dc.contributor | Corrales Osorio, Adriana | |
dc.creator | Sanchez Tello, Juan David | |
dc.date.accessioned | 2021-09-09T22:50:40Z | |
dc.date.accessioned | 2022-09-22T14:00:21Z | |
dc.date.available | 2021-09-09T22:50:40Z | |
dc.date.available | 2022-09-22T14:00:21Z | |
dc.date.created | 2021-09-09T22:50:40Z | |
dc.identifier | https://repository.urosario.edu.co/handle/10336/32397 | |
dc.identifier | https://doi.org/10.48713/10336_32397 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3434891 | |
dc.description.abstract | Urban landscapes are becoming more important due to the accelerated population growth and increasing urbanization. Urban ecosystems serve as home to diverse plant and fungal communities. However, studies focusing on the diversity and structure of biological communities are uncommon in this habitat. In Colombia, Quercus humboldtii Bonpl. is a conspicuous ectomycorrhizal species present in tropical montane forests that hosts a high diversity of ectomycorrhizal fungi in its roots. Quercus humboldtii is commonly used as an urban tree in Bogotá, but the ectomycorrhizal communities of this species have not yet been studied in urban ecosystems. We studied how the ectomycorrhizal fungal communities associated with this tree change between natural and urban ecosystems. Roots of 24 trees were sampled in two sites, Chicaque Natural Reserve (natural) and three neighborhoods of Bogotá city (urban). Using Illumina sequencing, the ITS1 region of all root associated fungi was amplified and analyzed using both OTUs and ASVs bioinformatics pipelines. We found 949 OTUs in Bogotá and 514 OTUs in Chicaque. We didn’t find significant differences in the species richness between Bogotá and Chicaque sites based on Fisher’s alpha or species-accumulation curves. In Chicaque communities, the most abundant genera were Russula and Lactarius, while Scleroderma, Hydnangium, and Trechispora were highly abundant in Bogotá. An NMDS analysis showed that samples from the natural site had a significantly different community composition compared with urban trees. Our results highlight the importance of Quercus trees as reservoirs of ectomycorrhizal fungal diversity in Bogotá. | |
dc.language | eng | |
dc.publisher | Universidad del Rosario | |
dc.publisher | Biología | |
dc.publisher | Facultad de Ciencias Naturales | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Abierto (Texto Completo) | |
dc.rights | EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. | |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
dc.source | Abarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pöhönen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik; Kõljalg, Urmas (2020): UNITE general FASTA release for Fungi. UNITE Community. 10.15156/BIO/786368 | |
dc.source | Aldrich, P. R., & Cavender-Bares, J. (2011). Quercus. In C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources: Forest Trees (pp. 89–129). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21250-5_6 | |
dc.source | Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., et al., (2011). Navigating the multiple meanings of b diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19e28. | |
dc.source | Baruch, Z., Liddicoat, C., Laws, M., Kiri Marker, L., Morelli, H., Yan, D., … Breed, M. F. (2020). Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecology, 47, 100939. https://doi.org/https://doi.org/10.1016/j.funeco.2020.100939 | |
dc.source | Baxter, J. W., Pickett, S. T. A., Carreiro, M. M., & Dighton, J. (1999). Ectomycorrhizal diversity and community structure in oak forest stands exposed to contrasting anthropogenic impacts. Canadian Journal of Botany, 77(6), 771–782. https://doi.org/10.1139/b99-039 | |
dc.source | Bernal, S. G. N., & Guevara, M. C. (2019). Actividad turística en el Parque Natural Chicaque como factor de desarrollo sostenible en las veredas Chicaque y Cascajal (Cundinamarca, Colombia). Turismo y Sociedad, 26. https://doi.org/10.18601/01207555.n26.08 | |
dc.source | Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154(2), 275–304. | |
dc.source | Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869 | |
dc.source | Colparques. (2017). Organización Colparques. Chicaque. Recuperado de: http://www.colparques.net/chlcaque | |
dc.source | Corrales, A., & Ovrebo, C. L. (2020). Fungi of the Fortuna Forest Reserve: Taxonomy and ecology with emphasis on ectomycorrhizal communities. BioRxiv, 2020.04.16.045724. https://doi.org/10.1101/2020.04.16.045724 | |
dc.source | Corrales, A., Henkel, T. W., & Smith, M. E. (2018). Ectomycorrhizal associations in the tropics–biogeography, diversity patterns and ecosystem roles. New Phytologist, 220(4), 1076–1091. | |
dc.source | Departamento Administrativo Nacional de Estadística - DANE (2019) Censo Nacional de Población y Vivienda 2018. https://sitios.dane.gov.co/cnpv/#!/. Accesed 25 July 2021. | |
dc.source | Desai, N. S., Wilson, A. W., Powers, J. S., Mueller, G. M., & Egerton-Warburton, L. M. (2016). Ectomycorrhizal diversity and community structure in stands of Quercus oleoides in the seasonally dry tropical forests of Costa Rica. Environmental Research Letters, 11(12), 125007. | |
dc.source | García-Guzmán, O. M., Garibay-Orijel, R., Hernández, E., Arellano-Torres, E., & Oyama, K. (2017). Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. Mycorrhiza, 27(8), 811–822. https://doi.org/10.1007/s00572-017-0793-9 | |
dc.source | Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/https://doi.org/10.1111/j.1365-294X.1993.tb00005.x | |
dc.source | Halling, R. E. (2001). Ectomycorrhizae: Co-Evolution, Significance, and Biogeography. Annals of the Missouri Botanical Garden, 88(1), 5–13. https://doi.org/10.2307/2666128 | |
dc.source | Henkel, T. W., Aime, M. C., Chin, M. M. L., Miller, S. L., Vilgalys, R., & Smith, M. E. (2012). Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodiversity and Conservation, 21(9), 2195–2220. https://doi.org/10.1007/s10531-011-0166-1 | |
dc.source | Instituto Distrital de Gestión de Riesgos y Cambio Climático IDIGER (2021) Lluvias y temperatura en Bogotá desde 1979 a 2018. https://www.idiger.gov.co/precipitacion-y-temperatura#:~:text=De%20acuerdo%20con%20el%20Instituto%20de%20Hidrolog%C3%ADa%2C%20Meteorolog%C3%ADa,lluvias%20en%20la%20ciudad%2C%20presenta%20un%20comportamiento%20bimodal%3A. Accesed 25 July 2021. | |
dc.source | Jumpponen, A. R. I., Jones, K. L., David Mattox, J., & Yaege, C. (2010). Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular Ecology, 19(s1), 41–53. https://doi.org/https://doi.org/10.1111/j.1365-294X.2009.04483.x | |
dc.source | Karpati, A. S., Handel, S. N., Dighton, J., & Horton, T. R. (2011). Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests. Mycorrhiza, 21(6), 537–547. https://doi.org/10.1007/s00572-011-0362-6 | |
dc.source | Kropp, B. R., & Mueller, G. M. (1999). Laccaria BT - Ectomycorrhizal Fungi Key Genera in Profile. In J. W. G. Cairney & S. M. Chambers (Eds.) (pp. 65–88). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-06827-4_3 | |
dc.source | Lilleskov, E. A., Hobbie, E. A., & Horton, T. R. (2011). Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. fungal ecology, 4(2), 174-183. | |
dc.source | Manos, P. S., Doyle, J. J., & Nixon, K. C. (1999). Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Molecular Phylogenetics and Evolution, 12(3), 333–349. | |
dc.source | Mahecha, G, Sánchez, F, Chaparro, J, Cadena, H, Tovar, G, Villota, L, Morales, G, Castro JA, Bocanegra F, Quintero, M (2010) Manejo silvicultural. In: Arbolado urbano de Bogotá: Identificación, descripción y bases para su manejo. Bogotá, Colombia, p 74-76. | |
dc.source | Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12. https://doi.org/10.14806/ej.17.1.200 | |
dc.source | Martinová, V., van Geel, M., Lievens, B., & Honnay, O. (2016). Strong differences in Quercus robur-associated ectomycorrhizal fungal communities along a forest-city soil sealing gradient. Fungal Ecology, 20, 88–96. https://doi.org/https://doi.org/10.1016/j.funeco.2015.12.002 | |
dc.source | McGuire, K. L. (2007). Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology, 88(3), 567–574. | |
dc.source | McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217 | |
dc.source | Morris, M. H., Pérez-Pérez, M. A., Smith, M. E., & Bledsoe, C. S. (2008). Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza, 18(8), 375–383. https://doi.org/10.1007/s00572-008-0186-1 | |
dc.source | Ochimaru, T., & Fukuda, K. (2007). Changes in fungal communities in evergreen broad-leaved forests across a gradient of urban to rural areas in JapanThis article is one of a selection of papers published in the Special Forum on Towards Sustainable Forestry — The Living Soil: Soil Biodivers. Canadian Journal of Forest Research, 37(2), 247–258. https://doi.org/10.1139/X06-293 | |
dc.source | Oksanen, J., Kindt, R., Legendre, P., O’hara, B., Simpson, G.L., Stevens, M.H.H., (2008). Vegan: community ecology package. | |
dc.source | Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.R., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E & Wagner, H, (2017). Vegan: community ecology package. R package version 2.4–0 | |
dc.source | Olchowik, J., Suchocka, M., Malewski, T., Baczewska-Dąbrowska, A., Studnicki, M., & Hilszczańska, D. (2020). The Ectomycorrhizal Community of Crimean Linden Trees in Warsaw, Poland. Forests . https://doi.org/10.3390/f11090926 | |
dc.source | Pagano, M. C., & Lugo, M. A. (2019). Mycorrhizal Fungi in South America. Springer. | |
dc.source | Palmer, J. M., Jusino, M. A., Banik, M. T., & Lindner, D. L. (2018). Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6: e4925. | |
dc.source | Peña-Venegas, C. P., & Vasco-Palacios, A. M. (2019). Endo-and Ectomycorrhizas in tropical ecosystems of Colombia. In Mycorrhizal Fungi in South America (pp. 111–146). Springer. | |
dc.source | Pinzón Osorio, C. A., & Pinzón Osorio, J. (2018). Primer registro de Scleroderma bovista (Boletales, Sclerodermataceae) para Colombia. Revista Peruana de Biología, 25(4 SE-Notas científicas), 445–450. https://doi.org/10.15381/rpb.v25i4.14550 | |
dc.source | Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B. D., Clemmensen, K. E., Kauserud, H., … Tedersoo, L. (2020). FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 105(1), 1–16. https://doi.org/10.1007/s13225-020-00466-2 | |
dc.source | Rendón MA (2020) Diversity of mycorrhizal types along altitudinal gradients in mountain tropical forests of northern South America. Dissertation, Universidad del Rosario | |
dc.source | Rivera D. & Córdoba C. (1998). Guía Ecológica Parque Natural Chicaque. Bogotá, Colombia: Jardín Botánico de Bogotá José Celestino Mutis. | |
dc.source | Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., … consortium, G. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569(7756), 404–408. https://doi.org/10.1038/s41586-019-1128-0 | |
dc.source | Stevenson, P. C., Bidartondo, M. I., Blackhall-Miles, R., Cavagnaro, T. R., Cooper, A., Geslin, B., … Suz, L. M. (2020). The state of the world’s urban ecosystems: What can we learn from trees, fungi, and bees? PLANTS, PEOPLE, PLANET, 2(5), 482–498. https://doi.org/https://doi.org/10.1002/ppp3.10143 | |
dc.source | Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development. Sunderland, MA: Sinauer Associates. | |
dc.source | Vargas N, Restrepo S. 2019. A checklist of Ectomycorrhizal Mushrooms associated to Quercus humboldtii in Colombia. En: Guerin-Laguette A, Moreno J, Flores R, Quiang F (eds). Mushrooms, humans and nature in a changing world: Perspectives from ecological, agricultural and social sciences. Springer Nature | |
dc.source | Vasco-Palacios, A. M., Bahram, M., Boekhout, T., & Tedersoo, L. (2019). Carbon content and pH as important drivers of fungal community structure in three Amazon forests. Plant and Soil. https://doi.org/10.1007/s11104-019-04218-3 | |
dc.source | Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/AEM.00062-07 | |
dc.source | Waring, B. G., Adams, R., Branco, S., & Powers, J. S. (2016). Scale‐dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytologist, 209(2), 845–854. | |
dc.source | instname:Universidad del Rosario | |
dc.source | reponame:Repositorio Institucional EdocUR | |
dc.subject | Hongos ectomicorrízicos | |
dc.subject | Quercus humboldtii Bonpl | |
dc.subject | Estructura de la comunidad | |
dc.subject | Comunidades rurales vs urbanas | |
dc.subject | Estudios de la diversidad y estructura de las comunidades biológicas de hongos en ecosistemas urbanos | |
dc.subject | Análisis comparativo de variedad biológica de los Hongos Ectomicorrízicos en comunidades rurales vs urbanas | |
dc.title | How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes | |
dc.type | bachelorThesis | |