dc.contributorSalazar, Camilo
dc.contributorSalgado-Roa, Fabian Camilo
dc.creatorGámez Vargas, Andrés Felipe
dc.date.accessioned2020-01-27T23:01:46Z
dc.date.accessioned2022-09-22T13:54:08Z
dc.date.available2020-01-27T23:01:46Z
dc.date.available2022-09-22T13:54:08Z
dc.date.created2020-01-27T23:01:46Z
dc.date.issued2019
dc.identifierhttps://repository.urosario.edu.co/handle/10336/20734
dc.identifierhttps://doi.org/10.48713/10336_20734
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3433847
dc.description.abstractAndean topography promoted lineage diversification in South America. However, there is a lack of evidence about its effect in arthropod divergence, especially in arachnids. In this study, the genetic connectivity among populations of the aquatic spider Ancylometes bogotensis (n=42) was tested using mitochondrial and nuclear DNA. A bogotensis was monophyletic and nested inside the Ctenidae family. This species was splitted in two divergent and structurated clades separated by the eastern cordillera of the Colombian Andes without gene flow. Divergence time for these clades were ~2.76Ma, matching the geological uplift of this cordillera. This study constitutes one of the few cases, where divergence caused by vicariance shaped the genetic diversity in an arthropod lineage.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherBiología
dc.publisherFacultad de Ciencias Naturales y Matemáticas
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourceAguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., & Lake, J. A. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387(6632), 489.
dc.sourceAntonelli, A., Nylander, J. A. A., Persson, C., & Sanmartín, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9749–9754. https://doi.org/10.1073/pnas.0811421106
dc.sourceBrumfield, R. T., & Capparella, A. P. (1996). Historical Diversification of Birds in Northwestern South America : A Molecular Perspective on the Role of Vicariant Events HISTORICAL DIVERSIFICATION OF BIRDS IN NORTHWESTERN SOUTH AMERICA : A MOLECULAR PERSPECTIVE ON THE ROLE OF VICARIANT EVENTS. Evolution, 50(4), 1607–1624.
dc.sourceBurney, & Brumfield. (2009). Ecology Predicts Levels of Genetic Differentiation in Neotropical Birds. The American Naturalist, 174(3), 358. https://doi.org/10.2307/40306064
dc.sourceCadena, C. D., Pedraza, C. A., & Brumfield, R. T. (2016). Climate, habitat associations and the potential distributions of Neotropical birds: Implications for diversification across the Andes. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40(155), 275–287. https://doi.org/10.18257/RACCEFYN.280
dc.sourceChaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology, 20(21), 4564–4576. https://doi.org/10.1111/j.1365-294X.2011.05304.x
dc.sourceDe Paula, A. S., Diotaiuti, L., & Galvão, C. (2007). Systematics and biogeography of Rhodniini (Heteroptera: Reduviidae: Triatominae) based on 16S mitochondrial rDNA sequences. Journal of Biogeography, 34(4), 699–712. https://doi.org/10.1111/j.1365-2699.2006.01628.x
dc.sourceDeacon, A. E., Farrell, A. D., & Fraser, D. F. (2015). Observations of a Semi-Aquatic Spider Attack : An Overlooked Fish Predator in a Well Studied Ecosystem ? Living World, Journal of the Trinidad and Tobago Field Naturalists’ Club, 57–59.
dc.sourceGregory-Wodzicki, K. (2000). Uplift history of the Central and Northern Andes:A review Kathryn. GSA Bulletin, 112(7), 1019–1105. https://doi.org/10.17660/ActaHortic.2013.986.4
dc.sourceGuarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution, 50(1), 84–92. https://doi.org/10.1016/j.ympev.2008.10.005
dc.sourceHooghiemstra, H., & Van der Hammen, T. (1998). Neogene and Quaternary development of the neotropical rain forest: The forest refugia hypothesis, and a literature overview. Earth Science Reviews, 44, 147–183. https://doi.org/10.1016/S0012-8252(98)00027-0
dc.sourceHoorn, C., Wesselingh, F. P., Ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006), 927–931. https://doi.org/10.1126/science.1194585
dc.sourceKisel, Y. & Barraclough, T. G. (2010). Speciation Has a Spatial Scale That Depends on Levels of Gene Flow. The American Naturalist, 175(3), 316–334. https://doi.org/10.1086/650369
dc.sourceOliver, P., Laver, R., Smith, K. & Bauer, A. (2013). Long-term persistence and vicariance within the Australian Monsoonal Tropics : the case of the Giant Cave and Tree Geckos ( Pseudothecadactylus ) Correspondence to : Paul Oliver . Email : Paul.Oliver@unimelb.edu.au Table S1 . Locality , specimen and colle. Australian Journal of Zoology, 61(6), 462–468.
dc.sourceSalcedo-Rivera, G. A., Fuentes-Mario, J. A., & Tovar-Márquez, J. (2019). Predation of the frog Elachistocleis panamensis by the spider Ancylometes bogotensis: first record. Biota Colombiana, 19(2), 128–132. https://doi.org/10.21068/c2018.v19n02a11
dc.sourceSchulte, J. A., Macey, J. R., Espinoza, R. E., & Larson, A. (2000). Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal. Biological Joumal of the Linnean Society, 69, 75–102. https://doi.org/10.1006/bijl.
dc.sourceSedano, R. E., & Burns, K. J. (2010). Are the Northern Andes a species pump for Neotropical birds? Phylogenetics and biogeography of a clade of Neotropical tanagers (Aves: Thraupini). Journal of Biogeography, 37(2), 325–343. https://doi.org/10.1111/j.1365-2699.2009.02200.x
dc.sourceToews, D. P. L., & Brelsford, A. (2012). The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21(16), 3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x
dc.sourceVences, M., & Glaw, F. (2002). Molecular phylogeography of Boophis tephraeomystax: a test case for east-west vicariance in Malagasy anurans. Spixiana, 25(1), 79–84. Recuperado de http://biostor.org/reference/52816
dc.sourceWeir, J. T., & Price, M. (2011). Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology, 20(21), 4550–4563. https://doi.org/10.1111/j.1365-294X.2011.05294.x
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectArañas
dc.subjectVicarianza
dc.subjectFilogeografía
dc.subjectAndes del Norte
dc.titleDivergencia por los Andes: vicarianza en las poblaciones de Ancylometes bogotensis (Araneae: Ctenidae)
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución