dc.contributorRodríguez Burbano, Diana Consuelo
dc.contributorOndo-Méndez, Alejandro
dc.creatorRodríguez Rojas, Yoly Carolina
dc.date.accessioned2021-06-16T20:48:19Z
dc.date.available2021-06-16T20:48:19Z
dc.date.created2021-06-16T20:48:19Z
dc.identifierhttps://doi.org/10.48713/10336_31625
dc.identifierhttps://repository.urosario.edu.co/handle/10336/31625
dc.description.abstractGlioblastoma multiforme (GBM) is one of the most deadly cancers. The average life span for all patients is 12-18 months after diagnosis and treatment. The main treatments to combat glioblastoma are: surgery and radiation therapy. Surgery, mainly used to remove most of the tumor mass, has had limitations due to the invasive characteristic that precedes GBM. Radiotherapy (RT) has taken on a crucial role in GBM therapies, its objective being to stop cell proliferation by causing breaks in the DNA chain of cancer cells. However, GBM cells have a radioresistant character, limiting the effectiveness of this therapy. Carbon dots (PC) are spherical nanostructures, with high biocompatibility, optical and physicochemical properties that make them interesting for targeted applications by increasing the effectiveness of radiotherapy. In these applications, one of the most important parameters to establish in the PC is its level of cytotoxicity. Therefore, the objective of this work was to identify the cytotoxic effect that citric acid-based carbon spots have against glioblastoma cancer cells (U87) and breast cancer cells (MCF-7) by means of two viability assays. MTT and Azul Tripán. As a result, carbon points were obtained by means of microwave reaction (bottom up) from citric acid, ethanol and N, N-dimethylformamide, emitting a blue fluorescence under irradiation with 365 nm ultraviolet light. High viability of U87 and MCF-7 cells was seen against the synthesized PCs. This suggests that their low cytotoxicity evidenced in this work, their ease of modulating surface properties, and their biocompatibility make PCs potentially investigated for future work.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherEscuela de Medicina y Ciencias de la Salud
dc.publisherIngeniería Biomédica
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourceWorld Health Organization -cancer, (2018). https://www.who.int/healthtopics/cancer#tab=tab_1.
dc.sourceG.P. Gupta, J. Massagué, Cancer Metastasis: Building a Framework, Cell. 127 (2006) 679–695. https://doi.org/10.1016/j.cell.2006.11.001.
dc.sourceInternation Agengy for Research on Cancer, Estimated number of prevalent cases in 2020, worldwide, both sexes, all ages, Cancer Today. 896 (2020) 2020. https://gco.iarc.fr/today/online-analysistable?v=2020&mode=cancer&mode_population=regions&population=900&populatio ns=900&key=asr&sex=0&cancer=39&type=2&statistic=5&prevalence=1&population _group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&in cl.
dc.sourceP. bórquez, c. romero, El paciente oncológico geriátrico, Rev. Chil. Cirugía. 59 (2007). https://doi.org/10.4067/s0718-40262007000600015.
dc.sourceJ. Wang, X. Wu, P. Shen, J. Wang, Y. Shen, Y. Shen, T.J. Webster, J. Deng, Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment, Int. J. Nanomedicine. 15 (2020) 1903–1914. https://doi.org/10.2147/IJN.S239751.
dc.sourceV.T. DeVita, E. Chu, A history of cancer chemotherapy, Cancer Res. 68 (2008) 8643– 8653. https://doi.org/10.1158/0008-5472.CAN-07-6611.
dc.sourceH. Chen, Y. Zhao, Applications of Light-Responsive Systems for Cancer Theranostics, ACS Appl. Mater. Interfaces. 10 (2018) 21021–21034. https://doi.org/10.1021/acsami.8b01114
dc.sourceD. Khuntia, P. Brown, J. Li, M.P. Mehta, Whole-brain radiotherapy in the management of brain metastasis, J. Clin. Oncol. 24 (2006) 1295–1304. https://doi.org/10.1200/JCO.2005.04.6185.
dc.sourceJ. Liu, K. Bi, R. Yang, H. Li, Z. Nikitaki, L. Chang, Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future, Int. J. Radiat. Biol. 96 (2020) 1329–1338. https://doi.org/10.1080/09553002.2020.1807641.
dc.sourceJ. Ruan, Y. Wang, F. Li, R. Jia, G. Zhou, C. Shao, L. Zhu, M. Cui, D.P. Yang, S. Ge, Graphene Quantum Dots for Radiotherapy, ACS Appl. Mater. Interfaces. 10 (2018) 14342–14355. https://doi.org/10.1021/acsami.7b18975
dc.sourceP.B. Dirks, Brain tumor stem cells: Bringing order to the chaos of brain cancer, J. Clin. Oncol. 26 (2008) 2916–2924. https://doi.org/10.1200/JCO.2008.17.6792.
dc.sourceGLOBOCAN, Estimated number of deaths in 2020,both sexes, all ages, brain cancer, Int. Agency Res. Cancer. 144 (2020) 100. https://gco.iarc.fr/today/online-analysistable?v=2020&mode=population&mode_population=continents&population=900&po pulations=900&key=asr&sex=0&cancer=31&type=1&statistic=5&prevalence=0&pop ulation_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer.
dc.sourceC.J. Sherr, Principles of Tumor Suppression, Cell. 116 (2004) 235–246. https://doi.org/10.1016/S0092-8674(03)01075-4.
dc.sourceJ. Han, Y. Jun, S.H. Kim, H.H. Hoang, Y. Jung, S. Kim, J. Kim, R.H. Austin, S. Lee, S. Park, Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 14283–14288. https://doi.org/10.1073/pnas.1614898113.
dc.sourceA. Bradshaw, A. Wickremesekera, H.D. Brasch, A.M. Chibnall, P.F. Davis, S.T. Tan, T. Itinteang, Cancer Stem Cells in Glioblastoma Multiforme, Front. Surg. 3 (2016) 1203–1217. https://doi.org/10.3389/fsurg.2016.00048.
dc.sourceJ.K. Park, T. Hodges, L. Arko, M. Shen, D. Dello Iacono, A. McNabb, N.O. Bailey, T.N. Kreisl, F.M. Iwamoto, J. Sul, S. Auh, G.E. Park, H.A. Fine, P.M.L. Black, Scale to predict survival after surgery for recurrent glioblastoma multiforme, J. Clin. Oncol. 28 (2010) 3838–3843. https://doi.org/10.1200/JCO.2010.30.0582.
dc.sourceF. Hanif, K. Muzaffar, K. Perveen, S.M. Malhi, S.U. Simjee, Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment, Asian Pacific J. Cancer Prev. 18 (2017) 3–9. https://doi.org/10.22034/APJCP.2017.18.1.3.
dc.sourceR. Rodríguez, K. Lombardo, G. Roldán, J. Silvera, R. Lagomarsino, Glioblastoma multiforme cerebral hemisférico: análisis de sobrevida de 65 casos tratados en el Departamento de Oncología del Hospital de Clínicas, desde 1980 a 2000, Rev. Médica Del Uruguay. 28 (2012) 250–261.
dc.sourceX. Li, F. Shao, J. Sun, K. Du, Y. Sun, F. Feng, Enhanced Copper-Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme, ACS Appl. Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b14849.
dc.sourceJ. Mann, R. Ramakrishna, R. Magge, A.G. Wernicke, Advances in radiotherapy for glioblastoma, Front. Neurol. 8 (2018) 1–11. https://doi.org/10.3389/fneur.2017.00748.
dc.sourceJ. Choi, G. Kim, S. Bin Cho, H.J. Im, Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme, J. Nanobiotechnology. 18 (2020) 1–23. https://doi.org/10.1186/s12951-020-00684-5.
dc.sourceF. Kazmi, K.A. Vallis, B.A. Vellayappan, A. Bandla, D. Yukun, R. Carlisle, Megavoltage radiosensitization of gold nanoparticles on a glioblastoma cancer cell line using a clinical platform, Int. J. Mol. Sci. 21 (2020) 1–12. https://doi.org/10.3390/ijms21020429.
dc.sourceO. Grauer, M. Jaber, K. Hess, M. Weckesser, W. Schwindt, S. Maring, J. Wölfer, W. Stummer, Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients, J. Neurooncol. 141 (2019) 83–94. https://doi.org/10.1007/s11060-018-03005-x.
dc.sourceK. Chatterjee, S. Sarkar, K. Jagajjanani Rao, S. Paria, Core/shell nanoparticles in biomedical applications, Adv. Colloid Interface Sci. 209 (2014) 8–39. https://doi.org/10.1016/j.cis.2013.12.008.
dc.sourceC.G. Lizarazo-Salcedo, E.E. González-Jiménez, C.Y. Arias-Portela, J. GuarguatiAriza, Nanomateriales: un acercamiento a lo básico, Med. Segur. Trab. (Madr). 64 (2018) 109–118.
dc.sourceN. Sanvicens, M.P. Marco, Multifunctional nanoparticles - properties and prospects for their use in human medicine, Trends Biotechnol. 26 (2008) 425–433. https://doi.org/10.1016/j.tibtech.2008.04.005.
dc.sourceJ. Yao, M. Yang, Y. Duan, Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy, Chem. Rev. 114 (2014) 6130–6178. https://doi.org/10.1021/cr200359p.
dc.sourceK.P.R. Chowdary, A. Srinivasa Rao, Nanoparticles as drug carriers, Indian Drugs. 34 (1997) 549–556. https://doi.org/10.1533/9781908818195.29.
dc.sourceN.D. Thorat, H. Townely, G. Brennan, A.K. Parchur, C. Silien, J. Bauer, S.A.M. Tofail, Progress in Remotely Triggered Hybrid Nanostructures for Next-Generation Brain Cancer Theranostics, ACS Biomater. Sci. Eng. 5 (2019) 2669–2687. https://doi.org/10.1021/acsbiomaterials.8b01173.
dc.sourceD. Kwatra, A. Venugopal, S. Anant, Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer, Transl. Cancer Res. 2 (2013) 330–342. https://doi.org/10.3978/j.issn.2218-676X.2013.08.06.
dc.sourceR. Jelinek, Carbon Quantum Dots. Synthesis, Properties and Applicatons, 2017
dc.sourceS. Sagbas, N. Sahiner, Carbon dots: Preparation, properties, and application, Elsevier Ltd., 2018. https://doi.org/10.1016/B978-0-08-102509-3.00022-5.
dc.sourceH. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties, Chem. Commun. (2009) 5118–5120. https://doi.org/10.1039/b907612c
dc.sourceP. Miao, K. Han, Y. Tang, B. Wang, T. Lin, W. Cheng, Recent advances in carbon nanodots: Synthesis, properties and biomedical applications, Nanoscale. 7 (2015) 1586–1595. https://doi.org/10.1039/c4nr05712k.
dc.sourceD.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes, Chem. - A Eur. J. 18 (2012) 12522–12528. https://doi.org/10.1002/chem.201201043
dc.sourceA. Sharma, J. Das, Small molecules derived carbon dots: Synthesis and applications in sensing, catalysis, imaging, and biomedicine, J. Nanobiotechnology. 17 (2019) 1– 24. https://doi.org/10.1186/s12951-019-0525-8.
dc.sourceJ. Prado-Gonjal, E. Morán, E.J. Morán Prado-Gonjal, Síntesis asistida por microondas de sólidos inorgánicos Investigación Química Introducción, An. Quím. 107 (2011) 129–136.
dc.sourceE.E. González Jiménez, F. González, Síntesis por radiación con microondas de nanotubos de carbono, Univ. Sci. 13 (2008) 258–266.
dc.sourceL. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A. Wu, H. Lin, Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing, Adv. Mater. 27 (2015) 7782–7787. https://doi.org/10.1002/adma.201503821.
dc.sourceS. Pandey, G.R. Gedda, M. Thakur, M.L. Bhaisare, A. Talib, M.S. Khan, S.M. Wu, H.F. Wu, Theranostic carbon dots ‘clathrate-like’ nanostructures for targeted photochemotherapy and bioimaging of cancer, J. Ind. Eng. Chem. 56 (2017) 62–73. https://doi.org/10.1016/j.jiec.2017.06.008.
dc.sourceT. V. De Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, Microwave-assisted synthesis of carbon dots and their applications, J. Mater. Chem. C. 7 (2019) 7175–7195. https://doi.org/10.1039/c9tc01640f.
dc.sourceL. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S. Xie, Y. Sun, Geburt des Schwarzhändlers | DIE ZEIT Archiv | Ausgabe 20/1946, Americal. (1946) 11318–11319.
dc.sourceF. Du, M. Zhang, A. Gong, Y. Tan, J. Miao, Y. Gong, S. Zou, L. Zhang, L. Zhang, C. Wu, M. Sun, H. Ju, Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors, Biomaterials. 121 (2017) 109–120. https://doi.org/10.1016/j.biomaterials.2016.07.008.
dc.sourceM. Tuerhong, Y. XU, X.B. YIN, Review on Carbon Dots and Their Applications, Chinese J. Anal. Chem. 45 (2017) 139–150. https://doi.org/10.1016/S1872- 2040(16)60990-8.
dc.sourceS.D. Hettiarachchi, R.M. Graham, K.J. Mintz, Y. Zhou, S. Vanni, Z. Peng, R.M. Leblanc, Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors, Nanoscale. 11 (2019) 6192–6205. https://doi.org/10.1039/C8NR08970A.
dc.sourceZ. Ji, P. Ai, C. Shao, T. Wang, C. Yan, L. Ye, W. Gu, Manganese-Doped Carbon Dots for Magnetic Resonance/Optical Dual-Modal Imaging of Tiny Brain Glioma, ACS Biomater. Sci. Eng. 4 (2018) 2089–2094. https://doi.org/10.1021/acsbiomaterials.7b01008.
dc.sourceL. Zhang, Z. Lin, Y.X. Yu, B.P. Jiang, X.C. Shen, Multifunctional hyaluronic acidderived carbon dots for self-targeted imaging-guided photodynamic therapy, J. Mater. Chem. B. 6 (2018) 6534–6543. https://doi.org/10.1039/c8tb01957f.
dc.sourceA. Kundu, J. Lee, B. Park, C. Ray, K.V. Sankar, W.S. Kim, S.H. Lee, I.J. Cho, S.C. Jun, Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imaging, J. Colloid Interface Sci. 513 (2018) 505–514. https://doi.org/10.1016/j.jcis.2017.10.095.
dc.sourceN. Irmania, K. Dehvari, G. Gedda, P.J. Tseng, J.Y. Chang, Manganese-doped green tea-derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform, J. Biomed. Mater. Res. - Part B Appl. Biomater. 108 (2020) 1616– 1625. https://doi.org/10.1002/jbm.b.34508.
dc.sourceS.B. de M. Barros, Toxicologia, Rev. Bras. Ciências Farm. 38 (2002) 500–500. https://doi.org/10.1590/s1516-93322002000400015.
dc.sourceN. Vasimalai, V. Vilas-Boas, J. Gallo, M. de F. Cerqueira, M. Menéndez-Miranda, J.M. Costa-Fernández, L. Diéguez, B. Espiña, M.T. Fernández-Argüelles, Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition, Beilstein J. Nanotechnol. 9 (2018) 530–544. https://doi.org/10.3762/bjnano.9.51.
dc.sourceH. Muktha, R. Sharath, N. Kottam, S.P. Smrithi, K. Samrat, P. Ankitha, Green Synthesis of Carbon Dots and Evaluation of Its Pharmacological Activities, Bionanoscience. 10 (2020) 731–744. https://doi.org/10.1007/s12668-020-00741-1.
dc.sourceA. Sharma, V. Panwar, J. Thomas, V. Chopra, H.S. Roy, D. Ghosh, Actin-binding carbon dots selectively target glioblastoma cells while sparing normal cells, Colloids Surfaces B Biointerfaces. 200 (2021) 111572. https://doi.org/10.1016/j.colsurfb.2021.111572.
dc.sourceZ. Wang, H. Liao, H. Wu, B. Wang, H. Zhao, M. Tan, Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery, Anal. Methods. 7 (2015) 8911– 8917. https://doi.org/10.1039/c5ay01978h.
dc.sourceE. Arkan, A. Barati, M. Rahmanpanah, L. Hosseinzadeh, S. Moradi, M. Hajialyani, Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells, Adv. Pharm. Bull. 8 (2018) 149–155. https://doi.org/10.15171/apb.2018.018.
dc.sourceÖ.S. Aslantürk, In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages, Genotoxicity - A Predict. Risk to Our Actual World. (2018) 1–18. https://doi.org/10.5772/intechopen.71923.
dc.sourceP. Brescia, P. Banks, Quantifying Cytotoxicity of Thiostrepton on Mesothelioma Cells using MTT Assay and the Epoch TM Microplate Spectrophotometer, BioTek. (2009) 3.
dc.sourceL. Florento, R. Matias, E. Tuaño, K. Santiago, F. Dela Cruz, A. Tuazon, Comparison of cytotoxic activity of anticancer drugs against various human tumor cell lines using in vitro cell-based approach, Int. J. Biomed. Sci. 8 (2012) 76–80.
dc.sourceK.E. Zakrzewska, A. Samluk, M. Wierzbicki, S. Jaworski, M. Kutwin, E. Sawosz, A. Chwalibog, D.G. Pijanowska, K.D. Pluta, Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines, PLoS One. 10 (2015) 1–15. https://doi.org/10.1371/journal.pone.0122579.
dc.sourceY. Wang, P. Anilkumar, L. Cao, J.H. Liu, P.G. Luo, K.N. Tackett, S. Sahu, P. Wang, X. Wang, Y.P. Sun, Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging, Exp. Biol. Med. 236 (2011) 1231–1238. https://doi.org/10.1258/ebm.2011.011132.
dc.sourceATCC, American Type Culture Collection U87, HTB-14, (2020) 17025. available: https://www.atcc.org/products/all/HTB-14.aspx.
dc.sourceMCF-7, American Type Culture Collection ATCC (atcc ® htb-22 TM ), (2020) 17025.
dc.sourceS. Bao, Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B. Hjelmeland, M.W. Dewhirst, D.D. Bigner, J.N. Rich, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature. 444 (2006) 756–760. https://doi.org/10.1038/nature05236.
dc.sourceN. Kumar, S. Kumbhat, Carbon‐Based Nanomaterials, Essentials Nanosci. Nanotechnol. (2016) 189–236. https://doi.org/10.1002/9781119096122.ch5.
dc.sourceReactor de síntesis-Monowave 50-Anton-Paar, Donau Lab Ukr. (2019) 2021.
dc.sourceD. Gao, X. Liu, D. Jiang, H. Zhao, Y. Zhu, X. Chen, H. Luo, H. Fan, X. Zhang, Exploring of multicolor emissive carbon dots with novel double emission mechanism, Sensors Actuators, B Chem. 277 (2018) 373–380. https://doi.org/10.1016/j.snb.2018.09.031.
dc.sourceE.H. Hong, K.H. Lee, S.H. Oh, C.G. Park, Synthesis of Carbon Nanotubes Using Microwave Radiation, Adv. Funct. Mater. 13 (2003) 961–966. https://doi.org/10.1002/adfm.200304396.
dc.sourceQ. Xiao, Y. Liang, F. Zhu, S. Lu, S. Huang, Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing, Microchim. Acta. 184 (2017) 2429–2438. https://doi.org/10.1007/s00604-017-2242- z.
dc.sourceA. Ettinger, T. Wittmann, Fluorescence live cell imaging, 1st ed., Elsevier Inc., 2014. https://doi.org/10.1016/B978-0-12-420138-5.00005-7.
dc.sourceJ. Cigales Canga, Síntesis y caracterización de nanopartículas de carbono luminiscentes: Carbon Quantum Dots (CQDs), (2016) 70.
dc.sourceS. Xia, E.M. Rosen, J. Laterra, Sensitization of glioma cells to fas-dependent apoptosis by chemotherapy-induced oxidative stress, Cancer Res. 65 (2005) 5248– 5255. https://doi.org/10.1158/0008-5472.CAN-04-4332.
dc.sourceR. Ahmad, G. Schettino, G. Royle, M. Barry, Q.A. Pankhurst, O. Tillement, B. Russell, K. Ricketts, Radiobiological Implications of Nanoparticles Following Radiation Treatment, Part. Part. Syst. Charact. 37 (2020). https://doi.org/10.1002/ppsc.201900411.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectGlioblastoma
dc.subjectPuntos de carbono
dc.subjectCitotoxicidad
dc.subjectAzul tripán
dc.titleEvaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución