dc.contributorRamírez, Juan David
dc.contributorSalazar, Camilo
dc.contributorSalgado-Roa, Fabian Camilo
dc.contributorHernandez, Diana Carolina
dc.creatorAlvarado Lopez, Mateo Andrés
dc.date.accessioned2021-02-03T16:09:11Z
dc.date.accessioned2022-09-22T14:14:23Z
dc.date.available2021-02-03T16:09:11Z
dc.date.available2022-09-22T14:14:23Z
dc.date.created2021-02-03T16:09:11Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/30865
dc.identifierhttps://doi.org/10.48713/10336_30865
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3437044
dc.description.abstractThe family Reduviidae (Hemiptera: Heteroptera) is among the most diverse families of the true bugs. The evolution and phylogenetic relationships of Rhodniini and Triatomini tribes (Triatominae) are well studied due to their epidemiological relevance as vectors of Trypanosoma cruzi, the parasite that causes the Chagas disease. Rhodniini is composed by the genera Rhodnius and Psammolestes, where the genetic diversity of the second one remains to be studied in comparison with Rhodnius, the main vector of T. cruzi. Therefore, we gathered 92 samples in total, 38 for Psammolestes arthuri in Colombia, 24 for Psammolestes tertius and 30 for Psammolestes coreodes in Brazil. We used five novel nuclear loci: tRNA Guanine (37) -N (1) methyl transferase (TRNA), Putative juvenile hormone inducible protein (PJH), Probable cytosolic iron sulfur protein assembly protein Ciao 1 (CISP), Lipoyl synthase, mitochondrial (LSM) and Uncharacterized protein for cell adhesion (UPCA), along with two previously reported loci: 28S and CYTB, to depict the phylogenetic relationships and the evolutionary patterns of the genus Psammolestes. Four of the seven gene topologies were not consistent with the concatenated topology, while the other three were concordant, but the general pattern is clear: Psammolestes is a monophyletic group, corroborating hypotheses previously suggested for the genus. Clustering analysis along with population genetics summary statistics resulted in the delimitation of three different populations. These three clusters corresponded to each one of the Psammolestes species known a priori -defined by morphology, ecology and cytogenetic methods- which suggests that populations for each one of the species has a well-supported genetic structure. Overall, our results corroborated the existence of the three previously described Psammolestes species, 4 showing that they probably diverged in allopatry, under the influence of the Guyana shield and the Amazon basin as barriers to dispersal
dc.languageeng
dc.publisherUniversidad del Rosario
dc.publisherBiología
dc.publisherFacultad de Ciencias Naturales y Matemáticas
dc.rightshttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.rightsAtribución-SinDerivadas 2.5 Colombia
dc.sourceAbad-Franch, F., Lima, M. M., Sarquis, O., Gurgel-Gonçalves, R., Sánchez-Martín, M., Calzada, J., Saldaña, A., Monteiro, F. A., Palomeque, F. S., Santos, W. S., Angulo, V. M., Esteban, L., Dias, F. B. S., Diotaiuti, L., Bar, M. E., & Gottdenker, N. L. (2015). On palms, bugs, and Chagas disease in the Americas. Acta Tropica, 151, 126-141. https://doi.org/10.1016/j.actatropica.2015.07.005
dc.sourceAbad-Franch, F., & Monteiro, F. A. (2007b). Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. Memórias Do Instituto Oswaldo Cruz, 102, 57-70. https://doi.org/10.1590/S0074-02762007005000108
dc.sourceAbad-Franch, F., Monteiro, F. A., Jaramillo O., N., Gurgel-Gonçalves, R., Dias, F. B. S., & Diotaiuti, L. (2009b). Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: A multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Tropica, 110(2), 159-177. https://doi.org/10.1016/j.actatropica.2008.06.005
dc.sourceAnisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C., & Gascuel, O. (2011). Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes. Systematic Biology, 60(5), 685-699. https://doi.org/10.1093/sysbio/syr041
dc.sourceAsin, S., & Catalá, S. (1995). Development of Trypanosoma cruzi in Triatoma infestans: Influence of Temperature and Blood Consumption. The Journal of parasitology, 81, 1-7. https://doi.org/10.2307/3283997
dc.sourceBarbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
dc.sourceBargues, M. D., Marcilla, A., Dujardin, J. P., & Mas-Coma, S. (2002c). Triatomine vectors of Trypanosoma cruzi: A molecular perspective based on nuclear ribosomal DNA markers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, S159-S164. https://doi.org/10.1016/S0035-9203(02)90069-6
dc.sourceBern, C. (2015). Chagas’ Disease. New England Journal of Medicine, 373(5), 456-466. https://doi.org/10.1056/NEJMra1410150
dc.sourceBobrowski, M., & Schickhoff, U. (2017). Why input matters: Selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecological Modelling, 359, 92-102. https://doi.org/10.1016/j.ecolmodel.2017.05.021
dc.sourceBrown, J. L., & Carnaval, A. C. (2019). A tale of two niches: Methods, concepts, and evolution. Frontiers of Biogeography.
dc.sourceCaicedo-Garzón, V., Salgado-Roa, F. C., Sánchez-Herrera, M., Hernández, C., Arias-Giraldo, L. M., García, L., Vallejo, G., Cantillo, O., Tovar, C., Rosa, J. A. da, Carrasco, H. J., Segovia, M., Salazar, C., & Ramírez, J. D. (2019). Genetic diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in northern South America. PLOS ONE, 14(10), e0223963. https://doi.org/10.1371/journal.pone.0223963
dc.sourceCarstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013b). How to fail at species delimitation. Molecular Ecology, 22(17), 4369-4383. https://doi.org/10.1111/mec.12413
dc.sourceCastillo-Neyra, R., Barbu, C. M., Salazar, R., Borrini, K., Naquira, C., & Levy, M. Z. (2015). Host-Seeking Behavior and Dispersal of Triatoma infestans, a Vector of Chagas Disease, under Semi-field Conditions. PLOS Neglected Tropical Diseases, 9(1), e3433. https://doi.org/10.1371/journal.pntd.0003433
dc.sourceCeccarelli, S., Balsalobre, A., Medone, P., Cano, M. E., Gurgel Gonçalves, R., Feliciangeli, D., Vezzani, D., Wisnivesky-Colli, C., Gorla, D. E., Marti, G. A., & Rabinovich, J. E. (2018). DataTri, a database of American triatomine species occurrence. Scientific Data, 5(1), 180071. https://doi.org/10.1038/sdata.2018.71
dc.sourceChagas, Carlos. (1909). Nova tripanozomiaze humana: Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz, 1(2), 159-218. https://doi.org/10.1590/S0074-02761909000200008
dc.sourceChefaoui, R. M., & Lobo, J. M. (2008b). Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210(4), 478-486. https://doi.org/10.1016/j.ecolmodel.2007.08.010
dc.sourceClement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (s. f.). TCS: Estimating Gene Genealogies. 7.
dc.sourceCruz-Guzmán, P. J., Morocoima, A., Chique, J. D., Ramonis-Quintero, J., Uzcátegui, M. T., & Carrasco, H. J. (s. f.). Psammolestes arthuri NATURALMENTE INFECTADO CON Trypanosoma cruzi ENCONTRADO EN SIMPATRÍA CON Rhodnius prolixus Y Triatoma maculata EN NIDOS DE AVES EN EL ESTADO ANZOÁTEGUI, VENEZUELA. 14.
dc.sourcede Paula, A. S., Diotaiuti, L., & Galvão, C. (2007). Systematics and biogeography of Rhodniini (Heteroptera: Reduviidae: Triatominae) based on 16S mitochondrial rDNA sequences. Journal of Biogeography, 34(4), 699-712. https://doi.org/10.1111/j.1365-2699.2006.01628.x
dc.sourcede Paula, A. S., Diotaiuti, L., & Scho, C. J. (2005). Testing the sister-group relationship of the Rhodniini and Triatomini (Insecta: Hemiptera: Reduviidae: Triatominae). Molecular Phylogenetics and Evolution, 8.
dc.sourceDegnan, J. H., & Rosenberg, N. A. (2006b). Discordance of Species Trees with Their Most Likely Gene Trees. PLOS Genetics, 2(5), e68. https://doi.org/10.1371/journal.pgen.0020068
dc.sourceDias, J. C. P., Silveira, A. C., & Schofield, C. J. (2002). The impact of Chagas disease control in Latin America: A review. Memórias do Instituto Oswaldo Cruz, 97(5), 603-612. https://doi.org/10.1590/S0074-02762002000500002
dc.sourceDixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6), 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
dc.sourceDujardin, J. P., Chavez, T., Moreno, J. M., Machane, M., Noireau, F., & Schofield, C. J. (1999). Comparison of Isoenzyme Electrophoresis and Morphometric Analysis for Phylogenetic Reconstruction of the Rhodniini (Hemiptera: Reduviidae: Triatominae). Journal of Medical Entomology, 36(6), 653-659. https://doi.org/10.1093/jmedent/36.6.653
dc.sourceDujardin, J.-P., Beard, C. B., & Ryckman, R. (2007). The relevance of wing geometry in entomological surveillance of Triatominae, vectors of Chagas disease. Infection, Genetics and Evolution, 7(2), 161-167. https://doi.org/10.1016/j.meegid.2006.07.005
dc.sourceEarl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359-361. https://doi.org/10.1007/s12686-011-9548-7
dc.sourceEdwards, S. V. (2009). Natural selection and phylogenetic analysis. Proceedings of the National Academy of Sciences, 106(22), 8799-8800. https://doi.org/10.1073/pnas.0904103106
dc.sourceElith, J., Graham*, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. M., Peterson, A. T., … Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
dc.sourceEnce, D. D., & Carstens, B. C. (2011b). SpedeSTEM: A rapid and accurate method for species delimitation. Molecular Ecology Resources, 11(3), 473-480. https://doi.org/10.1111/j.1755-0998.2010.02947.x
dc.sourceEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
dc.sourceFriedman, J. H. (2006). Recent advances in predictive (machine) learning. Journal of classification, 23(2), 175-197.
dc.sourceFu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics, 133(3), 693-709.
dc.sourceFunk, D. J., & Omland, K. E. (2003b). Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34(1), 397-423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
dc.sourceGadagkar, S. R., Rosenberg, M. S., & Kumar, S. (2005). Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B(1), 64-74. https://doi.org/10.1002/jez.b.21026
dc.sourceGalvão, C., Carcavallo, R., Rocha, D. D. S., & Jurberg, J. (2003). A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa, 202(1), 1-36. https://doi.org/10.11646/zootaxa.202.1.1
dc.sourceGolding, N., Wilson, A. L., Moyes, C. L., Cano, J., Pigott, D. M., Velayudhan, R., Brooker, S. J., Smith, D. L., Hay, S. I., & Lindsay, S. W. (2015). Integrating vector control across diseases. BMC Medicine, 13(1), 249. https://doi.org/10.1186/s12916-015-0491-4
dc.sourceGorchakov, R., Trosclair, L. P., Wozniak, E. J., Feria, P. T., Garcia, M. N., Gunter, S. M., & Murray, K. O. (2016). Trypanosoma cruzi Infection Prevalence and Bloodmeal Analysis in Triatomine Vectors of Chagas Disease From Rural Peridomestic Locations in Texas, 2013–2014. Journal of Medical Entomology, 53(4), 911-918. https://doi.org/10.1093/jme/tjw040
dc.sourceGraham, Catherine H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19(9), 497-503. https://doi.org/10.1016/j.tree.2004.07.006
dc.sourceGuindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010
dc.sourceHijmans, R. J., Williams, E., Vennes, C., & Hijmans, M. R. J. (2017). Package ‘geosphere’. Spherical trigonometry, 1, 7.
dc.sourceHoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281
dc.sourceHudson, R. R., Boos, D. D., & Kaplan, N. L. (1992). A statistical test for detecting geographic subdivision. Molecular Biology and Evolution, 9(1), 138-151. https://doi.org/10.1093/oxfordjournals.molbev.a040703
dc.sourceHwang, W. S., & Weirauch, C. (2012b). Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction. PLOS ONE, 7(9), e45523. https://doi.org/10.1371/journal.pone.0045523
dc.sourceHypša, V., Tietz, D. F., Zrzavý, J., Rego, R. O. M., Galvao, C., & Jurberg, J. (2002b). Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Molecular Phylogenetics and Evolution, 23(3), 447-457. https://doi.org/10.1016/S1055-7903(02)00023-4
dc.sourceJakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801-1806. https://doi.org/10.1093/bioinformatics/btm233
dc.sourceJombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. https://doi.org/10.1093/bioinformatics/btr521
dc.sourceJusti, S. A., & Galvão, C. (2017). The Evolutionary Origin of Diversity in Chagas Disease Vectors. Trends in Parasitology, 33(1), 42-52. https://doi.org/10.1016/j.pt.2016.11.002
dc.sourceJusti, S. A., Galvão, C., & Schrago, C. G. (2016b). Geological Changes of the Americas and their Influence on the Diversification of the Neotropical Kissing Bugs (Hemiptera: Reduviidae: Triatominae). PLOS Neglected Tropical Diseases, 10(4), e0004527. https://doi.org/10.1371/journal.pntd.0004527
dc.sourceKalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nature methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285
dc.sourceKapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630-1638. https://doi.org/10.1093/bioinformatics/btx025
dc.sourceKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122
dc.sourceLeigh, J. W., & Bryant, D. (2015). popart: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/10.1111/2041-210X.12410
dc.sourceLemmon, A. R., Brown, J. M., Stanger-Hall, K., & Lemmon, E. M. (2009b). The Effect of Ambiguous Data on Phylogenetic Estimates Obtained by Maximum Likelihood and Bayesian Inference. Systematic Biology, 58(1), 130-145. https://doi.org/10.1093/sysbio/syp017
dc.sourceLent, H., & Wygodzinsky, P. (1979). Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Bulletin of the American Museum of Natural History, 163(3), 123-520.
dc.sourceLischer, H. E. L., & Excoffier, L. (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. https://doi.org/10.1093/bioinformatics/btr642
dc.sourceLobo, I. (2008b). Environmental Influences on Gene Expression. Nature Education, 39.
dc.sourceLyman, D. F., Monteiro, F. A., Escalante, A. A., Cordon-Rosales, C., Wesson, D. M., Dujardin, J. P., & Beard, C. B. (1999). Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. The American Journal of Tropical Medicine and Hygiene, 60(3), 377-386. https://doi.org/10.4269/ajtmh.1999.60.377
dc.sourceMaddison, W. P., & Maddison, D. R. (2019). Mesquite: A modular system for evolutionary analysis. Version 3.51. 2018.
dc.sourceMaddison, Wayne P. (1997). Gene Trees in Species Trees. Systematic Biology, 46(3), 523-536. https://doi.org/10.1093/sysbio/46.3.523
dc.sourceManni, F., Rard, E. G., & Heyer, E. (s. f.). Geographic Patterns of (Genetic, Morphologic, Linguistic) Variation: How Barriers Can Be Detected by Using Monmonier’s Algorithm. 18.
dc.sourceMantel, N. (1967). The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Research, 27(2 Part 1), 209-220.
dc.sourceMcCullagh, P. (81). Nelder. JA (1989), Generalized Linear Models. CRC Monographs on Statistics & Applied Probability, Springer Verlag, New York.
dc.sourceMinh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015
dc.sourceMonteiro, F. A., Wesson, D. M., Dotson, E. M., Schofield, C. J., & Beard, C. B. (2000b). Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. The American Journal of Tropical Medicine and Hygiene, 62(4), 460-465. https://doi.org/10.4269/ajtmh.2000.62.460
dc.sourceMonteiro, Fernando Araujo, Weirauch, C., Felix, M., Lazoski, C., & Abad-Franch, F. (2018b). Chapter Five—Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. En D. Rollinson & J. R. Stothard (Eds.), Advances in Parasitology (Vol. 99, pp. 265-344). Academic Press. https://doi.org/10.1016/bs.apar.2017.12.002
dc.sourceNascimento, J. D., Rosa, J. A. da, Salgado-Roa, F. C., Hernández, C., Pardo-Diaz, C., Alevi, K. C. C., Ravazi, A., Oliveira, J. de, Oliveira, M. T. V. de A., Salazar, C., & Ramírez, J. D. (2019). Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae) clade: Are R. taquarussuensis (da Rosa et al., 2017) and R. neglectus (Lent, 1954) the same species? PLOS ONE, 14(2), e0211285. https://doi.org/10.1371/journal.pone.0211285
dc.sourceOliveira, J., Alevi, K. C. C., Ravazi, A., Herrera, H. M., Santos, F. M., Azeredo-Oliveira, M. T. V. de, & Rosa, J. A. da. (2018). New Evidence of the Monophyletic Relationship of the Genus Psammolestes Bergroth, 1911 (Hemiptera, Reduviidae, Triatominae). The American Journal of Tropical Medicine and Hygiene, 99(6), 1485-1488. https://doi.org/10.4269/ajtmh.18-0109
dc.sourcePatterson, J. S., & Gaunt, M. W. (2010b). Phylogenetic multi-locus codon models and molecular clocks reveal the monophyly of haematophagous reduviid bugs and their evolution at the formation of South America. Molecular Phylogenetics and Evolution, 56(2), 608-621. https://doi.org/10.1016/j.ympev.2010.04.038
dc.sourcePhillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
dc.sourcePollock, D. D., Zwickl, D. J., McGuire, J. A., & Hillis, D. M. (2002b). Increased Taxon Sampling Is Advantageous for Phylogenetic Inference. Systematic biology, 51(4), 664-671. https://doi.org/10.1080/10635150290102357
dc.sourcePritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945-959.
dc.sourceRamos-Onsins, S. E., & Rozas, J. (2002). Statistical Properties of New Neutrality Tests Against Population Growth. Molecular Biology and Evolution, 19(12), 2092-2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034
dc.sourceReuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void‐filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983-1008. https://doi.org/10.1080/13658810601169899
dc.sourceRipley, B. D., & Naylor, P. (1996). Pattern Recognition and Neural Networks. Nature, 381(6579), 206-206.
dc.sourceRödder, D., & Engler, J. O. (2011). Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. Global Ecology and Biogeography, 20(6), 915-927. https://doi.org/10.1111/j.1466-8238.2011.00659.x
dc.sourceRosenberg, N. A. (2004). distruct: A program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.x
dc.sourceRoux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLOS Biology, 14(12), e2000234. https://doi.org/10.1371/journal.pbio.2000234
dc.sourceRozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248
dc.sourceSanderson, M. J., McMahon, M. M., & Steel, M. (2010b). Phylogenomics with incomplete taxon coverage: The limits to inference. BMC Evolutionary Biology, 10(1), 155. https://doi.org/10.1186/1471-2148-10-155
dc.sourceSandoval, C. M., Duarte, R., Gutíerrez, R., Rocha, D. da S., Angulo, V. M., Esteban, L., Reyes, M., Jurberg, J., & Galvão, C. (2004). Feeding sources and natural infection of Belminus herreri (Hemiptera, Reduviidae, Triatominae) from dwellings in Cesar, Colombia. Memórias do Instituto Oswaldo Cruz, 99(2), 137-140. https://doi.org/10.1590/S0074-02762004000200004
dc.sourceSchofield, C. J., & Galvão, C. (2009). Classification, evolution, and species groups within the Triatominae. Acta Tropica, 110(2), 88-100. https://doi.org/10.1016/j.actatropica.2009.01.010
dc.sourceSchofield, Chris J., Jannin, J., & Salvatella, R. (2006). The future of Chagas disease control. Trends in Parasitology, 22(12), 583-588. https://doi.org/10.1016/j.pt.2006.09.011
dc.sourceSchwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136
dc.sourceTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595.
dc.sourceThuiller, Wilfried, Araújo, M. B., & Lavorel, S. (2003). Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14(5), 669-680. https://doi.org/10.1111/j.1654-1103.2003.tb02199.x
dc.sourceThuiller, Wilfried, Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
dc.sourceTorre-Bárcena, J. E. de la, Kolokotronis, S.-O., Lee, E. K., Stevenson, D. W., Brenner, E. D., Katari, M. S., Coruzzi, G. M., & DeSalle, R. (2009). The Impact of Outgroup Choice and Missing Data on Major Seed Plant Phylogenetics Using Genome-Wide EST Data. PLOS ONE, 4(6), e5764. https://doi.org/10.1371/journal.pone.0005764
dc.sourceTownsend, T. M., Mulcahy, D. G., Noonan, B. P., Sites, J. W., Kuczynski, C. A., Wiens, J. J., & Reeder, T. W. (2011). Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Molecular Phylogenetics and Evolution, 61(2), 363-380. https://doi.org/10.1016/j.ympev.2011.07.008
dc.sourceTownson, H., Nathan, M. B., Zaim, M., Guillet, P., Manga, L., Bos, R., & Kindhauser, M. (2005). Exploiting the potential of vector control for disease prevention. Bulletin of the World Health Organization, 83, 942-947. https://doi.org/10.1590/S0042-96862005001200017
dc.sourceVelásquez-Ortiz, N., Hernández, C., Herrera, G., Cruz-Saavedra, L., Higuera, A., Arias-Giraldo, L. M., Urbano, P., Cuervo, A., Teherán, A., & Ramírez, J. D. (2019b). Trypanosoma cruzi infection, discrete typing units and feeding sources among Psammolestes arthuri (Reduviidae: Triatominae) collected in eastern Colombia. Parasites & Vectors, 12(1), 157. https://doi.org/10.1186/s13071-019-3422-y
dc.sourceWaleckx, E., Gourbière, S., Dumonteil, E., Waleckx, E., Gourbière, S., & Dumonteil, E. (2015). Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Memórias do Instituto Oswaldo Cruz, 110(3), 324-338. https://doi.org/10.1590/0074-02760140409
dc.sourceWei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56(316), e24.
dc.sourceWeirauch, C. (2008b). Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, 33(2), 229-274. https://doi.org/10.1111/j.1365-3113.2007.00417.x
dc.sourceWilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLOS Neglected Tropical Diseases, 14(1), e0007831. https://doi.org/10.1371/journal.pntd.0007831
dc.sourceWisz, M. S., & Guisan, A. (2009b). Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecology, 9(1), 8. https://doi.org/10.1186/1472-6785-9-8
dc.sourceYang, Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology, 61(5), 854-865. https://doi.org/10.1093/czoolo/61.5.854
dc.sourceYang, Z., & Rannala, B. (2014b). Unguided Species Delimitation Using DNA Sequence Data from Multiple Loci. Molecular Biology and Evolution, 31(12), 3125-3135. https://doi.org/10.1093/molbev/msu279
dc.sourceZwickl, D. J., & Hillis, D. M. (2002b). Increased Taxon Sampling Greatly Reduces Phylogenetic Error. Systematic Biology, 51(4), 588-598. https://doi.org/10.1080/10635150290102339
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectEvolución geográfica
dc.subjectNicho de desarrollo y proliferación de los Psammolestes
dc.subjectGenética de poblaciones del insecto
dc.subjectVariables ambientales
dc.subjectAnálisis filogenético molecular
dc.titlePhylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución