dc.contributorRamírez, Juan David
dc.creatorMedina Velasquez, Julián Esteban
dc.date.accessioned2021-02-16T23:44:21Z
dc.date.accessioned2022-09-22T14:06:05Z
dc.date.available2021-02-16T23:44:21Z
dc.date.available2022-09-22T14:06:05Z
dc.date.created2021-02-16T23:44:21Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/30923
dc.identifierhttps://doi.org/10.48713/10336_30923
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3435817
dc.description.abstractLeishmaniasis is considered a neglected tropical disease for which there is no vaccine. On the other hand, first-line drugs have shown an increase in therapeutic failures, among other causes due to the acquisition of resistance by their etiological agent, depending on the characteristics of each species (eg, clinical manifestation and geographic distribution). Thus, understanding the mechanism used by the parasite to survive under the pressure of treatments by identifying probable common and specific therapeutic targets is important for the control of leishmaniasis. However, to date no analysis has been performed comparing gene expression between Leishmania species that exhibit different genetic and biological characteristics reflected in the associated differential clinical manifestations. Here, we apply comparative analyzes of the transcriptomic profiles of lines with experimentally induced resistance to trivalent antimony (SbIII) of five species of medical importance (Subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; Subgenus L. (Viannia): L. panamensis and L. braziliensis), causing different clinical manifestations (which are generally cutaneous Leishmaniasis for L. panamensis and L. amazonensis, mucocutaneous for L. braziliensis and visceral for L. donovani and L. infantum) a starting from functional analysis of ontology and assignment of orthologous groups. The resistant lines had differential responses mainly in metabolic processes, compound binding and membrane components with respect to their sensitive counterpart. metabolic, binding to membrane compounds and components relative to their sensitive counterpart. Differentially expressed orthologous genes assigned to species-specific responses predominated with a total of 1426 self genes. At the level of the response by subgenus, no shared genes were found among the species belonging to L. (Leishmania) and only 7 were found among those belonging to L. (Viannia). No differentially expressed gene was found in common among the 5 species, but two common upregulated orthologous genes were found among 4 species (L. donovani, L. braziliensis, L. amazonensis and L. panamensis) referred to an RNA-binding protein and the NAD (P) H cytochrome B5 oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, important in the mechanisms of resistance to antimonials. These patterns probably obey the multifactorial phenomenon of drug resistance, dependent on the intrinsic characteristics of the parasite and the environment. Therefore, species-specific approaches are more advisable for proposing potential therapeutic targets.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherBiología
dc.publisherFacultad de Ciencias Naturales y Matemáticas
dc.rightshttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.rightsAtribución-SinDerivadas 2.5 Colombia
dc.sourceAcino Brettmann, E. (2017). The Role of RNA Interference in the Control of Leishmania RNA virus 1 Infection. Retrieved from https://openscholarship.wustl.edu/art_sci_etds/1090
dc.sourceAkhoundi, M., Kuhls, K., Cannet, A., Votýpka, J., Marty, P., Delaunay, P., & Sereno, D. (2016). A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLOS Neglected Tropical Diseases, 10(3), e0004349. https://doi.org/10.1371/journal.pntd.0004349
dc.sourceAkhoundi, M., Downing, T., Votýpka, J., Kuhls, K., Lukeš, J., Cannet, A., … Sereno, D. (2017, October 1). Leishmania infections: Molecular targets and diagnosis. Molecular Aspects of Medicine, Vol. 57, pp. 1–29. https://doi.org/10.1016/j.mam.2016.11.012
dc.sourceAlemayehu, B., & Alemayehu, M. (2017). Leishmaniasis: A Review on Parasite, Vector and Reservoir Host. Health Science Journal, 11(4). https://doi.org/10.21767/1791-809x.1000519
dc.sourceAnders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638
dc.sourceAndrade, J. M & Murta, S. (2014). Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and –susceptible Leishmania braziliensis and Leishmania infantum lines. Parasites & Vectors, 7(1), 406–. doi:10.1186/1756-3305-7-406
dc.sourceAndrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
dc.sourceAslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X., Gardner, M. J., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., Kissinger, J. C., … Wang, H. (2010). TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic acids research, 38(Database issue), D457–D462. https://doi.org/10.1093/nar/gkp851
dc.sourceAurrecoechea, C., Barreto, A., Basenko, E. Y., Brestelli, J., Brunk, B. P., Cade, S., … Zheng, J. (2017). EuPathDB: The eukaryotic pathogen genomics database resource. Nucleic Acids Research, 45(D1), D581–D591. https://doi.org/10.1093/nar/gkw1105
dc.sourceBañuls, A. L., Hide, M., & Prugnolle, F. (2007, January 1). Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. Advances in Parasitology, Vol. 64, pp. 1–458. https://doi.org/10.1016/S0065-308X(06)64001-3
dc.sourceBarrera, M. C., Rojas, L. J., Weiss, A., Fernandez, O., McMahon-Pratt, D., Saravia, N. G., & Gomez, M. A. (2017). Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility. Acta Tropica, 176, 355–363. https://doi.org/10.1016/j.actatropica.2017.08.017
dc.sourceBiyani, N., Singh, A. K., Mandal, S., Chawla, B., & Madhubala, R. (2011). Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Molecular and Biochemical Parasitology, 179(2), 91–99. https://doi.org/10.1016/j.molbiopara.2011.06.004
dc.sourceBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170.
dc.sourceBritto, C., Ravel, C., Bastien, P., Blaineau, C., Pagès, M., Dedet, J. P., & Wincker, P. (1998). Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene, 222(1), 107–117. https://doi.org/10.1016/S0378-1119(98)00472-7
dc.sourceBrotherton, M.-C., Bourassa, S., Leprohon, P., Légaré, D., Poirier, G. G., Droit, A., & Ouellette, M. (2013). Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant. PLoS ONE, 8(11), e81899. https://doi.org/10.1371/journal.pone.0081899
dc.sourceBurza, S., Croft, S. L. and Boelaert, M. (2018). Leishmaniasis. Lancet, 392, 951-970. doi: 10.1016/s0140-6736(18)31204-2.
dc.sourceChakravarty, J., & Sundar, S. (2010). Drug resistance in leishmaniasis. Journal of global infectious diseases, 2(2), 167–176. https://doi.org/10.4103/0974-777X.62887
dc.sourceClayton, C. E. (2016, August 1). Gene expression in Kinetoplastids. Current Opinion in Microbiology, Vol. 32, pp. 46–51. https://doi.org/10.1016/j.mib.2016.04.018
dc.sourceCroft, S. L., Sundar, S., & Fairlamb, A. H. (2006). Drug resistance in leishmaniasis. Clinical microbiology reviews, 19(1), 111–126. https://doi.org/10.1128/CMR.19.1.111-126.2006
dc.sourcede Vries, H. J. C., Reedijk, S. H., & Schallig, H. D. F. H. (2015, March 18). Cutaneous Leishmaniasis: Recent Developments in Diagnosis and Management. American Journal of Clinical Dermatology, Vol. 16, pp. 99–109. https://doi.org/10.1007/s40257-015-0114-z
dc.sourceDenis, S., Carla, M., & Khatima, A. O. (2012). Antimony resistance and environment: Elusive links to explore during Leishmania life cycle. International Journal for Parasitology: Drugs and Drug Resistance, 2, 200–203. https://doi.org/10.1016/j.ijpddr.2012.07.003
dc.sourceDepledge, D. P., Evans, K. J., Ivens, A. C., Aziz, N., Maroof, A., Kaye, P. M., & Smith, D. F. (2009). Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds. PLoS Neglected Tropical Diseases, 3(7), e476. https://doi.org/10.1371/journal.pntd.0000476
dc.sourceDecuypere, S., Vanaerschot, M., Brunker, K., Imamura, H., Müller, S., Khanal, B., … Coombs, G. H. (2012). Molecular Mechanisms of Drug Resistance in Natural Leishmania Populations Vary with Genetic Background. PLoS Neglected Tropical Diseases, 6(2), e1514. https://doi.org/10.1371/journal.pntd.0001514
dc.sourceDillon, L. A., Okrah, K., Hughitt, V. K., Suresh, R., Li, Y., Fernandes, M. C., Belew, A. T., Corrada Bravo, H., Mosser, D. M., & El-Sayed, N. M. (2015). Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic acids research, 43(14), 6799–6813. https://doi.org/10.1093/nar/gkv656
dc.sourceDiotallevi, A., Buffi, G., Ceccarelli, M., Neitzke-Abreu, H. C., Gnutzmann, L. V., da Costa Lima, M. S., … Galluzzi, L. (2020). Real-time PCR to differentiate among Leishmania (Viannia) subgenus, Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis: Application on Brazilian clinical samples. Acta Tropica, 201, 105178. https://doi.org/10.1016/j.actatropica.2019.105178
dc.sourceDobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635
dc.sourceDostálová, A., & Volf, P. (2012). Leishmania development in sand flies: parasite-vector interactions overview. Parasites & vectors, 5, 276. https://doi.org/10.1186/1756-3305-5-276
dc.sourceDouanne, N., Wagner, V., Roy, G., Leprohon, P., Ouellette, M., & Fernandez-Prada, C. (2020). MRPA-independent mechanisms of antimony resistance in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 13, 28–37. https://doi.org/10.1016/j.ijpddr.2020.03.003
dc.sourceDoyle, M. (2019) Visualization of RNA-Seq results with Volcano Plot (Galaxy Training Materials). /training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html Online; accessed Sat Jan 09 2021
dc.sourceDowning, T., Imamura, H., Decuypere, S., Clark, T. G., Coombs, G. H., Cotton, J. A., … Berriman, M. (2011). Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research, 21(12), 2143–2156. https://doi.org/10.1101/gr.123430.111
dc.sourceDumetz, F., Imamura, H., Sanders, M., Seblova, V., Myskova, J., Pescher, P., … Domagalska, M. A. (2017). Modulation of aneuploidy in leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. MBio, 8(3). https://doi.org/10.1128/mBio.00599-17
dc.sourceEddaikra, N., Ait-Oudhia, K., Kherrachi, I., Oury, B., Moulti-Mati, F., Benikhlef, R., … Sereno, D. (2018). Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria. PLOS Neglected Tropical Diseases, 12(3), e0006310. https://doi.org/10.1371/journal.pntd.0006310
dc.sourceEl Fadili, K., Messier, N., Leprohon, P., Roy, G., Guimond, C., Trudel, N., Saravia, N. G., Papadopoulou, B., Légaré, D., & Ouellette, M. (2005). Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrobial agents and chemotherapy, 49(5), 1988–1993. https://doi.org/10.1128/AAC.49.5.1988-1993.2005
dc.sourceFernandes, A. P., Canavaci, A. M. C., McCall, L. I., & Matlashewski, G. (2014). A2 and other visceralizing proteins of Leishmania: Role in pathogenesis and application for vaccine development. Sub-Cellular Biochemistry, 74, 77–101. https://doi.org/10.1007/978-94-007-7305-9_3
dc.sourceFernández, O. L., Diaz-Toro, Y., Ovalle, C., Valderrama, L., Muvdi, S., Rodríguez, I., Gomez, M. A., & Saravia, N. G. (2014). Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia. PLoS neglected tropical diseases, 8(5), e2871. https://doi.org/10.1371/journal.pntd.0002871
dc.sourceFraga, J., Montalvo, A. M., Van der Auwera, G., Maes, I., Dujardin, J. C., & Requena, J. M. (2013). Evolution and species discrimination according to the Leishmania heat-shock protein 20 gene. Infection, Genetics and Evolution, 18, 229–237. https://doi.org/10.1016/j.meegid.2013.05.020
dc.sourceFrézard, F., Monte-Neto, R., & Reis, P. G. (2014). Antimony transport mechanisms in resistant leishmania parasites. Biophysical reviews, 6(1), 119–132. https://doi.org/10.1007/s12551-013-0134-y
dc.sourceGalluzzi, L., Ceccarelli, M., Diotallevi, A., Menotta, M., & Magnani, M. (2018, May 2). Real-time PCR applications for diagnosis of leishmaniasis. Parasites and Vectors, Vol. 11, pp. 1–13. https://doi.org/10.1186/s13071-018-2859-8
dc.sourceHaldar, A. K., Sen, P., & Roy, S. (2011). Use of antimony in the treatment of leishmaniasis: current status and future directions. Molecular biology international, 2011, 571242. https://doi.org/10.4061/2011/571242
dc.sourceHashiguchi, Y., & Gomez, E. A. (2018, June 28). Importance of Leishmania Species and Vector Sand Fly (Diptera: Psychodidae) Identification. Journal of Medical Entomology, Vol. 55, pp. 773–774. https://doi.org/10.1093/jme/tjy044
dc.sourceHefnawy, A., Berg, M., Dujardin, J. C., & De Muylder, G. (2017, March 1). Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends in Parasitology, Vol. 33, pp. 162–174. https://doi.org/10.1016/j.pt.2016.11.003
dc.sourceIantorno, S. A., Durrant, C., Khan, A., Sanders, M. J., Beverley, S. M., Warren, W. C., … Grigg, M. E. (2017). Gene expression in Leishmania is regulated predominantly by gene dosage. MBio, 8(5). https://doi.org/10.1128/mBio.01393-17
dc.sourceJain, K., & Jain, N. K. (2015, June 11). Vaccines for visceral leishmaniasis: A review. Journal of Immunological Methods, Vol. 422, pp. 1–12. https://doi.org/10.1016/j.jim.2015.03.017
dc.sourceJeddi, F., Mary, C., Aoun, K., Harrat, Z., Bouratbine, A., Faraut, F., Benikhlef, R., Pomares, C., Pratlong, F., Marty, P., & Piarroux, R. (2014). Heterogeneity of molecular resistance patterns in antimony-resistant field isolates of Leishmania species from the western Mediterranean area. Antimicrobial agents and chemotherapy, 58(8), 4866–4874. https://doi.org/10.1128/AAC.02521-13
dc.sourceLaffitte, M. N., Leprohon, P., Papadopoulou, B., & Ouellette, M. (2016). Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research, 5, 2350. https://doi.org/10.12688/f1000research.9218.1
dc.sourceLégaré, D., Richard, D., Mukhopadhyay, R., Stierhof, Y. D., Rosen, B. P., Haimeur, A., … Ouellette, M. (2001). The Leishmania ATP-binding Cassette Protein PGPA is an Intracellular Metal-Thiol Transporter ATPase. Journal of Biological Chemistry, 276(28), 26301–26307. https://doi.org/10.1074/jbc.M102351200
dc.sourceLeprohon, P., Légaré, D., Raymond, F., Madore, E., Hardiman, G., Corbeil, J., & Ouellette, M. (2009). Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic acids research, 37(5), 1387–1399. https://doi.org/10.1093/nar/gkn1069
dc.sourceLin, G., Chai, J., Yuan, S., Mai, C., Cai, L., Murphy, R. W., … Luo, J. (2016). VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams. PLOS ONE, 11(4), e0154315. https://doi.org/10.1371/journal.pone.0154315
dc.sourceLindoso, J., Costa, J., Queiroz, I. T., & Goto, H. (2012). Review of the current treatments for leishmaniases. Research and reports in tropical medicine, 3, 69–77. https://doi.org/10.2147/RRTM.S24764
dc.sourceLlanes, A., Restrepo, C. M., Vecchio, G. Del, Anguizola, F. J., & Lleonart, R. (2015). The genome of Leishmania panamensis: Insights into genomics of the L. (Viannia) subgenus. Scientific Reports, 5(1), 1–10. https://doi.org/10.1038/srep08550
dc.sourceLove MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.
dc.sourceManzano, J. I., García-Hernández, R., Castanys, S., & Gamarro, F. (2013). A new ABC half-transporter in leishmania major is involved in resistance to antimony. Antimicrobial Agents and Chemotherapy, 57(8), 3719–3730. https://doi.org/10.1128/AAC.00211-13
dc.sourceMartin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200
dc.sourceMarín, M., Aguilar, Y. A., Ramírez, J. R., Triana, O., & Muskus, C. E. (2008). Molecular and immunological analyses suggest the absence of hydrophilic surface proteins in Leishmania (Viannia) panamensis. Biomedica, 28(3), 423–432. https://doi.org/10.7705/biomedica.v28i3.80
dc.sourceMaharjan, M., & Madhubala, R. (2015). Heat shock protein 70 (HSP70) expression in antimony susceptible/resistant clinical isolates of Leishmania donovani. Nepal Journal of Biotechnology, 3(1), 22–28. https://doi.org/10.3126/njb.v3i1.14225
dc.sourceMathur, R., Das, R. P., Ranjan, A., & Shaha, C. (2015). Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB Journal, 29(10), 4201–4213. https://doi.org/10.1096/fj.15-272757
dc.sourceMatrangolo, F. S. V., Liarte, D. B., Andrade, L. C., De Melo, M. F., Andrade, J. M., Ferreira, R. F., … Murta, S. M. F. (2013). Comparative proteomic analysis of antimony-resistant and-susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Molecular and Biochemical Parasitology, 190(2), 63–75. https://doi.org/10.1016/j.molbiopara.2013.06.006
dc.sourceMichaeli, S. (2011, April). Trans-splicing in trypanosomes: Machinery and its impact on the parasite transcriptome. Future Microbiology, Vol. 6, pp. 459–474. https://doi.org/10.2217/fmb.11.20
dc.sourceMonte-Neto, R., Laffitte, M. C., Leprohon, P., Reis, P., Frézard, F., & Ouellette, M. (2015). Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis. PLoS neglected tropical diseases, 9(2), e0003476. https://doi.org/10.1371/journal.pntd.0003476
dc.sourceMukherjee, S., Sen Santara, S., Das, S., Bose, M., Roy, J., & Adak, S. (2012). NAD(P)H cytochrome b5 oxidoreductase deficiency in Leishmania major results in impaired linoleate synthesis followed by increased oxidative stress and cell death. The Journal of biological chemistry, 287(42), 34992–35003. https://doi.org/10.1074/jbc.M112.389338
dc.sourceMukherjee, A., Boisvert, S., Monte-Neto, R. L. do, Coelho, A. C., Raymond, F., Mukhopadhyay, R., … Ouellette, M. (2013). Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Molecular Microbiology, 88(1), 189–202. https://doi.org/10.1111/mmi.12178
dc.sourceMukherjee, A., Adhikari, A., Das, P., Biswas, S., Mukherjee, S., & Adak, S. (2018). Loss of virulence in NAD(P)H cytochrome b5 oxidoreductase deficient Leishmania major. Biochemical and Biophysical Research Communications, 503(1), 371–377. https://doi.org/10.1016/j.bbrc.2018.06.037
dc.sourceNocua, P. A., Ramirez, C. A., Requena, J. M., & Puerta, C. J. (2017). Leishmania braziliensis SCD6 and RBP42 proteins, two factors with RNA binding capacity. Parasites and Vectors, 10(1), 610. https://doi.org/10.1186/s13071-017-2557-y
dc.sourceOryan, A., & Akbari, M. (2016, October 1). Worldwide risk factors in leishmaniasis. Asian Pacific Journal of Tropical Medicine, Vol. 9, pp. 925–932. https://doi.org/10.1016/j.apjtm.2016.06.021
dc.sourceOvalle-Bracho, C., Camargo, C., Díaz-Toro, Y., & Parra-Muñoz, M. (2018). Molecular typing of Leishmania (Leishmania) amazonensis and species of the subgenus Viannia associated with cutaneous and mucosal leishmaniasis in Colombia: A concordance study. Biomedica, 38(1), 86–95. https://doi.org/10.7705/biomedica.v38i0.3632
dc.sourcePatino, L. H., Imamura, H., Cruz-Saavedra, L., Pavia, P., Muskus, C., Méndez, C., … Ramírez, J. D. (2019). Major changes in chromosomal somy, gene expression and gene dosage driven by SbIII in Leishmania braziliensis and Leishmania panamensis. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45538-9
dc.sourcePatino, L. H., Muskus, C., & Ramírez, J. D. (2019). Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasites and Vectors, 12(1). https://doi.org/10.1186/s13071-019-3603-8
dc.sourcePeacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M. A., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., … Berriman, M. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature genetics, 39(7), 839–847. https://doi.org/10.1038/ng2053
dc.sourcePertea, G., & Pertea, M. (2020). GFF Utilities: GffRead and GffCompare. F1000Research, 9, 304. https://doi.org/10.12688/f1000research.23297.2
dc.sourcePessenda, G., & da Silva, J. S. (2020, July 1). Arginase and its mechanisms in Leishmania persistence. Parasite Immunology, Vol. 42. https://doi.org/10.1111/pim.12722
dc.sourcePonte-Sucre, A., Gamarro, F., Dujardin, J. C., Barrett, M. P., López-Vélez, R., García-Hernández, R., Pountain, A. W., Mwenechanya, R., & Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS neglected tropical diseases, 11(12), e0006052. https://doi.org/10.1371/journal.pntd.0006052
dc.sourceRabhi, I., Rabhi, S., Ben-Othman, R., Rasche, A., Consortium, S., Daskalaki, A., … Guizani-Tabbane, L. (2012). Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View. PLoS Neglected Tropical Diseases, 6(8), e1763. https://doi.org/10.1371/journal.pntd.0001763
dc.sourceRashidi, S., Kalantar, K., Fernandez-Rubio, C., Anvari, E., Nguewa, P., & Hatam, G. (2020, February 1). Chitin binding protein as a possible RNA binding protein in Leishmania parasites. Pathogens and Disease, Vol. 78. https://doi.org/10.1093/femspd/ftaa007
dc.sourceRastrojo, A., García-Hernández, R., Vargas, P., Camacho, E., Corvo, L., Imamura, H., Dujardin, J. C., Castanys, S., Aguado, B., Gamarro, F., & Requena, J. M. (2018). Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. International journal for parasitology. Drugs and drug resistance, 8(2), 246–264. https://doi.org/10.1016/j.ijpddr.2018.04.002
dc.sourceRestrepo, C. M., Llanes, A., Cedeño, E. M., Chang, J. H., Álvarez, J., Ríos, M., … Lleonart, R. (2019). Environmental conditions may shape the patterns of genomic variations in Leishmania panamensis. Genes, 10(11). https://doi.org/10.3390/genes10110838
dc.sourceRochette, A., Raymond, F., Ubeda, J. M., Smith, M., Messier, N., Boisvert, S., … Papadopoulou, B. (2008). Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics, 9(1), 1–26. https://doi.org/10.1186/1471-2164-9-255
dc.sourceRogers, M. B., Hilley, J. D., Dickens, N. J., Wilkes, J., Bates, P. A., Depledge, D. P., … Mottram, J. C. (2011). Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Research, 21(12), 2129–2142. https://doi.org/10.1101/gr.122945.111
dc.sourceRojas, R., Valderrama, L., Valderrama, M., Varona, M. X., Ouellette, M., & Saravia, N. G. (2006). Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. Journal of Infectious Diseases, 193(10), 1375–1383. https://doi.org/10.1086/503371
dc.sourceRomero, G. A. S., De Farias Guerra, M. V., Paes, M. G., & De Oliveira Macêdo, V. (2001). Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: Therapeutic response to meglumine antimoniate. American Journal of Tropical Medicine and Hygiene, 65(5), 456–465. https://doi.org/10.4269/ajtmh.2001.65.456
dc.sourceRugani, J. N., Quaresma, P. F., Gontijo, C. F., Soares, R. P., & Monte-Neto, R. L. (2018). Intraspecies susceptibility of Leishmania (Viannia) braziliensis to antileishmanial drugs: Antimony resistance in human isolates from atypical lesions. Biomedicine and Pharmacotherapy, 108, 1170–1180. https://doi.org/10.1016/j.biopha.2018.09.149
dc.sourceSingh, N. & Sundar, S. (2017). Integrating genomics and proteomics permits identification of immunodominant antigens associated with drug resistance in human visceral leishmaniasis in India. Experimental Parasitology, 176(), 30–45. doi:10.1016/j.exppara.2017.02.019
dc.sourceSteverding D. (2017). The history of leishmaniasis. Parasites & vectors, 10(1), 82. https://doi.org/10.1186/s13071-017-2028-5
dc.sourceSundar, S., & Chakravarty, J. (2015, February 1). An update on pharmacotherapy for leishmaniasis. Expert Opinion on Pharmacotherapy, Vol. 16, pp. 237–252. https://doi.org/10.1517/14656566.2015.973850
dc.sourceSundar, S., Chakravarty, J., & Meena, L. P. (2019, January 2). Leishmaniasis: treatment, drug resistance and emerging therapies. Expert Opinion on Orphan Drugs, Vol. 7, pp. 1–10. https://doi.org/10.1080/21678707.2019.1552853
dc.sourceTorres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: a review. F1000Research, 6, 750. https://doi.org/10.12688/f1000research.11120.1
dc.sourceUbeda, J.-M., Raymond, F., Mukherjee, A., Plourde, M., Gingras, H., Roy, G., … Ouellette, M. (2014). Genome-Wide Stochastic Adaptive DNA Amplification at Direct and Inverted DNA Repeats in the Parasite Leishmania. PLoS Biology, 12(5), e1001868. https://doi.org/10.1371/journal.pbio.1001868
dc.sourceUliana, S. R. B., Trinconi, C. T., & Coelho, A. C. (2018, April 1). Chemotherapy of leishmaniasis: Present challenges. Parasitology, Vol. 145, pp. 464–480. https://doi.org/10.1017/S0031182016002523
dc.sourceUrrea, D. A., Duitama, J., Imamura, H., Álzate, J. F., Gil, J., Muñoz, N., … Triana-Chavez, O. (2018). Genomic Analysis of Colombian Leishmania panamensis strains with different level of virulence. Scientific Reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-35778-6
dc.sourceValero, N. N. H., & Uriarte, M. (2020, February 1). Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review. Parasitology Research, Vol. 119, pp. 365–384. https://doi.org/10.1007/s00436-019-06575-5
dc.sourceVanaerschot, M., Dumetz, F., Roy, S., Ponte-Sucre, A., Arevalo, J., & Dujardin, J. C. (2014). Treatment failure in leishmaniasis: Drug-resistance or another (epi-) phenotype? Expert Review of Anti-Infective Therapy, Vol. 12, pp. 937–946. https://doi.org/10.1586/14787210.2014.916614
dc.sourceVanlerberghe, V., Diap, G., Guerin, P. J., Meheus, F., Gerstl, S., Stuyft, P. Van Der, & Boelaert, M. (2007). Drug policy for visceral leishmaniasis: A cost-effectiveness analysis. Tropical Medicine and International Health, 12(2), 274–283. https://doi.org/10.1111/j.1365-3156.2006.01782.x
dc.sourceVerma, A., Bhandari, V., Deep, D. K., Sundar, S., Dujardin, J. C., Singh, R., & Salotra, P. (2017). Transcriptome profiling identifies genes/pathways associated with experimental resistance to paromomycin in Leishmania donovani. International Journal for Parasitology: Drugs and Drug Resistance, 7(3), 370–377. https://doi.org/10.1016/j.ijpddr.2017.10.004
dc.sourceVermeersch, M., da Luz, R. I., Toté, K., Timmermans, J. P., Cos, P., & Maes, L. (2009). In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrobial agents and chemotherapy, 53(9), 3855–3859. https://doi.org/10.1128/AAC.00548-09
dc.sourceWickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
dc.sourceYardley, V., Ortuño, N., Llanos‐Cuentas, A., Chappuis, F., Doncker, S. D., Ramirez, L., … Dujardin, J. (2006). American Tegumentary Leishmaniasis: Is Antimonial Treatment Outcome Related to Parasite Drug Susceptibility? The Journal of Infectious Diseases, 194(8), 1168–1175. https://doi.org/10.1086/507710
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectLeishmania donovani
dc.subjectLeishmania infantum
dc.subjectLeishmania amazonensis
dc.subjectLeishmania Viannia
dc.subjectLeishmania panamensis
dc.subjectLeishmania braziliensis
dc.subjectEfectividad del Antimonio trivalente (SbIII) frente leishmania
dc.subjectGenómica y transcriptómica comparativa de Leishmania
dc.subjectPerfil transcriptómico de leishmania
dc.titleAnálisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente.
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución