dc.contributorCifuentes García, Carlos Andrés
dc.contributorMúnera Ramirez, Marcela Cristina
dc.creatorArciniegas Mayag, Luis Jordy
dc.date.accessioned2020-08-14T22:27:42Z
dc.date.accessioned2022-09-22T14:08:43Z
dc.date.available2020-08-14T22:27:42Z
dc.date.available2022-09-22T14:08:43Z
dc.date.created2020-08-14T22:27:42Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/26599
dc.identifierhttps://doi.org/10.48713/10336_26599
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3436189
dc.description.abstractThis master's thesis shows the development and implementation of a lower limb exoskeleton for the development of Activities of Daily Living (ADL). This paper shows mechatronic integration, including sensor implementation and characterization, to take into account the physical Human Robot Interaction (pHRI). The concept of pHRI is applied in different rehabilitation platforms to promote patient participation in therapy sessions. The implementation of the performance system is presented, which assists the flexion and extension movements of the hip and knee joints. Subsequently, the methodology involved in the implementation of the control strategies is presented, based on an admittance control and an impedance control that takes into account the pHRI.Finally, it is shown the experimental design made for the characterization of the performance system; preliminary tests of the control concepts; and a pilot test with a healthy subject, making use of the unilateral lower limb exoskeleton, this shows the performance of the control strategies applied for ADL as walking. This project is part of the development of an adaptive robotic platform for rehabilitation and walking assistance called AGoRA.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherMaestría en Ingeniería Biomédica
dc.publisherEscuela de Medicina y Ciencias de la Salud
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourceM. clinic, stroke, 2020. dirección: https://www.mayoclinic.org/es-es/diseasesconditions/stroke/symptoms-causes/syc-20350113.
dc.sourceR. Verma, K. N. Arya, P. Sharma y col., «Understanding gait control in post-stroke: Implications for management», Journal of Bodywork and Movement Therapies, vol. 16, n.o 1, págs. 14-21, 2012, issn: 13608592. dirección: http://dx.doi.org/10.1016/j. jbmt.2010.12.005.
dc.sourceZ. Kiliç, B. Erhan, B. Gunduz y col., «Central Post-Stroke Pain in Stroke Patients: Incidence and the Effect on Quality of Life», Turkiye Fiziksel Tip ve Rehabilitasyon Dergisi, vol. 61, n.o 2, págs. 142-147, 2015, issn: 13020234
dc.sourceK. Kim, Y. M. Kim y E. K. Kim, «Correlation between the activities of daily living of stroke patients in a community setting and their quality of life», Journal of Physical Therapy Science, vol. 26, n.o 3, págs. 417-419, 2014, issn: 09155287.
dc.sourceE. N. Trujillo, «Accidente cerebrovascular en un adulto joven con deficiencia de proteinas y foramen oval patente . Reporte de caso», págs. 46-49, 2016.
dc.sourceS. Lui y M. H. Nguyen, «Elderly Stroke Rehabilitation : Overcoming the Complications», HIndawi, vol. 2018, págs. 1-9, 2018.
dc.sourceT. Truelsen, B. Piechowski-Jozwiak, R. Bonita y col., «Stroke incidence and prevalence in Europe: A review of available data», European Journal of Neurology, vol. 13, n.o 6, págs. 581-598, 2006, issn: 13515101
dc.sourceV. Y. Ma, L. Chan y K. J. Carruthers, «Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the united states: Stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pa», Archives of Physical Medicine and Rehabilitation, vol. 95, n.o 5, 986-995.e1, 2014, issn: 1532821X. dirección: http://dx.doi.org/10. 1016/j.apmr.2013.10.032.
dc.sourceA. A. Divani, S. Majidi, A. M. Barrett y col., «Consequences of stroke in communitydwelling elderly: The health and retirement study, 1998 to 2008», Stroke, vol. 42, n.o 7, págs. 1821-1825, 2011, issn: 00392499.
dc.sourceI. R. Salvador, Hemiparesia: tipos, sintomas, causas y tratamiento, 2020. dirección: https://psicologiaymente.com/clinica/hemiparesia.
dc.sourceU. B. Flansbjer, A. M. Holmback, D. Downham y col., «Reliability of gait performance tests in men and women with hemiparesis after stroke», Journal of Rehabilitation Medicine, vol. 37, n.o 2, págs. 75-82, 2005, issn: 16501977.
dc.sourceM. E. Mlinac y M. C. Feng, «Assessment of Activities of Daily Living, Self-Care, and Independence», Archives of Clinical Neuropsychology, vol. 31, n.o 6, págs. 506-516, 2016, issn: 08876177.
dc.sourceW. Sanngoen, S. Nillnawarad y S. Patchim, «Design and development of low-cost assistive device for lower limb exoskeleton robot», Proceedings - 2017 10th International Conference on Human System Interactions, HSI 2017, págs. 148-153, 2017
dc.sourceH. A. Haghgoo, E. S. Pazuki, A. S. Hosseini y col., «Depression, activities of daily living and quality of life in patients with stroke», Journal of the Neurological Sciences, vol. 328, n.o 1-2, págs. 87-91, 2013, issn: 0022510X.
dc.sourceL. B. Luengo, «“Efectos adversos en la utilizacion de silla de ruedas en mayores”», pág. 14, 2010.
dc.sourceJ. A. Stevens, K. Thomas, L. Teh y col., «Unintentional fall injuries associated with walkers and canes in older adults treated in U.S. emergency departments», Journal of the American Geriatrics Society, vol. 57, n.o 8, págs. 1464-1469, 2009, issn: 00028614
dc.sourceS. Viteckova, P. Kutilek y M. Jirina, «Wearable lower limb robotics: A review», Biocybernetics and Biomedical Engineering, vol. 33, n.o 2, págs. 96-105, 2013, issn: 02085216. dirección: http://dx.doi.org/10.1016/j.bbe.2013.03.005.
dc.sourceH. Kawainot, S. Lee, S. Kanbe y col., «Power Assist Method for HAL-3 using EMGbased Feedback Controller *», págs. 1648-1653, 2003.
dc.sourceN. Aphiratsakun y M. Parnichkun, «Fuzzy based Gains Tuning of PD Controller for Joint Position Control of AIT Leg Exoskeleton-I (ALEX-I)», 2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008, págs. 859-864, 2008.
dc.sourceC Bayon, O Ramirez, F Molla y col., «CPWalker, Robotic Platform for Gait Rehabilitation and Training in patients with Cerebral Palsy», IEEE Transactions on Neural Systems and Rehabilitation Engineering, under review, págs. 3736-3741, 2015.
dc.sourceA. Magazine, «Team ReWalk Ranked First in the Cybathlon 2016 Exoskeleton Final», n.o december, 2017.
dc.sourceY. T. Triana y A. C. Diaz, «Evaluacion de un programa de fisioterapia convencional mas terapia acuatica en niños con paralisis cerebral espastica Evaluation of a conventional physical therapy program plus aquatic therapy in children with spastic cerebral palsy», págs. 21-37, 2007.
dc.sourceK. Shihomi, O. Koji, T. Tadao y col., «Development of new rehabilitation robot device that can be attached to the conventional Knee-Ankle-Foot-Orthosis for controlling the knee in individuals after stroke», IEEE International Conference on Rehabilitation Robotics, págs. 304-307, 2017, issn: 19457901.
dc.sourceA. M. Alonso, L. Jimenez, J. Sebastian y col., «Rehabilitacion robotica de la marcha con lokomat en Colombia: Estado actual y oportunidades de la robotica social», págs. 1-11, 2017.
dc.sourceS. D. Sierra, J. F. Molina, A. G. Daniel y col., «Development of an Interface for HumanRobot Interaction on a Robotic Platform for Gait Assistance : AGoRA Smart Walker», 2018 IEEE ANDESCON, págs. 1-7
dc.sourceM. Sanchez-Manchola, D. Gomez-Vargas, D. Casas-Bocanegra y col., «Development of a Robotic Lower-Limb Exoskeleton for Gait Rehabilitation: AGoRA Exoskeleton», 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings, págs. 1-6, 2018.
dc.sourceM. Manchola, D. Serrano, G Daniel y col., «T-FLEX : Variable Stiffness Ankle-Foot Orthosis for Gait Assistance», págs. 160-164, 2019.
dc.sourceG. S. Silva, W. J. Koroshetz, R. G. Gonzalez y col., «Causes of Ischemic Stroke», n.o October, 2010.
dc.sourceB. Ovbiagele y M. N. Nguyen-huynh, «Stroke Epidemiology : Advancing Our Understanding of Disease Mechanism and Therapy», págs. 319-329, 2011.
dc.sourceA. A. Divani, G. Vazquez, A. M. Barrett y col., «Risk factors associated with injury attributable to falling among elderly population with history of stroke», Stroke, vol. 40, n.o 10, págs. 3286-3292, 2009, issn: 00392499.
dc.sourceL. Pei, X.-y. Zang, Y. Wang y col., «ScienceDirect Factors associated with activities of daily living among the disabled elders with stroke», International Journal of Nursing Sciences, vol. 3, n.o 1, págs. 29-34, 2016, issn: 2352-0132. dirección: http://dx.doi. org/10.1016/j.ijnss.2016.01.002
dc.sourceG. D. Whitiana y A. Cahyani, «Level of Activity Daily Living in Post Stroke Patients», vol. 4, n.o 2, págs. 261-266, 2017
dc.sourceA. Sunderland, D. Fletcher, L. Bradley y col., «Enhanced physical therapy for arm function after stroke : a one year follow up study», págs. 856-858, 1994.
dc.sourceG Kwakkel, B. J. Kollen y R. C. Wagenaar, «Long term effects of intensity of upper and lower limb training after stroke: a randomised trial», págs. 473-479, 2002.
dc.sourceP. Appelros y A. Tere, «Living setting and utilisation of ADL assistance one year after a stroke with special reference to gender differences», vol. 28, n.o January, págs. 43-49, 2006.
dc.sourceM. clinic, Spinal cord injury, 2019. dirección: https : / / www . mayoclinic . org / diseases-conditions/spinal-cord-injury/symptoms-causes/syc-20377890
dc.sourceW. H. Organization, Spinal Cord Injury, 2013. dirección: https://www.who.int/ news-room/fact-sheets/detail/spinal-cord-injury.
dc.sourceJ. W. McDonald y C. S. More, «Spinal-cord injury», SEMINAR, págs. 417-425, 2002
dc.sourceA. Alizadeh, S. M. Dyck y S. Karimi-Abdolrezaee, «Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms», Frontiers in Neurology, vol. 10, n.o March, págs. 1-25, 2019, issn: 1664-2295.
dc.sourceZ. Zhu, C. Jiang, X. Wang y col., «Design of a wearable lower limb exoskeleton for paralyzed individuals», M2VIP 2016 - Proceedings of 23rd International Conference on Mechatronics and Machine Vision in Practice, 2017.
dc.sourceD. Wolfe, A. McIntyre, K. Ravenek y col., Spinal cord injury rehabilitation evidence, 2011
dc.sourceE. Peter, B. Deb, S. Sukesh y col., Activities of Daily Living (ADLs). dirección: https: //www.ncbi.nlm.nih.gov/books/NBK470404/.
dc.sourceA. Balaguer, Actividades de la vida diaria, 2016. dirección: https://asapmebajoaragon. org/actividades-de-la-vida-diaria/.
dc.sourceC. Blomgren, K. Jood, C. Jern y col., «Long-term performance of instrumental activities of daily living ( IADL ) in young and middle-aged stroke survivors : Results from SAHLSIS outcome», vol. 8128, n.o May, págs. 0-8, 2017.
dc.sourceP. H. Veltink, H. B. Bussmann, W. De Vries y col., «Detection of static and dynamic activities using uniaxial accelerometers», IEEE Transactions on Rehabilitation Engineering, vol. 4, n.o 4, págs. 375-385, 1996, issn: 10636528
dc.sourceS. J. Olney y C. Richardsb, «Hemiparetic gait following stroke . Part I : Characteristics», vol. 4, págs. 136-148, 1996
dc.sourceK. Han, J. Lee y W. K. Song, «Application scenarios for assistive robots based on in-depth focus group interviews and clinical expert meetings», 2013 44th International Symposium on Robotics, ISR 2013, n.o C, 2013
dc.sourceM. A. Laribi y S. Zeghloul, Human lower limb operation tracking via motion capture systems. Elsevier Inc., 2019, págs. 83-107, isbn: 9780128156599. dirección: http:// dx.doi.org/10.1016/B978-0-12-815659-9.00004-4
dc.sourceF. Bionics, The Gait Cycle, 2013. dirección: https : / / www . footbionics . com / Patients/The+Gait+Cycle.html.
dc.sourceY. Xiang, Predicting the Biomechanics of Walking. Elsevier Inc., 2013, págs. 149-186, isbn: 9780124051904. dirección: http://dx.doi.org/10.1016/B978-0-12-405190- 4.00007-6
dc.sourceTekscan, «The Gait Cycle: Phases, Parameters to Evaluate & Technology», 2019. dirección: https://www.tekscan.com/blog/medical/gait-cycle-phases-parametersevaluate-technology
dc.sourceM. Karadsheh, «Gait Cycle», 2020. dirección: https : / / www . orthobullets . com / foot-and-ankle/7001/gait-cycle
dc.sourceR. S. Sanchez, «Influencia de la carga aplicada sobre bastones de antebrazo en parámetros cinemáticos durante la marcha asistida en sujetos sanos», Tesis doct., Universidad de Sevilla, 2017, pág. 240
dc.sourceD. L. Rudman, «Living in a restricted occupational world: The occupational experiences of stroke survivors who are wheelchair users and their caregivers», págs. 141-152, 2015.
dc.sourceT.-s. Kuan y J.-y. Tsou, «Hemiplegic Gait of Stroke Patients : The Effect of Using a Cane», 1999.
dc.sourceC. M. E. Article, «Effect of a Cane on Sit-to-Stand Transfer in Subjects with Hemiparesis», n.o 1, págs. 191-202, 2013
dc.sourceP. Herrera-Saray, I. Pelaez-Ballestas, L. Ramos-Lira y col., «Problemas con el uso de sillas de ruedas y otras ayudas tecnicas y barreras sociales a las que se enfrentan las personas que las utilizan. Estudio cualitativo desde la perspectiva de la ergonomia en personas discapacitadas por enfermedades reumaticas y otras condiciones», Reumatologia Clinica, vol. 9, n.o 1, págs. 24-30, 2013, issn: 1699258X
dc.sourceB. J. Makinson, Research and Development Prototype for Machine Augmentation of Human Strength and Endurance. Hardiman I Project, 1971.
dc.sourceH. Kim, Y. J. Shin y J. Kim, «Kinematic-based locomotion mode recognition for power augmentation exoskeleton», International Journal of Advanced Robotic Systems, vol. 14, n.o 5, págs. 1-14, 2017, issn: 17298814
dc.sourceR Ekkelenkamp, J Veneman y H. V. D. Kooij, «LOPES : a lower extremity powered exoskeleton», n.o April, págs. 3132-3133, 2007
dc.sourceS. S. Banala SK, Agrawal SK, «Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. IEEE Int Conf Rehabil Robot 2007, 401–7», Rehabilitation Robotics, vol. 00, n.o c, 2007, issn: 1050-4729.
dc.sourceM. Talaty, A. Esquenazi y J. E. Briceno, «Differentiating ability in users of the ReWalkTM powered exoskeleton: An analysis of walking kinematics», IEEE International Conference on Rehabilitation Robotics, 2013, issn: 19457898
dc.sourceJ. Choi, B. Na, P.-G. Jung y col., «WalkON Suit», IEEE ROBOTICS & AUTOMATION MAGAZINE, n.o November, págs. 75-86, 2017.
dc.sourceD. S. Miguel, L. J. A. Mayag, M. Munera y col., «Impedance-based Backdrivability Recovery of a Lower-limb Exoskeleton for Knee Rehabilitation», págs. 1-6, 2019.
dc.sourceA. C. Villa-Parra, D. Delisle-Rodriguez, J. S. Lima y col., «Knee impedance modulation to control an active orthosis using insole sensors», Sensors (Switzerland), vol. 17, n.o 12, 2017, issn: 14248220
dc.sourceF. L. Haufe, A. M. Kober, K. Schmidt y col., «User-driven walking assistance : first experimental results using the MyoSuit», 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), págs. 944-949, 2019
dc.sourceS. O. Schrade, K. Datwyler, M. Stucheli y col., «Development of VariLeg, an exoskeleton with variable stiffness actuation: First results and user evaluation from the CYBATHLON 2016 Olivier Lambercy; Roger Gassert», Journal of NeuroEngineering and Rehabilitation, vol. 15, n.o 1, págs. 1-18, 2018, issn: 17430003.
dc.sourceO. Unluhisarcikli, M. Pietrusinski, B. Weinberg y col., «Design and control of a robotic lower extremity exoskeleton for gait rehabilitation», IEEE International Conference on Intelligent Robots and Systems, págs. 4893-4898, 2011
dc.sourceL. E. Alex, S. K. Banala, S. H. Kim y col., «Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)», Rehabilitation, vol. 17, n.o 1, págs. 2-8, 2009.
dc.sourceP Cherelle, V Grosu, P Beyl y col., «The MACCEPA Actuation System as Torque Actuator in the Gait Rehabilitation Robot ALTACRO», págs. 27-32, 2010.
dc.sourceV. Grosu, C. Rodriguez-Guerrero, S. Grosu y col., «Design of Smart Modular Variable Stiffness Actuators for Robotic-Assistive Devices», IEEE/ASME Transactions on Mechatronics, vol. 22, n.o 4, págs. 1777-1785, 2017, issn: 10834435
dc.sourceV. Damme, D. Lefeber, R. V. Ham y col., «MACCEPA , the mechanically adjustable compliance and controllable equilibrium position actuator : Design and implementation in a biped robot», vol. 55, págs. 761-768, 2007.
dc.sourceM. M. Mirbagheri, C Tsao, E Pelosin y col., «Therapeutic Effects of Robotic-Assisted Locomotor Training on Neuromuscular Properties», págs. 561-564, 2005.
dc.sourceB. Brackx, V. Grosu y D. Lefeber, «ALTACRO: Design of the gait rehabilitation robot», English, en Symposium on Robot-Assisted Gait Rehabilitation (ALTACRO). oct. de 2013.
dc.sourceJ. F. Veneman, R. Kruidhof, E. E. G. Hekman y col., «Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation», IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, n.o 3, 2007, issn: 07907915
dc.sourceB. Koopman, E. H. F. V. Asseldonk y H. V. D. Kooij, «Selective control of gait subtasks in robotic gait training : foot clearance support in stroke survivors with a powered exoskeleton», págs. 1-21, 2013.
dc.sourceM. Cenciarini y A. M. Dollar, «Biomechanical considerations in the design of lower limb exoskeletons», IEEE International Conference on Rehabilitation Robotics, págs. 10-14, 2011, issn: 19457898.
dc.sourceF. S. Ayachi, H. P. Nguyen, E. Goubault De Brugiere y col., «The Use of Empirical Mode Decomposition-Based Algorithm and Inertial Measurement Units to Auto-Detect Daily Living Activities of Healthy Adults», IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, n.o 10, págs. 1060-1070, 2016, issn: 15344320
dc.sourceP. Sale, E. F. Russo, M. Russo y col., «Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: A preliminary report», BMC Neurology, vol. 16, n.o 1, págs. 2-9, 2016, issn: 14712377. dirección: http://dx. doi.org/10.1186/s12883-016-0536-0
dc.sourceA. C. Villa-Parra, D. Delisle-Rodriguez, T. Botelho y col., «Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG», Research on Biomedical Engineering, vol. 34, n.o 3, págs. 198-210, 2018, issn: 2446- 4732
dc.sourceJ. M. A. Poveda, J. L. P. Rovira, A. F. Neto y col., «Exoesqueletos Roboticos para Rehabilitacion y Asistencia de Pacientes con Daño Neurologico», en Exoesqueletos Roboticos para Rehabilitacion y Asistencia de Pacientes con Daño Neurologico, 2017, cap. 4. Estruct, págs. 63-82, isbn: 978-84-15413-29-5
dc.sourceK. Schmidt, J. E. Duarte, M. Grimmer y col., «The myosuit: Bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers», Frontiers in Neurorobotics, vol. 11, n.o OCT, págs. 1-16, 2017, issn: 16625218
dc.sourceJ. E. Duarte, K. Schmidt, R. Riener y col., «The Myosuit : textile-powered mobility The The Myosuit : Myosuit : textile-powered», IFAC-PapersOnLine, vol. 51, n.o 34, págs. 242-243, 2019, issn: 2405-8963. dirección: https : / / doi . org / 10 . 1016 / j . ifacol.2019.01.046
dc.sourceT. Bacek, M. Moltedo, K. Langlois y col., «BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction», IEEE International Conference on Rehabilitation Robotics, págs. 1666-1671, 2017, issn: 19457901
dc.sourceB. Chen, C. H. Zhong, X. Zhao y col., «A wearable exoskeleton suit for motion assistance to paralysed patients», Journal of Orthopaedic Translation, vol. 11, n.o March, págs. 7-18, 2017, issn: 2214031X.
dc.sourceS. O. Schrade, Y. Nager, A. R. Wu y col., «Bio-inspired Control of Joint Torque and Knee Stiffness in a Robotic Lower Limb Exoskeleton Using a Central Pattern Generator», International Conference on Rehabilitation Robotics, págs. 1387-1394, 2017
dc.sourceA. Esquenazi, M. Talaty, A. Packel y col., «The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level», American Journal of Physical Medicine & Rehabilitation, págs. 911-921, 2012.
dc.sourceJ. T. Meyer, S. O. Schrade, O. Lambercy y col., «User-centered Design and Evaluation of Physical Interfaces for an Exoskeleton for Paraplegic Users», 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), págs. 1159-1166, 2019.
dc.sourceR. O. F. Cybathlon, Chapter 12. WalkON Suit: A Medalist in the Powered Exoskeleton Race of Cybathlon 2016. INC, 2020, págs. 231-250, isbn: 9780128146590. dirección: http://dx.doi.org/10.1016/B978-0-12-814659-0.00012-6.
dc.sourceJ.-M. Belda-Lois, S. M.-d. Horno, I. Bermejo-bosch y col., «Rehabilitation of gait after stroke:a top down approach», Journal of NeuroEngineering and Rehabilitation, vol. 66, n.o December, 2011.
dc.sourceG. E. Frykberg y C. K. Hager, «Movement analysis of sit-to-stand–research informing clinical practice», Physical Therapy Reviews, vol. 20, n.o 3, págs. 156-167, 2015, issn: 1743288X.
dc.sourceJ. L. Pons, «Human-robot cognitive interaction», en Wearable Robots: Biomechatronic Exoskeletons, 2008, cap. 4
dc.sourceM. Beetz, M. Buss y D. Wollherr, «Cognitive technical systems - What is the role of artificial intelligence?», Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4667 LNAI, págs. 19-42, 2007, issn: 03029743.
dc.sourceNeuronUP, Cognitive Functions, 2008. dirección: https://www.neuronup.com/en/ areas/functions.
dc.sourceE. Fosch-Villaronga y B. Ozcan, «The Progressive Intertwinement Between Design, Human Needs and the Regulation of Care Technology: The Case of Lower-Limb Exoskeletons», International Journal of Social Robotics, n.o 0123456789, 2019, issn: 18754805. dirección: https://doi.org/10.1007/s12369-019-00537-8.
dc.sourceA. Costa, R. Salazar-Varas, E. Ianez y col., «Studying Cognitive Attention Mechanisms during Walking from EEG Signals», Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, págs. 882-886, 2016.
dc.sourceL. M. Mooney y H. M. Herr, «Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton», Journal of NeuroEngineering and Rehabilitation, vol. 13, n.o 1, págs. 1-12, 2016, issn: 17430003. dirección: http://dx.doi.org/10.1186/s12984-016-0111-3.
dc.sourceH. V. D. Kooij, «Admittance control for physical human – robot interaction», 2018.
dc.source«Active impedance control of a knee-joint orthosis during swing phase», IEEE International Conference on Rehabilitation Robotics, págs. 435-440, 2017, issn: 19457901.
dc.sourceZ. Li, B. Huang, Z. Ye y col., «Physical human-robot interaction of a robotic exoskeleton by admittance control», IEEE Transactions on Industrial Electronics, vol. 65, n.o 12, págs. 9614-9624, 2018, issn: 02780046.
dc.sourceM. D. C. Sanchez-Villamanan, J. Gonzalez-Vargas, D. Torricelli y col., «Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles», Journal of NeuroEngineering and Rehabilitation, vol. 16, n.o 1, pág. 55, 2019, issn: 1743-0003
dc.sourceM. Cempini, S. M. M. De Rossi, T. Lenzi y col., «Self-alignment mechanisms for assistive wearable robots: A kinetostatic compatibility method», IEEE Transactions on Robotics, vol. 29, n.o 1, págs. 236-250, 2013, issn: 15523098.
dc.sourceJ. Beil, C. Marquardt y T. Asfour, «Self-aligning exoskeleton hip joint: Kinematic design with five revolute, three prismatic and one ball joint», IEEE International Conference on Rehabilitation Robotics, págs. 1349-1355, 2017, issn: 19457901.
dc.sourceS.-a. E. Axes y T. Decoupling, «Self-Aligning Exoskeleton Axes Through Decoupling of Joint Rotations and Translations», IEEE Transactions on Robotics, vol. 25, págs. 628-633, 2009
dc.sourceTrac, PLA filament, 2020. dirección: https://tractus3d.com/materials/pla
dc.sourceTractus3D, TPU Material, 2020. dirección: https : / / tractus3d . com / materials / tpu/
dc.sourceS. Haddadin y E. Croft, «Physical Human–Robot Interaction», págs. 1835-1874, ene. de 2016.
dc.sourceJ. Schuy, A. Burkl, P. Beckerle y col., «A new device to measure load and motion in lower limb prosthesis - Tested on different prosthetic feet», 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014, págs. 187-192, 2014.
dc.sourceM. Molinari, M. Masciullo, F. Tamburella y col., «Exoskeletons for over-ground gait training in spinal cord injury», Biosystems and Biorobotics, vol. 19, págs. 253-265, 2018
dc.sourceC. A. S. Rodriguez, «Clasificacion Y Seleccion De Strain Gages Y Su Aplicacion En La Industria Mecanica», Tesis doct., UNIVERSIDAD DEL BIO-BIO, 2013, pág. 166.
dc.sourceA. Semiconductor, 24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales.
dc.sourceT. Petric, A. Gams, T. Debevec y col., «Control approaches for robotic knee exoskeleton and their effects on human motion», Advanced Robotics, vol. 27, n.o 13, págs. 993-1002, 2013, issn: 01691864.
dc.sourceA. J. Young y D. P. Ferris, «State of the art and future directions for lower limb robotic exoskeletons», IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, n.o 2, págs. 171-182, 2017, issn: 15344320.
dc.sourceM. N. Victorino, X Jiang y C Menon, Wearable Technologies and Force Myography for Healthcare. Elsevier Inc., 2018, págs. 135-152, isbn: 9780128118108. dirección: http: //dx.doi.org/10.1016/B978-0-12-811810-8.00007-5
dc.sourceN. Abhayasinghe e I. Murray, «Human activity recognition using thigh angle derived from single thigh mounted IMU data», IPIN 2014 - 2014 International Conference on Indoor Positioning and Indoor Navigation, n.o October, págs. 111-115, 2014.
dc.sourceD. Micucci, M. Mobilio y P. Napoletano, «UniMiB SHAR: A dataset for human activity recognition using acceleration data from smartphones», Applied Sciences (Switzerland), vol. 7, n.o 10, 2017, issn: 20763417. arXiv: 1611.07688.
dc.sourceB. Barshan y M. C. Yuksek, «Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units», Computer Journal, vol. 57, n.o 11, págs. 1649-1667, 2013, issn: 14602067.
dc.sourceS. Chung, J. Lim, K. J. Noh y col., «Sensor Positioning and Data Acquisition for Activity Recognition using Deep Learning», 9th International Conference on Information and Communication Technology Convergence: ICT Convergence Powered by Smart Intelligence, ICTC 2018, págs. 154-159, 2018.
dc.sourceR Alami, A Bicchi, R Bischoff y col., «Safe and Dependable Physical Human-Robot Interaction in Anthropic Domains : State of the Art and Challenges», n.o 1
dc.sourceK. Isik, S. He, J. Ho y col., «Re-Engineering a High Performance Electrical Series Elastic Actuator for Low-Cost Industrial Applications», actuators, págs. 1-16, 2017.
dc.sourceS Arumugom, S Muthuraman y V Ponselvan, «Modeling and Application of Series Elastic Actuators for Force Control Multi Legged Robots», vol. 1, n.o 1, págs. 26-33, 2009.
dc.sourceM. motors, «maxon flat EC motor», 2017
dc.sourceA Ortlieb, M Bouri, R Baud y col., «An assistive lower limb exoskeleton for people with neurological gait disorders BT - 2017 International Conference on Rehabilitation Robotics, ICORR 2017, July 17, 2017 - July 20, 2017», págs. 441-446, 2017. dirección: http://dx.doi.org/10.1109/ICORR.2017.8009287.
dc.sourceROS.org, About ROS. dirección: https://www.ros.org/about-ros/
dc.sourceL. Peppoloni, F. Brizzi, C. A. Avizzano y col., «Immersive ROS-integrated framework for robot teleoperation», en 2015 IEEE Symposium on 3D User Interfaces (3DUI), 2015, págs. 177-178.
dc.sourceY. Pyo, H. Cho, R. Jung y col., ROS Robot Programming, 1.a ed. ROBOTIS Co.,Ltd, 2017, isbn: 9791196230715. dirección: www.robotis.com.
dc.sourceK. Hambuchen, «Exoskeleton control of the robonaut through rapid and ROS», n.o May 2013, 2018
dc.sourceJ. Sales, J. V. Martí, R. Marín y col., «CompaRob: The Shopping Cart Assistance Robot», International Journal of Distributed Sensor Networks, vol. 12, n.o 2, pág. 4 781 280, 2016
dc.sourceY. cruz Gomez y J. E. C. Ramon, «Sistema Nervioso: Fisiologia Sinaptica y Elementos de Neuroanatomia», en Aparato Urogenital. De la biologia a la fisiopatia, cap. 1, pág. 21.
dc.sourceR. S. Calabro, A. Naro, M. Russo y col., «Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial», Journal of neuroengineering and rehabilitation, vol. 15, n.o 1, pág. 35, 2018, issn: 17430003.
dc.sourceT Siebert y C Rode, «Computational modeling of muscle biomechanics», 2014.
dc.sourceD. G. Caldwell, «Bond Graph Modeling Of An Exoskeleton Actuator», n.o April 2019, 2018.
dc.sourceN. Hogan, «Impedance Control: An Approach to Manipulation», 1984 American Control Conference, págs. 304-313, 1984. dirección: https : / / ieeexplore . ieee . org / document/4788393/
dc.source] F. R. Cortes, Control de robots manipuladores, 1.a ed., F. J. Rodriguez Cruz, ed. alfaomega, 2011, pág. 592.
dc.sourceP. Corke, Robotics, Vision and control, first edit, S. T. i. A. Robotics, ed., 5. 2011, vol. 73, isbn: 978-3-642-20143-1.
dc.sourceX. Li, Y. Pan, G. Chen y col., «Multi-modal control scheme for rehabilitation robotic exoskeletons», International Journal of Robotics Research, págs. 1-19, 2017, issn: 17413176
dc.sourceK. Lochan y B. K. Roy, «Control of Two-link 2-DOF Robot Manipulator Using Fuzzy Logic Techniques : A Review», págs. 499-511
dc.sourceHarmonic Drive, Speed Reducers for Precision Motion Control, 2018.
dc.sourceF. Monasterio, Motor DC, etapa de potencia y PWM, 2016. dirección: http://www. robolabo.etsit.upm.es/asignaturas/seco/apuntes/motor{\_}dc.pdf.
dc.sourceM. H. Qureshi, Z. Masood, L. Rehman y col., «Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-to-Stand and Stand-to-Sit Movements», 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), págs. 1-6, 2018.
dc.sourceM. motor, EPOS4 control Positioning controllers, 2017
dc.sourceF. R. O. Andres, Alberto Lopez-Delis y Adson Ferreira da Rocha, Upper and lower extremity exoskeletons. Elsevier Inc., 2018, págs. 283-317, isbn: 9780128125397. dirección: http://dx.doi.org/10.1016/B978-0-12-812539-7.00011-8.
dc.sourceI. T. Silva, «Modelo para la estimacion de una frecuencia natural a partir de la respuesta vibratoria de un sistema sometido a un barrido sinusoidal de alta aceleracion,», págs. 54-61
dc.sourceI. Campus, «Variable admittance control of the exoskeleton for gait rehabilitation based on a novel strength metric Ali Taherifar, Gholamreza Vossoughi, and Ali Selk», págs. 1-21, 2017
dc.sourceC. C. Serrano, Sistema masa resorte con movimiento libre amortiguado, casos: Sobreamortiguado, criticamente amortiguado y subamortiguado, 2016
dc.sourceK Wen, D Necsulescu y J Sasiadek, «Haptic force control base don impedance/admittance control», IFAC Proceedings Volumes, vol. 38, n.o 1, págs. 427-432, 2005, issn: 1474-6670. dirección: http://dx.doi.org/10.3182/20050703- 6- CZ1902.01341.
dc.sourceA. Fortin-c, «An admittance control scheme for haptic interfaces based on cable-driven parallel mechanisms An Admittance Control Scheme for Haptic Interfaces Based on Cable-Driven Parallel Mechanisms», n.o February 2017, 2014
dc.sourceM Bortole, A Ama, E Rocon y col., «A Robotic Exoskeleton for Overground Gait Rehabilitation *», págs. 3356-3361, 2013.
dc.sourceG. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin y col., «A 1-DOF assistive exoskeleton with virtual negative damping: Effects on the kinematic response of the lower limbs», IEEE International Conference on Intelligent Robots and Systems, págs. 1938-1944, 2007
dc.sourceS. Srivastava, P.-c. Kao, S. H. Kim y col., «Assist-as-needed Robot-aided Gait Training Improves Walking Function in Individuals Following Stroke .», vol. 4320, n.o c, págs. 1-9, 2014
dc.sourceS. Yao, Y. Zhuang, Z. Li y col., «Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model», vol. 12, n.o April, 2018
dc.sourceC. C. D, C. A, D. L y col., ReCAD – Revista electronica de Ciencias Aplicadas al Deporte, 2011
dc.sourceR. J. Farris, H. A. Quintero y M. Goldfarb, «Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals», IEEE transactions on neural systems and rehabilitation engineering, vol. 19, n.o 1142, 2011
dc.sourceJ. Cao, S. Q. Xie, R. Das y col., «Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects», Medical Engineering and Physics, vol. 36, n.o 12, págs. 1555-1566, 2014, issn: 18734030. dirección: http://dx.doi.org/ 10.1016/j.medengphy.2014.08.005
dc.sourceA. L. Jutinico, J. C. Jaimes, F. M. Escalante y col., «Impedance control for robotic rehabilitation: A robust markovian approach», Frontiers in Neurorobotics, vol. 11, n.o AUG, págs. 1-16, 2017, issn: 16625218.
dc.sourceC Bayon, S Lerma, O Ramirez y col., «Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population : short report», Journal of NeuroEngineering and Rehabilitation, págs. 1-6, 2016, issn: 1743-0003. dirección: http: //dx.doi.org/10.1186/s12984-016-0206-x
dc.sourceJ. B. Webster y B. J. Darter, 4 - Principles of Normal and Pathologic Gait, Fifth Edition. Elsevier Inc., 49-62.e1. dirección: https://doi.org/10.1016/B978-0-323- 48323-0.00004-4
dc.sourceV. Meruane, Vibraciones Mecanicas
dc.sourceH. Vivas C., Fisica De Oscilaciones, Ondas Y Optica. Manizales, 2013, pág. 436. dirección: https://core.ac.uk/download/pdf/11058206.pdf
dc.sourceL. Marino, S. Giorgi, C. Camara y col., «Controversias en el tratamiento del movimiento oscilatorio armonico simple en libros de Fisica del nivel basico universitario», Revista de enseñanza de la fisica, vol. 27, n.o 1, págs. 79-87, 2015, issn: 2250-6101
dc.sourceImpedance control of a rotary series elastic actuator for knee rehabilitation, 3. IFAC, 2014, vol. 19, págs. 4801-4806, isbn: 9783902823625. dirección: http://dx.doi.org/ 10.3182/20140824-6-ZA-1003.00987
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectExoesqueleto
dc.subjectMiembro inferior
dc.subjectRehabilitación
dc.subjectADL
dc.titleDesarrollo e implementación de un exoesqueleto de miembro inferior en actividades de la vida diaria
dc.typemasterThesis


Este ítem pertenece a la siguiente institución