dc.contributor | Torres De Galvis, Yolanda | |
dc.creator | Contreras Parra, Diana Paola | |
dc.creator | Otero Rosales, Aurelio | |
dc.creator | Parra Abaunza, Katherine | |
dc.date.accessioned | 2019-10-31T12:02:08Z | |
dc.date.accessioned | 2022-09-22T14:24:43Z | |
dc.date.available | 2019-10-31T12:02:08Z | |
dc.date.available | 2022-09-22T14:24:43Z | |
dc.date.created | 2019-10-31T12:02:08Z | |
dc.identifier | https://repository.urosario.edu.co/handle/10336/20514 | |
dc.identifier | https://doi.org/10.48713/10336_20514 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3438531 | |
dc.description.abstract | BACKGROUND: Bacterial resistance is a global public health problem. It can cross national and international borders. In addition to the global concern for the increase in bacterial resistance is the significant decrease in the development of new molecules with antimicrobial activity approved by the regulatory agency of food and medicine (fda), which is generating the “perfect storm.” JUSTIFICATION: Antibiotics are among the most prescribed and used drugs in clinical practice. Between 20-50% are not well used, being one of the causes of the development of multidrug-resistant microorganisms. If actions are not taken in a timely manner to reduce the increase in bacterial resistance, it is estimated that by 2050 the number of deaths caused by this cause will reach 10 million annually and a cumulative cost of USD $100 trillion to the global economy would be generated. OBJECTIVE: The objective is to determine if factors such as sex and age are associated with the development of antimicrobial resistance in two most prevalent uropathogens and analyze the SMART epidemiological surveillance program from 2013 to 2017 in 10 countries. METHODOLOGY: To use a mega cross-sectional analytical observational study using 9,090 records from the SMART database from 2013 to 2017, which meet the inclusion and exclusion criteria in three stages: the first, descriptive where demographic and clinical variables were characterized; the second one consisted of bivariate analysis to estimate the association between the dependent variable (antimicrobial resistance) and the independent ones estimating prevalence. 95% CI and RD confidence intervals; and the third one obtaining prediction models that determine the impact of the factors and strength of association. RESULTS: 9,090 records were included: 6,332 (69.7%) of the female sex, 68.2%> 51 years; 24.1% adults, 2.4% adolescents, and 5.3% children. 48.8% of the records corresponded to patients with 48 or more hours of hospitalization and 7% were hospitalized in the intensive care unit; 94.5% of uropathogens were isolated in urine. Factors associated with the resistance of E. coli to Ertapenem were: male gender (RD 1.69; 95% CI 1.28-2.23), hospitalization time greater than 48 hours (RD 1.50; CI 95 %: 1.14-1.98), and being in ICU (RD 1.82; 95% CI: 1.17-2.85). Regarding E. coli when the treatment is with Ceftriaxone, the following factors were significantly associated: male gender (RD 1.69; 95% CI 1.52-1.89), more than 48 hours hospitalized (RD 1.68; 95% CI: 1.52-1.86). In Klebsiella pneumoniae, the factors that explain the development of antimicrobial resistance were: male gender (RD 1.54; 95% CI: 1.24-1.91), more than 48 hours of hospitalization (RD 1.72; 95% CI : 1.39-2.14), ICU care (RD 2.02; 95% CI: 1.48-2.75) adolescent age (RD 2.79; 95% CI: 1.09-7.15 ), adult (RD 2.91; 95% CI: 1.43-5.93), and senior (RD 2.62; 95% CI: 1.32-5.20). Regarding Ceftriaxone resistance, it is explained by the following factors: male gender (RD 1.61; 95% CI 1.34-1.92), more than 48 hours hospitalized (OR 1.84; 95% CI: 1, 54-2,19), and ICU (OR 1.61; 95% CI: 1.21-2.15). CONCLUSIONS: According to the finding of the study of the male gender, hospital stay longer than 48 hours explain the decrease in the susceptibility of E. coli and Klebsiella pneumoniae to Ertapenem and Ceftriaxone. In addition, antimicrobial resistance is directly proportional to the increase in age. In our study, being under 8 years old was a protective factor. New research is necessary to evaluate other clinical factors that were not included in the present study, as well as the associated resistance mechanisms. | |
dc.language | spa | |
dc.publisher | Universidad del Rosario | |
dc.publisher | Maestría en Epidemiología | |
dc.publisher | Maestría en Actividad Física y Salud | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe.
EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización.
--------------------------------------
POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos. | |
dc.source | WHO. (2017). Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis. | |
dc.source | Bonomo, R. A. (2017). b -Lactamases: A Focus on Current Challenges. 1–16. | |
dc.source | O ’neill, J. (2016). Tackling Drug-Resistant Infections Globally: Final Report and Recommendations the Review on Antimicrobial Resistance. (May). https://doi.org/10.1016/j.jpha.2015.11.005 | |
dc.source | Simões, A. S., Gregório, J., Póvoa, P., & Lapão, L. V. (2015). Practical guide for the implementation of Antibiotic Stewardship Programs. (september), 1–7. | |
dc.source | Werner, N. L., Hecker, M. T., Sethi, A. K., & Donskey, C. J. (2011). Unnecessary use of fluoroquinolone antibiotics in hospitalized patients. BMC Infectious Diseases, 11(1), 187. https://doi.org/10.1186/1471-2334-11-187 | |
dc.source | Hecker, M. T., Aron, D. C., Patel, N. P., Lehmann, M. K., & Donskey, C. J. (2003). Unnecessary Use of Antimicrobials in Hospitalized Patients. Archives of Internal Medicine, 163(8), 972. https://doi.org/10.1001/archinte.163.8.972 | |
dc.source | Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Bartlett, J. (2009). Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 48(1), 1–12. https://doi.org/10.1086/595011 | |
dc.source | CDC. (2013). Antibiotic resistance threats in the United States, 2013. Current, 114. https://doi.org/CS239559-B | |
dc.source | Boev, C., & Kiss, E. (2017). Hospital-Acquired Infections: Current Trends and Prevention. Critical Care Nursing Clinics of North America, 29(1), 51–65. https://doi.org/10.1016/j.cnc.2016.09.012 | |
dc.source | Tandogdu, Z., Cek, M., & Wagenlehner, F. (2014). Resistance patterns of nosocomial urinary tract infections in urology departments : 8-year results of the global prevalence of infections in urology study. 791–801. https://doi.org/10.1007/s00345-013-1154-8 | |
dc.source | Spellberg, B., Guidos, R., Gilbert, D., Bradley, J., Boucher, H. W., Scheld, W. M., Edwards, J. (2008). The Epidemic of Antibiotic-Resistant Infections: A Call to Action for the Medical Community from the Infectious Diseases Society of America. Clinical Infectious Diseases, 46(2), 155–164. https://doi.org/10.1086/524891 | |
dc.source | Walker, E., Lyman, A., Gupta, K., Mahoney, M. V., Snyder, G. M., & Hirsch, E. B. (2016). Clinical Management of an Increasing Threat: Outpatient Urinary Tract Infections Due to Multidrug-Resistant Uropathogens. Clinical Infectious Diseases, 63(7), 960–965. https://doi.org/10.1093/cid/ciw396 | |
dc.source | Vasoo, S., Mrcp, M., Pharmd, J. N. B., & Tosh, P. K. (2015). Emerging Issues in Gram-Negative Bacterial Resistance. Mayo Clinic Proceedings, 90(3), 395–403. https://doi.org/10.1016/j.mayocp.2014.12.002 | |
dc.source | Bartlett, J. G. (2011). A call to arms: The imperative for antimicrobial stewardship. Clinical Infectious Diseases, 53(SUPPL. 1), 1–4. https://doi.org/10.1093/cid/cir362 | |
dc.source | Raman, G., Avendano, E., Berger, S., & Menon, V. (2015). Appropriate initial antibiotic therapy in hospitalized patients with gram-negative infections : systematic review and meta-analysis. BMC Infectious Diseases, 1–11. https://doi.org/10.1186/s12879-015-1123-5 | |
dc.source | Gupta, K., Hooton, T. M., Naber, K. G., Wullt, B., Colgan, R., Miller, L. G., … Soper, D. E. (2011). IDSA 2010 cystitis pyelonephritis. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciq257 | |
dc.source | 17. Sup, D., Choe, H., Youn, H., Mo, J., Jin, W., Hyun, Y., Lee, S. (2016). International Journal of Infectious Diseases Role of age and sex in determining antibiotic resistance in febrile urinary tract infections. International Journal of Infectious Diseases, 51, 89–96. https://doi.org/10.1016/j.ijid.2016.08.015 | |
dc.source | Mcgregor, J. C., Elman, M. R., Bearden, D. T., & Smith, D. H. (2013). Sex- and age-specific trends in antibiotic resistance patterns of Escherichia coli urinary isolates from outpatients. BMC Family Practice, 14(1), 1. https://doi.org/10.1186/1471-2296-14-25 | |
dc.source | Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5), 269–284. https://doi.org/10.1038/nrmicro3432 | |
dc.source | Foxman, B. (2014). Urinary tract infection syndromes. Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infectious Disease Clinics of North America, 28(1), 1–13. https://doi.org/10.1016/j.idc.2013.09.003 | |
dc.source | Chenoweth, C. E., & Saint, S. (2016). Urinary Tract Infections. Infectious Disease Clinics of North America, 30(4), 869–885. https://doi.org/10.1016/j.idc.2016.07.007 | |
dc.source | Tan, C. W., & Chlebicki, M. P. (2016). Urinary tract infections in adults. Singapore Medical Journal, 57(9), 485–490. https://doi.org/10.11622/smedj.2016153 | |
dc.source | Coplen, D. (2010). Antibiotic Prophylaxis and Recurrent Urinary Tract Infection in Children. Urology, 2010, 222–224. https://doi.org/10.1016/S0084-4071(09)79378-9 | |
dc.source | Osthoff, M., McGuinness, S. L., Wagen, A. Z., & Eisen, D. P. (2015). Urinary tract infections due to extended-spectrum beta-lactamase-producing Gram-negative bacteria: Identification of risk factors and outcome predictors in an Australian tertiary referral hospital. International Journal of Infectious Diseases, 34, 79–83. https://doi.org/10.1016/j.ijid.2015.03.006 | |
dc.source | User, C. (2017). 7 Catheter-associated Urinary Tract Infection (CAUTI). (January), 1–19. | |
dc.source | Uçkay, I., Sax, H., Gayet-Ageron, A., Ruef, C., Mühlemann, K., Troillet, N., Swiss-NOSO network. (2013). High proportion of healthcare-associated urinary tract infection in the absence of prior exposure to urinary catheter: a cross-sectional study. Antimicrobial Resistance and Infection Control, 2(1), 5. https://doi.org/10.1186/2047-2994-2-5 | |
dc.source | Scholes, D., Hawn, T. R., Roberts, P. L., Li, S. S., Stapleton, A. E., Zhao, L. P., Hooton, T. M. (2010). Family history and risk of recurrent cystitis and pyelonephritis in women. Journal of Urology, 184(2), 564–569. https://doi.org/10.1016/j.juro.2010.03.139 | |
dc.source | Hsueh, P. R. (2012). Study for Monitoring Antimicrobial Resistance Trends (SMART) in the Asia-Pacific region, 2002-2010. International Journal of Antimicrobial Agents, 40(SUPPL. 1), S1–S3. https://doi.org/10.1016/S0924-8579(12)00244-0 | |
dc.source | Byron, J. K. (2019). Urinary Tract Infection. Veterinary Clinics of North America - Small Animal Practice. https://doi.org/10.1016/j.cvsm.2018.11.005 | |
dc.source | Tandogdu, Z., & Wagenlehner, F. M. E. (2016). Global epidemiology of urinary tract infections. Current Opinion in Infectious Diseases. https://doi.org/10.1097/QCO.0000000000000228 | |
dc.source | Bassetti, M., Ginocchio, F., Mikulska, M., Taramasso, L., & Giacobbe, D. R. (2011). Will new antimicrobials overcome resistance among Gram-negatives? Expert Review of Anti-Infective Therapy. https://doi.org/10.1586/eri.11.107 | |
dc.source | Lu, P. L., Liu, Y. C., Toh, H. S., Lee, Y. L., Liu, Y. M., Ho, C. M.,Hsueh, P. R. (2012). Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the Asia-Pacific region: 2009-2010 results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). International Journal of Antimicrobial Agents, 40(SUPPL. 1), S37–S43. https://doi.org/10.1016/S0924-8579(12)70008-0 | |
dc.source | Hoban, D. J., Lascols, C., Nicolle, L. E., Badal, R., Bouchillon, S., Hackel, M., & Hawser, S. (2012). Antimicrobial susceptibility of Enterobacteriaceae, including molecular characterization of extended-spectrum beta-lactamase-producing species, in urinary tract isolates from hospitalized patients in North America and Europe: Results from the SMART study . Diagnostic Microbiology and Infectious Disease, 74(1), 62–67. https://doi.org/10.1016/j.diagmicrobio.2012.05.024 | |
dc.source | Tafur, D., & Villegas, V. (2008). Mecanismos de resistencia a los antibióticos en bacterias Gram negativas. Infectio, 12(3), 217–226. | |
dc.source | Bush, K. (2010). Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Critical Care (London, England), 14(3), 224. https://doi.org/10.1186/cc8892 | |
dc.source | Rice, L. B. (2012). Mechanisms of resistance and clinical relevance of resistance to lactams, glycopeptides, and fluoroquinolones. Mayo Clinic Proceedings, 87(2), 198–208. https://doi.org/10.1016/j.mayocp.2011.12.003 | |
dc.source | Bush, K., & Jacoby, G. A. (2010). Updated functional classification of lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976. https://doi.org/10.1128/AAC.01009-09 | |
dc.source | Paterson, D. L., & Bonomo, R. A. (2005). Extended-Spectrum beta-Lactamases : a Clinical Update. Clinical Microbiology Reviews, 18(4), 657–686. https://doi.org/10.1128/CMR.18.4.657 | |
dc.source | Doi, Y., Park, Y. S., Rivera, J. I., Adams-Haduch, J. M., Hingwe, A., Sordillo, E. M., … Paterson, D. L. (2013). Community-associated extended-spectrum -lactamase-producing Escherichia coli infection in the United States. Clinical Infectious Diseases, 56(5), 641–648. https://doi.org/10.1093/cid/cis942 | |
dc.source | Rapp, R. P., & Urban, C. (2012). Klebsiella pneumoniae carbapenemases in enterobacteriaceae: History, evolution, and microbiology concerns. Pharmacotherapy, 32(5), 399–407. https://doi.org/10.1002/j.1875-9114.2012.01035. | |
dc.source | Logan, L. K., & Weinstein, R. A. (2017). The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. The Journal of Infectious Diseases, 215(1), S28–S36. https://doi.org/10.1093/infdis/jiw282 | |
dc.source | Berrazeg, M., Jeannot, K., Ntsogo Enguéné, V. Y., Broutin, I., Loeffert, S., Fournier, D., & Plésiat, P. (2015). Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrobial Agents and Chemotherapy, 59(10), 6248–6255. https://doi.org/10.1128/AAC.00825-15 | |
dc.source | Palzkill, T. (2013). Metallo-??-lactamase structure and function. Annals of the New York Academy of Sciences, 1277(1), 91–104. https://doi.org/10.1111/j.1749-6632.2012.06796. | |
dc.source | Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews : MMBR, 67(4), 593–656. https://doi.org/10.1128/MMBR.67.4.593 | |
dc.source | Pagès, J. M., & Amaral, L. (2009). Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of Gram-negative bacteria. Biochimica et Biophysica Acta - Proteins and Proteomics, 1794(5), 826–833. https://doi.org/10.1016/j.bbapap.2008.12.011 | |
dc.source | Khandelwal, P., Abraham, S. N., & Apodaca, G. (2009). Cell biology and physiology of the uroepithelium. American Journal of Physiology. Renal Physiology. https://doi.org/10.1152/ajprenal.00327.2009 | |
dc.source | Foxman, B., Ki, M., & Brown, P. (2007). Antibiotic resistance and pyelonephritis. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 45(3), 281–283. https://doi.org/10.1086/519267 | |
dc.source | Melzer, M., & Welch, C. (2013). Outcomes in UK patients with hospital-acquired bacteraemia and the risk of catheter-associated urinary tract infections. Postgraduate Medical Journal, 89(1052), 329–334. https://doi.org/10.1136/postgradmedj-2012-131393 | |
dc.source | Kalpana Gupta, Thomas M. Hooton, Kurt G. Naber, Björn Wullt, Richard Colgan, Loren G. Miller, Gregory J. Moran, Lindsay E. Nicolle, Raul Raz, Anthony J. Schaeffer, David E. Soper, Práctica Clínica Internacional Pautas para el tratamiento de la cistitis no complicada aguda y la pielonefritis en mujeres: una actualización de 2010 de la Sociedad de Enfermedades Infecciosas de América y la Sociedad Europea de Microbiología y Enfermedades Infecciosas, Enfermedades Infecciosas Clínicas , Volumen 52, Número 5, 1 de marzo de 2011, páginas e103– e120, , https://doi.org/10.1093/cid/ciq257 | |
dc.source | R. Bartoletti, T. E. B. J. . G. (Chair), T. Cai (Guidelines Associate), M. Ç., B. Köves (Guidelines Associate), K. G. N., & P. Tenke, F. W. R. S. P. (2015). EAU Guideline - Urological infections. Retrieved from http://uroweb.org/wp-content/uploads/19-Urological-infections_LR2.pdf | |
dc.source | Lob, S. H., Nicolle, L. E., Hoban, D. J., Kazmierczak, K. M., Badal, R. E., & Sahm, D. F. (2016). Susceptibility patterns and ESBL rates of Escherichia coli from urinary tract infections in Canada and the United States, SMART 2010–2014. Diagnostic Microbiology and Infectious Disease. https://doi.org/10.1016/j.diagmicrobio.2016.04.022 | |
dc.source | Jean, S. S., Coombs, G., Ling, T., Balaji, V., Rodrigues, C., Mikamo, H., … Hsueh, P. R. (2016). Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010-2013. International Journal of Antimicrobial Agents. https://doi.org/10.1016/j.ijantimicag.2016.01.008 | |
dc.source | Richter, S. E., Miller, L., Needleman, J., Uslan, D. Z., Bell, D., Watson, K., … McKinnell, J. A. (2019). Risk Factors for Development of Carbapenem Resistance Among Gram-Negative Rods. Open Forum Infectious Diseases. https://doi.org/10.1093/ofid/ofz027 | |
dc.source | Mcgregor, J. C., Elman, M. R., Bearden, D. T., & Smith, D. H. (2013). Sex- and age-specific trends in antibiotic resistance patterns of Escherichia coli urinary isolates from outpatients. BMC Family Practice, 14(1), 1. https://doi.org/10.1186/1471-2296-14-25 | |
dc.source | Linhares, I., Raposo, T., Rodrigues, A., & Almeida, A. (2013). Frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections: A ten-year surveillance study (2000-2009). BMC Infectious Diseases. https://doi.org/10.1186/1471-2334-13-19 | |
dc.source | Lashkar, M. O., & Nahata, M. C. (2018). Antimicrobial Pharmacotherapy Management of Urinary Tract Infections in Pediatric Patients. Journal of Pharmacy Technology. https://doi.org/10.1177/8755122518755402. | |
dc.source | Organización Mundial de la Salud. Plan de acción mundial sobre resistencia a os antimicrobianos. Ginebra: OMS, 2015. Disponible en: http://www.who.int/antimicrobial-resistance/global-action-plan/es/. | |
dc.source | (OPS/ OMS Regional Infection Prevention and Control WebEx Sessions Washington DC,10 de Julio de 2018) | |
dc.source | Cosgrove, SE and Carmeli, Y. The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis. 2003; 36: 1433–143 | |
dc.source | de Kraker, M. E., Stewardson, A. J., & Harbarth, S. (2016). Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050?. PLoS medicine, 13(11), e1002184. doi:10.1371/journal.pmed.1002184 | |
dc.source | Ventola C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary management, 40(4), 277–283. | |
dc.source | Golkar Z, Bagazra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 2014;8(2):129–136. 13. | |
dc.source | instname:Universidad del Rosario | |
dc.source | reponame:Repositorio Institucional EdocUR | |
dc.subject | Resistencia antimicrobiana | |
dc.subject | Agentes antibacterianos | |
dc.subject | β-lactamasas y resistencia a antibióticos | |
dc.subject | E. coli | |
dc.subject | Orina | |
dc.subject | Antibacterianos | |
dc.subject | Farmacorresistencia bacteriana | |
dc.subject | Edad | |
dc.subject | Sexo | |
dc.title | Uropatogenos : su resistencia antimicrobiana en 10 países y el comportamiento de la edad y sexo como factores asociados | |
dc.type | masterThesis | |