dc.creatorUseche, David
dc.creatorNespoli, Pantaleone
dc.creatorGomez, Felix.
dc.creatorDíaz Lopez, Daniel Orlando
dc.date.accessioned2020-08-28T15:49:14Z
dc.date.accessioned2022-09-22T14:14:17Z
dc.date.available2020-08-28T15:49:14Z
dc.date.available2022-09-22T14:14:17Z
dc.date.created2020-08-28T15:49:14Z
dc.identifierISBN:0-8186-6930-6
dc.identifierhttps://repository.urosario.edu.co/handle/10336/28506
dc.identifierhttps://doi.org/10.1109/HICSS.1995.375520
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3437032
dc.description.abstractManagement of parallel tasks and distributed data are the essence of parallel programming on distributed memory multiprocessors, and can be expressed explicitly in the programming language, or provided implicitly through some combination of language and run-time support. Functional languages are designed to provide implicit support for both task and data management, but are often less efficient than explicit approaches. This is the classical tension between performance and ease of programming. This paper provides an initial study which attempts to quantify this trade-off. While our quantitative results are accurate at capturing the scales for programming effort and efficiency of these programming methods, our results are based on two small parallel programs, and should be weighed accordingly.
dc.languageeng
dc.publisherIEEE
dc.relationProceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences, ISBN:0-8186-6930-6, (2018); pp.123-130
dc.relationhttps://ieeexplore.ieee.org/abstract/document/375520
dc.relation130
dc.relation123
dc.relationProceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsRestringido (Acceso a grupos específicos)
dc.sourceProceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectProgramación Paralela
dc.subjectProcesadores De Programas}
dc.subjectGestión De Memoria
dc.subjectEstructuras De Datos
dc.subjectNASA
dc.subjectLenguajes Informáticos
dc.subjectSistemas A Gran Escala
dc.subjectContratos
dc.subjectCiencias De La Computación
dc.subjectProfesión De Programación
dc.titleTRIS: A Three-Rings IoT Sentinel to Protect against Cyber-Threats
dc.typebookPart


Este ítem pertenece a la siguiente institución