dc.creatorLawrence, Jesse F.
dc.creatorDenolle, Marine
dc.creatorSeats, Kevin J.
dc.creatorPrieto Gomez, German Andres
dc.date.accessioned2020-08-06T16:20:20Z
dc.date.accessioned2022-09-22T13:57:22Z
dc.date.available2020-08-06T16:20:20Z
dc.date.available2022-09-22T13:57:22Z
dc.date.created2020-08-06T16:20:20Z
dc.identifierISSN: 2169-9356
dc.identifierhttps://repository.urosario.edu.co/handle/10336/25964
dc.identifierhttps://doi.org/10.1002/2012JB009513
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3434415
dc.description.abstractThe ambient noise correlation function (NCF) calculated between seismic stations contains, under appropriate conditions, accurate travel time information. However, NCF amplitudes are highly debated due to noise source intensity and distribution, seismic intrinsic attenuation, scattering, and elastic path effects such as focusing and defocusing. We prove with various numerical simulations that the NCFs calculated for a uniformly dispersive medium using the coherency method preserve accurate geometrical spreading and attenuation decay. We show that for a wide range of noise source distributions, the coherency of the noise correlation functions matches a Bessel function decaying exponentially with a specific attenuation coefficient. Conditions needed to obtain these results include averaging over long enough time intervals, a uniformly distributed seismic network, and a good distribution of far?field noise sources. We also show that the estimated attenuation coefficient corresponds to the interstation and not the noise?source?to?receiver structure.
dc.languageeng
dc.publisherAmerican Geophysical Union
dc.relationJournal of Geophysical Research: Solid Earth, Vol.118 (2013) pp.6134–6145
dc.relationhttps://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2012JB009513
dc.relation6145
dc.relation6134
dc.relationJournal of Geophysical Research: Solid Earth
dc.relationVol. 118
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.sourceJournal of Geophysical Research: Solid Earth
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.titleA numeric evaluation of attenuation from ambient noise correlation functions
dc.typearticle


Este ítem pertenece a la siguiente institución