dc.creatorRoldán N.
dc.creatorRodriguez L.
dc.creatorHernandez A.
dc.creatorCepeda K.
dc.creatorOndo-Méndez, Alejandro
dc.creatorCancino Suárez S.L.
dc.creatorForero M.G.
dc.creatorLopéz J.M.
dc.date.accessioned2020-05-25T23:56:49Z
dc.date.accessioned2022-09-22T14:23:45Z
dc.date.available2020-05-25T23:56:49Z
dc.date.available2022-09-22T14:23:45Z
dc.date.created2020-05-25T23:56:49Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/22529
dc.identifierhttps://doi.org/10.1007/978-3-030-31321-0_40
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3438360
dc.description.abstractClonogenic assays are an essential tool to evaluate the survival of cancer cells that have been exposed to a certain dose of radiation. Its result can be used in the generation of strategies for the optimization of radiotherapy treatments. The analysis of this type of data requires that the specialist performs the manual counting of colony forming units (CFU), i.e., find every cell that retains the ability to produce a large progeny. This task is time consuming, prone to errors and the results are not reproducible due to specialist subjective assessment. Digital image processing tools can deal with the flaws described above. This article presents a new technique for automatic CFU counting. The proposed technique extracts the regions of interest (ROIs), where a local segmentation algorithm finds and labels the CFUs in order to quantify them. Results show good sensitivity and specificity performance compared to state-of-the-art software used for CFU detection and counting. © 2019, Springer Nature Switzerland AG.
dc.languageeng
dc.publisherSpringer
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.11868 LNCS,(2019); pp. 465-472
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85076116691&doi=10.1007%2f978-3-030-31321-0_40&partnerID=40&md5=472a49850fd7b5b0b1aecf2ab4550dfd
dc.relation472
dc.relation465
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relationVol. 11868 LNCS
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.titleA New Automatic Cancer Colony Forming Units Counting Method
dc.typeconferenceObject


Este ítem pertenece a la siguiente institución