vergara MJ. Trypanosoma cruzi infection in the wild Chagas disease vector, Mepraia spinolai: Parasitic load, discrete typing units, and blood meal sources. Acta Tropica. 2022;229
dc.source58. Marinho C, D’Império Lim, M, Grisotto, M & Alvarez J. Influence of Acute-Phase Parasite Load on Pathology, Parasitism, and Activation of the Immune System at the Late Chronic Phase of Chagas’ Disease. Infection and Immunity, 1999, 67(1), pp.308-318.
dc.source59. Luitgards-Moura J, Vargas A, Almeida C, Magno-Esperança G, Agapito-Souza R, Folly-Ramos E et al. A Triatoma maculata (Hemiptera, Reduviidae, Triatominae) population from Roraima, Amazon region, Brazil, has some bionomic characteristics of a potential Chagas disease vector. Revista do Instituto de Medicina Tropical de São Paulo. 2005;47(3):131-137.
dc.source60. Velásquez-Ortiz N, Ramírez J. Understanding the oral transmission of Trypanosoma cruzi as a veterinary and medical foodborne zoonosis. Res Vet Sci. 2020;132:448-461. doi:10.1016/j.rvsc.2020.07.024
dc.source61. Zapata R, Mesa J, Mejia J, Reyes J. Frecuencia de infección por trypanosoma sp en búfalos de agua. 2009;25–32. Spanish.
dc.source62. García H, Aguirre A, Pérez G, Mendoza-León A. Serological and Parasitological Diagnosis of Tripanosomiasis Infections in Two Water Buffaloes Herds (Bubalus bubalis) in Guarico State. Rev Fac Cs Vets UCV. 2001; 42: 15-26.
dc.source63. Murillo-Solano C, López-Domínguez J, Gongora R, Rojas-Gulloso A, Usme-Ciro J, Perdomo-Balaguera, et al. Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia. Scientific Reports, 2021; 11(1), 1–14
dc.source64. Cantillo-Barraza O, Garcés E, Gómez-Palacio A, Cortés L, Pereira A, Marcet P, et al. Eco-epidemiological study of an endemic Chagas disease region in northern Colombia reveals the importance of Triatoma maculata (Hemiptera: Reduviidae), dogs and Didelphis marsupialis in Trypanosoma cruzi maintenance. Parasit Vectors [Internet]. 2015;8.
dc.source65. Herrera C, Bargues M, Fajardo A, Montilla M, Triana O, Adolfo G, et al. Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia. 2007;7:535–9.
dc.source66. Dorn P, McClure A, Gallaspy M, et al. The diversity of the Chagas parasite, Trypanosoma cruzi, infecting the main Central American vector, Triatoma dimidiata, from Mexico to Colombia. PLoS Negl Trop Dis. 2017;11(9): e0005878.
dc.source67. Ramírez J, Guhl F, Rendón L, Rosas F, Marin-Neto J, Morillo C. Chagas cardiomyopathy manifestations and Trypanosoma cruzi genotypes circulating in chronic chagasic patients. PLoS Negl Trop Dis 2010;4(11): e899
dc.source68. Pronovost H, Peterson A, Chavez B, Blum M, Dumonteil E, & Herrera C. Deep sequencing reveals multiclonality and new discrete typing units of Trypanosoma cruzi in rodents from the southern United States. Journal of Microbiology, Immunology and Infection. 2018. doi:10.1016/j.jmii.2018.12.004
dc.source69. Bustamante D, Monroy M, Rodas A, Juárez J, Malone J. Environmental determinants of the distribution of Chagas disease vectors in south-eastern Guatemala. Geospatial Health. 2007; 1:199–211.
dc.source70. Salazar P, Rosales J, Rojas G, Cabrera M, Vences M, López J. Triatoma mexicana (Hemiptera: Reduviidae) in Guanajuato, Mexico: house infestation and seasonal variation. Mem. Inst. Oswaldo Cruz . 2007; 102(7 ): 803-807
dc.source71. Gurgel-Gonçalves R, Cuba C. Population structure of Rhodnius neglectus Lent and Psammolestes Tertius Lent and Jurberg (Hemiptera, Reduviidae) in bird nests (Fumariidae) on Mauritia flexuosa palm trees in Federal District of Brazil. Rev Bras Zool 2007; 24:157-63
dc.source72. Gómez-Hernández C, Rezende-Oliveira K, Zárate A, Zárate E, Trujillo-Contreras F, Ramirez L. Prevalência de triatomíneos (Hemíptera: Reduviidae: Triatominae) infectados por Trypanosoma cruzi: sazonalidade e distribuição na região Ciénega do Estado de Jalisco, México. Rev. Soc. Bras. Med. Trop. [Internet]. 2008; 41(3): 257-262.
dc.source73. Lima M, Coutinho C, Gomes T, Oliveira T, Duarte R, Borges-Pereira J, et al. Risk presented by Copernicia prunifera palm trees in the Rhodnius nasutus distribution in a Chagas disease-endemic area of the Brazilian northeast. Am J Trop Med Hyg 2008; 79:750-4.
dc.source74. Polonio R, Ramirez-Sierra M, and Dumonteil E. Vector-Borne and Zoonotic Diseases. Feb 2009. 19-24.
dc.source75. Di Iorio O, Gürtler R. Seasonality and Temperature-Dependent Flight Dispersal of Triatoma infestans (Hemiptera: Reduviidae) and Other Vectors of Chagas Disease in Western Argentina, Journal of Medical Entomology, Volume 54, Issue 5. 2017, Pages 1285–1292.
dc.source76. Boyacá Climate Weather Averages. Available in: https://www.worldweatheronline.com/Boyacá-weather-averages/Boyacá-department/co.aspx
dc.source77. Rincón-Galvis H, Urbano P, Hernández C, Ramírez J, Florin D. Temporal Variation of the Presence of Rhodnius prolixus (Hemiptera: Reduviidae) into Rural Dwellings in the Department of Casanare, Eastern Colombia. J Med Entomol. 2020;57(1):173–80.
dc.source78. Yoshioka K, Provedor E, Manne-Goehler J. The resilience of Triatoma dimidiata: An analysis of reinfestation in the Nicaraguan Chagas disease vector control program (2010–2016). PLoS One. 2018;13(8):1–18.
dc.source79. López J, Monroy M, Dorn P, Castellanos S, Lima R, Rodas A. Effect of community education in an integrate control for Triatoma dimidiata (Hemiptera: Reduviidae). Rev Cubana Med Trop. 2019;71(3):1–18.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectEnfermedad de Chagas
dc.subjectT. dimidiata
dc.subjectR. prolixus
dc.subjectCiclos epidemiológicos complejos
dc.subjectDinámicas de transmission de T. cruzi
dc.subjectGenética poblacional
dc.subjectProblemas de salud pública en Colombia
dc.titleEstimating the genetic structure of Triatoma dimidiata (Hemiptera: Reduviidae) and the transmission dynamics of Trypanosoma cruzi in Boyacá, eastern Colombia
dc.typemasterThesis


Este ítem pertenece a la siguiente institución