dc.contributorPatarroyo, Manuel A.
dc.contributorRodriguez-Leguizamon, Giovanni
dc.contributorCamargo Pinzón, Sandra Milena
dc.creatorAlvarado Cabrera, Luis Antonio
dc.date.accessioned2019-10-29T11:55:08Z
dc.date.accessioned2022-09-22T13:53:07Z
dc.date.available2019-10-29T11:55:08Z
dc.date.available2022-09-22T13:53:07Z
dc.date.created2019-10-29T11:55:08Z
dc.identifierhttps://repository.urosario.edu.co/handle/10336/20500
dc.identifierhttps://doi.org/10.48713/10336_20500
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3433665
dc.description.abstractIntroduction: The distribution of Plasmodium species has varied in the communities of the Colombian Amazon, with P. vivax and P. malariae being the most frequent. This is due to environmental factors (such as climate change) and social factors (such as population displacement) which have impacted on the ecology and behavior of these vectors, causing changes in parasitic dispersion and the appearance of outbreaks in areas where it was considered controlled. Objectives: To identify the species of anophelin at a taxonomic and molecular level in two communities of the Colombian Amazon, Tipisca (Tp1 / Tp2) and Doce de Octubre (DO) and to determine the frequency of infection of P. vivax, P. malariae and P. falciparum. Methodology: The study was conducted in two indigenous communities located on a tributary of the Amazon River, where mosquitoes were captured from 6 pm to 11 pm in three ecotopes (intradomiciliary, peridomiciliary and extradomiciliary), by the method of human bait protected in June 2016. The morphological taxonomic identification was performed and then confirmed with a Polymerase Chain Reaction (PCR) of a fragment of the Mitochondrial Cytochrome C Oxidase Subunit I (IOC) gene. The identification of the three Plasmodium species was performed by a PCR in 224 pools analyzed. Results: 1086 individuals were collected; 99.2% (n = 1057) corresponded to Anopheles darlingi, 0.4% An. mattogrossensis (n = 4) and 0.4% Culex spp (n = 4). The results showed that Tp1 had the highest abundance of mosquitoes (mean = 26.3), followed by Tp2 (mean = 23.2) and OD (mean = 6.4), an analysis of variances revealed significant differences between Tp1 and OD (p = 0.001) and Tp2 and OD (p = 0.001). At the ecotope level, the highest bite rate occurred in the peridomiciliary (mean = 31.0), followed by the extradomiciliary (mean = 26.6) and the intradomiciliary (mean = 1.1), significant differences were found in the peridomiciliary (p = 0.004) and extradomiciliary (P = 0.004). Of the 224 pools analyzed in 40.6%, Plasmodium was detected; P. vivax being the most prevalent (21.9%), followed by P. malariae (21.0%) and P. falciparum (10.3%). As for mixed infections, 24 (26.4%) of them presented infection by more than one parasitic species, with P. vivax and P. malariae (n = 15; 16.5%) being the most common. For An. mattogrossensis, only P. vivax was found in 50% of the specimens, being the first infection record for this species in Colombia. Discussion: An. darlingi was the dominant species in the area at the time of high transmission. The results follow an anthropophilic and exophageal activity, which indicates a behavioral change of their diet in the study area; Its high abundance and susceptibility to Plasmodium infection indicate its relationship in parasitic transmission as a primary vector. High frequencies of the parasitic species were found, demonstrating the usefulness of the use of molecular techniques in the identification of the parasite. The results of this research seek to provide information that supports the improvement and innovation of strategies aimed at vector control, as an essential step in the design of malaria prevention and control strategies.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherMaestría en Epidemiología
dc.publisherMaestría en Actividad Física y Salud
dc.rightshttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.rightsAtribución-SinDerivadas 2.5 Colombia
dc.rightsAtribución-SinDerivadas 2.5 Colombia
dc.rightsAtribución-SinDerivadas 2.5 Colombia
dc.sourceWhite N, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM, et al. Malaria. Lancet [Internet]. 2014;383(9918):723–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673613600240
dc.sourceWHO. World Malaria Report. 2018. ISBN 978 92 4 156469 4. [Internet]. 2018.
dc.sourcePAHO. Actualización Epidemiológica. Aumento de malaria en las Américas. 2018
dc.sourceNSTITUTO NACIONAL DE SALUD. Comportamiento de la notificación malaria 2018. Sem Boletín Epidemiológico [Internet]. 2019
dc.sourceZambrano P. Malaria Protocolo de vigilancia en salud publica [Internet]. INS IN de S, editor. Colombia; 2017
dc.sourceOMS. Estrategia Técnica Mundial Contra La Malaria 2016–2030. Organ Mund la Salud [Internet]. 2015
dc.sourceWorld Health Organization. Malaria control in humanitarian emergencies, an inter-agency feild handbook. 2013;1–220
dc.sourceRodriguez M, Perez L, Caicedo JC, Prieto G, Arroyo JA, Kaur H, et al. Composition and Biting Activity of Anopheles (Diptera: Culicidae) in the Amazon Region of Colombia. J Med Entomol. 2009;46(2):307–15.
dc.sourceMontoya-Lerma J, Solarte Y, Giraldo-Calderon G, Quiñonez M, Ruiz-Lopez F, Wilkerson RC, et al. Malaria vector species in Colombia: a review. Mem Inst Oswaldo Cruz [Internet]. 2011;106 Suppl(SUPPL. 1):223–38
dc.sourceTadei WP, Thatcher BD. Malaria vectors in the Brazilian Amazon: anopheles of the subgenus Nyssorhynchus DB - LILACS DP - http://www.globalhealthlibrary.net. Rev Inst Med Trop Sao Paulo [Internet]. 2000;42(2):87–94.
dc.sourcePerez L, Suarez-Mutis M, Murcia L, De La Hoz F De, Olano VA, Brochero H, et al. La malaria en el Amazonas : conocimientos , prácticas , prevalencia de parasitemia y evaluación entomológica en mayo de 1997. 1999;19(2):93–102.
dc.sourceSalas DB. Informe final del evento Malaria. Colombia, 2016. Inst Nac Salud [Internet]. 2016;(1):1–28.
dc.sourceHiwat H, Bretas G. Ecology of Anopheles darlingi Root with respect to vector importance: A review. Parasites and Vectors [Internet]. 2011;4(1):1–13.
dc.sourceNaranjo-Diaz N, Conn JE, Correa MM. Behavior and population structure of Anopheles darlingi in Colombia. Infect Genet Evol [Internet]. 2016;39:64–73.
dc.sourceTadei WP, Thatcher BD, Santos J, Scarpassa V, Brandao I, Rafael M. Ecologic observations on anopheline vectors of malaria in the Brazilian Amazon. Am J Trop Med Hyg [Internet]. 2017;59(2):325–35
dc.sourceBenavides-Melo JA. El cambio climático como determinante de la distribución de la malaria. Curare [Internet]. 2015;2.
dc.sourceOMS, OMM, PNUMA. Cambio climático y salud humana - Riesgos y respuestas [Internet]. 2003. 40 p.
dc.sourceOMS. Respuesta mundial para el control de vectores 2017 – 2030. 2017;Version 5.
dc.sourceNS I nacional de salud. Gestión para la vigilancia entomológica y control de la transmisión de malaria. 2012;
dc.sourcePNUD. Objetivos de Desarrollo Sostenible, Colombia. Herramientas de aproximación al contexto local [Internet]. 2015. 342 p.
dc.sourceRoidriguez OC. Balance de los Objetivos del Milenio en Colombia. OASIS [Internet]. 2015;15:26.
dc.sourceMinisterio de salud y la Protección Social. Plan Decenal de Salud Pública. 2013;(32):2012–21.
dc.sourceMinisterio de salud y la Protección Social. Resolución 3202 de 2016. 2016
dc.sourceMinisterio de Salud y Protección Social. Rutas integrales de atención en salud - RIAS.
dc.sourceQuiñonez ML, Ruiz F, Calle DA, Harbach RE, Erazo HF, Linton Y-M. Incrimination of Anopheles (Nyssorhynchus) rangeli and An. (Nys.) oswaldoi as natural vectors of Plasmodium vivax in Southern Colombia. Mem Inst Oswaldo Cruz. 2006;101(September):617–23
dc.sourceKardec R, Arruda M, Dàlmeida R, Wirtz R, Lounibos P, Zimmerman R. Malaria Vector Incrimination in Three Rural Riverine Villages in the Brazilian Amazon. Am J Trop Med Hyg. 2018;76(3):461–9.
dc.sourceOrjuela LI, Herrera M, Erazo H, Quiñones ML. Especies de Anopheles presentes en el departamento del Putumayo y su infección natural con Plasmodium. 2013;42–52.
dc.sourceGutierrez LA, Gonzales JJ, Gomez GF, Castro MI, Doris A, Luckhart S, et al. Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in Córdoba and Antioquia states in northwestern Colombia. Mem Inst Oswaldo Cruz. 2009;104(8):1117–2
dc.sourceOliveira MM. A Mobilidade humana na tríplice fronteira : Peru, Brasil e Colômbia. Estud Avancados. 2006;20(57):183–96.
dc.sourceOMS, OPS. Alerta Epidemiológica Aumento de casos de malaria. 2017;2–7.
dc.sourcePoveda G, Graham NE, Epstein PR, Rojas W, Quiñones ML, Velez ID, et al. Climate and ENSO variability associated with vector-borne diseases in Colombia. El Niño South Oscil Multiscale Var Glob Reg Impacts. 1999;177–98.
dc.sourceMinisterio de salud y la Protección Social. Guía Para la Atención Clínica integal del Paciente con Malaria. 2010;1–129.
dc.sourcePadilla JC, Alvarez G, Montoya R, Chaparro P, Herrera S. Epidemiology and control of malaria in Colombia. Mem Inst Oswaldo Cruz [Internet]. 2011;106:114–22.
dc.sourceMINSALUD, INSTITUTO NACIONAL DE SALUD. Informe del evento Malaria Colombia. 2017. 19 p.
dc.sourceChaparro P, Padilla J, Vallejo A, Herrera S. Characterization of a malaria outbreak in Colombia in 2010. Malar J [Internet]. 2013;12(1):1–11.
dc.sourceSalud IN de. MALARIA: Informe de Evento, Colombia, Semestre I - 2018. 2018;20.
dc.sourceRecht J, Siquiera A, Monteiro W, Herrera S, Herrera S, Lacerda M. Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malar J. 2017;16(1):1–19.
dc.sourceChaparro Narváez PE. Informe del Evento Paludismo, hasta el periodo epidemiológico 13 del año 2012. 2012;(3):19.
dc.sourceRestrepo CA. Informe final paludismo, año 2013. 2014;(3):25.
dc.sourceS.Gomez. Instituto Nacional de Salud . Proceso vigilancia y analisis del riesgo en salud publica . Informe final Malaria Colombia 2014. 2014;(2):1–27.
dc.sourceInstituto Nacional de Salud. Informe de evento Malaria, Colombia, 2017. Inf del Even [Internet]. 2018;19.
dc.sourceINS. Informe evento Malaria a periodo epidemiológico XIII-2018. 2018;3.
dc.sourceDavinson EA, De Araujo AC, Artaxo P, Balch JK, Brown IF, Bustamante MM, et al. The Amazon basin in transition. Nature. 2012;481(7381):321–8.
dc.sourcePrieto-C A, Arias-G J. DIVERSIDAD BIOLÓGICA DEL SUR DE LA AMAZONIA COLOMBIANA. In: Instituto Alexander Von Humboldt., editor. Colombia-R. Bogotá D.C.; 2007. p. 184.
dc.sourceMACEDO M, CASTELLO L. State of the Amazon : Freshwater Connectivity and Ecosystem Health State of the Amazon : Freshwater Connectivity and Ecosystem Health [Internet]. WWF. D. Oliveira CCM and SC, editor. Brazil; 2015. 134 p.
dc.sourceRuiz S, Sanchez E, Tabares E, Prieto A, Arias J, Gomez R, et al. Diversidad biológica y cultural del sur de la Amazonia colombiana - Diagnóstico [Internet]. Corpoamazo. Bogotá D.C.; 2007. 636 p.
dc.sourceEmerson KJ, Conn JE, Bergo ES, Randel MA, Sallum MAM. Brazilian Anopheles darlingi root (Diptera: Culicidae) clusters by major biogeographical region. PLoS One. 2015;10(7):1–15.
dc.sourceVezegneho SB, Adde A, De Santi VP, Issaly J, Carinci R, Gaborit P, et al. High malaria transmission in a fcested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures? Mem Inst Oswaldo Cruz. 2016;111(9):561–9.
dc.sourcePimenta PFP, Orofano AS, Bahia AC, Duarte APM, Rios-Velasquez CM, Melo FF, et al. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. 2015;110(February):23–47.
dc.sourceTadei WP, Thatcher BD. Malaria vectors in the Brazilian Amazon: Anopheles of the subgenus Nyssorhynchus. Rev Inst Med Trop Sao Paulo. 2000;42(2):87–94.
dc.sourceReinbold-Wasson DD, Sardelis MR, Jones JW, Watts DM, Fernandez R, Carbajal F, et al. Determinants of Anopheles seasonal distribution patterns across a forest to periurban gradient near Iquitos, Peru. Am J Trop Med Hyg. 2012;86(3):459–63.
dc.sourceGirod R, Gaborit P, Carinci R, Issaly J, Fouque F. Anopheles darlingi bionomics and transmission of Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae in Amerindian villages of the Upper-Maroni Amazonian forest, French Guiana. Mem Inst Oswaldo Cruz. 2008;103(7):702–10.
dc.sourceVittor A, Pan W, Gilman R, Tielsch J, Glass G, Shields T, et al. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector, Anopheles darlingi. Am J Trop Med Hyg. 2013;10(1):54–6.
dc.sourceMoreno JE, Rubio-Palis Y, Paez E, Perez E, Sanchez V, Vaccari E. Malaria entomological inoculation rates in gold mining areas of Southern Venezuela. Mem Inst Oswaldo Cruz. 2009;104(5):764–8.
dc.sourceDE Santi VP, Girod R, Mura M, Dia A, Briolant S, Djossou F, et al. Epidemiological and entomological studies of a malaria outbreak among French armed forces deployed at illegal gold mining sites reveal new aspects of the disease’s transmission in French Guiana. Malar J. 2016;15(1):1–12.
dc.sourcePovoa MM, Conn JE, Schlichting CD, Aamaral JCOF, Segura MNO, Silva ANM Da, et al. Malaria Vectors, Epidemiology, and the Re-Emergence of Anopheles darlingi in Belém, Pará, Brazil. J Med Entomol. 2009;40(4):379–86.
dc.sourceCamargo-Ayala PA, Cubides JR, Niño CH, Camargo M, Rrodriguez-Celis CA, Quiñonez T, et al. High plasmodium malariae prevalence in an endemic area of the colombian amazon region. PLoS One. 2016;11(7):1–17.
dc.sourceCamargo M, Leon SCS-D, Rios-Ospina L Del, Paez AC, Gonzalez Z, Gonzalez E, et al. Micro-epidemiology of mixed- species malaria infections in a rural population living in the Colombian Amazon region. Nature. 2018;8(5543):1–14.
dc.sourceSinka M, Bangs M, Manguin S, Rubio-Palis Y, Chareoviriyaphap T, Coetzee M, et al. A global map of dominant malaria vector. Parasit Vectors. 2012;5(1):1–11.
dc.sourceCohuet A, Harris C, Robert V, Fontenille D. Evolutionary forces on Anopheles: what makes a malaria vector? Trends Parasitol. 2010;26(3):130–6.
dc.sourceFoster PG, Porangaba TM, Oliveira D, Bergo ES, Conn JE, Sant-Ana C, et al. Phylogeny of Anophelinae using mitochondrial protein coding genes Subject Category : Subject Areas : Author for correspondence : R Soc Open Sci. 2017;4(170758):1–20.
dc.sourceGonzalez R, Carrejo NS. Introducción al estudio taxonómico de Anopheles de Colombia. Claves y notas de distribución. Segunda. d. Cali: Universidad del Valle; 2009. 260 p
dc.sourceDonnelly MJ, Simard F, Lehmann T. Evolutionary studies of malaria vectors. Trends Parasitol. 2002;18(2):75–80.
dc.sourcenka M, Rubio-Palis Y, Manguin S, Patil A, Temperley W, Gething P, et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data,. Parasit Vectors. 2011;4:210–1.
dc.sourceBarros FSM, Honorio NA, Arruda ME. Mosquito Anthropophily: implications on malaria transmission in the northern Brazilian Amazon. Neotrop Entomol. 2011;39(6):1039–43.
dc.sourceManguin S. Anopheles MOSQUITOES: New Insights into malaria Vectors. MANGUIN S, editor. Croatia; 2013. 1–813 p.
dc.sourceOMS PAHO. Manual de Campo para la Vigilancia Entomológica de Anopheles. 2013;28.
dc.sourceWHO. Malaria entomology and vector control. 2013;193.
dc.sourceUSAID. Training Manual on Malaria Entomology For Entomology and Vector Control Technicians Training Manual on Malaria Entomology For Entomology and Vector Control Technicians. 2012;(September).
dc.sourceHernandez-Rivas R, Delgadillo D, Siera.Miranda J, Garcia-Tuanels G. Parasitología Médica. Mexico: MacGrraw Hill Education; 2014. 147- p.
dc.sourceMatuschewski K. Getting infectious: Formation and maturation of plasmodium sporozoites in the Anopheles vector. Cell Microbiol. 2006;8(10):1547–56.
dc.sourceWhite NJ. Plasmodium knowlesi: the Fifth Human Malarial Parasite. Emerg Infect 9. 2014;46:261–71.
dc.sourceSmith RC, Vega-Rodríguez J, Jacobs-Lorena M. The Plasmodium bottleneck: Malaria parasite losses in the mosquito vector. Mem Inst Oswaldo Cruz. 2014;109(5):644–61.
dc.sourceKrzyminski J, Besansky NJ. Molecular Systematics of Anopheles : From Subgenera to Subpopulations. Annu Rev Entomol. 2002;48(1):111–39
dc.sourceJaramillo-O N, Dujardin JP, Calle-Londoño D, Fonseca-Gonzalez I. Geometric morphometrics for the taxonomy of 11 species of Anopheles (Nyssorhynchus) mosquitoes. Med Vet Entomol. 2015;29(1):26–36.
dc.sourceMuragan K, Vavidalagan C, Karthika P, Panneerselvam C, Paulpandi M, Subramaniam J, et al. DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitol Res. 2016;115(1):107–21.
dc.sourceGarros C, Coetzee M, Koekemoer LL, Manguin S, Coosemans M. a Single Multiplex Assay To Identify Major Malaria Vectors Within the African Anopheles Funestus and the Oriental an. Minimus Groups. Am J Trop Med Hyg. 2018;70(6):583–90.
dc.sourceKumar NP, Rajavel AR, Natarajan R, Jambulingam P. DNA Barcodes Can Distinguish Species of Indian Mosquitoes (Diptera: Culicidae). J Med Entomol. 2015;44(1):01–7.
dc.sourceOndrejicka DA, Locke SA, Morey K, Borisenko A V., Hanner RH. Status and prospects of DNA barcoding in medically important parasites and vectors. Trends Parasitol [Internet]. 2014;30(12):582–91.
dc.sourceHebert PDN, Gregory TR. The Promise of DNA Barcoding for Taxonomy. Syst Biol. 2005;54(5):852–9.
dc.sourceFolmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidasa subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294–9.
dc.sourceHebert PDN, Cywinska A, Ball SL, Dewaard JR. Biological identifications through DNA barcodes. Proc R Soc B Biol Sci. 2003;270(1512):313–21.
dc.sourceHebert PDN, Ratnasingham S, Dewaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. R Soc London Ser B Biol Sci. 2006;270(suppl_1):96–9.
dc.sourceMckeon SN, Lehr MA, Wilkerson RC, Ruiz JF, Sallum MA, Lima JBP, et al. Lineage divergence detected in the malaria vector Anopheles marajoara ( Diptera : Culicidae ) in Amazonian Brazil. Malar J [Internet]. 2010;9(271):1–13.
dc.sourceScarpassa VM, Saulo A, Machado C, Saraiva JF. Evidence of new species for malaria vector Anopheles nuneztovari sensu lato in the Brazilian Amazon region. Malar J. 2016;15(205):1–16.
dc.sourceGonzalez C, Molina AG, Leon C, Salcedo N, Rondon S, Paz A, et al. Entomological characterization of malaria in northern Colombia through vector and parasite species identification , and analyses of spatial distribution and infection rates. Malar J. 2017;16(431):1–11
dc.sourceGomez GF, Bickersmithh SA, Gonzalez R, Conn JE, Correa MM. Molecular Taxonomy Provides New Insights into Anopheles Species of the Neotropical Arribalzagia Series. PLoS One. 2015;10(3):e0119488.
dc.sourceRuiz F, Linton Y-M, Ponsonby DJ, Conn JE, Herrera M, Qquiñones ML, et al. Molecular comparison of topotypic specimens confirms Anopheles ( Nyssorhynchus ) dunhami Causey ( Diptera : Culicidae ) in the Colombian Amazon. Mem Inst Oswaldo Cruz. 2010;105(7):899–903.
dc.sourceDa Silva-Vasconcelos A, Neves Kató MY, Mourão EN, Lessa De Souza RT, Da Luz Lacerda RN, Sibajev A, et al. Biting indices, host-seeking activity and natural infection rates of anopheline species in Boa Vista, Roraima, Brazil from 1996 to 1998. Mem Inst Oswaldo Cruz. 2002;97(2):151–61.
dc.sourceDurnez L, Bortel W Van, Denis L, Roelants P, Veracx A, Trung HD, et al. False positive circumsporozoite protein ELISA : a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination. Malar J [Internet]. 2011;10(195):1–9. Available from: http://www.malariajournal.com/content/10/1/195
dc.sourceWirtz RA, Burkot TR, Graves PM, Andadre RG. Field evaluation of enzyme-linked immuosorbent assays for Plasmodium falciparum and Plasmodium vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua New Guinea. J Med Entomol. 1987;24(4):433–7.
dc.sourceBickersmith SA, Lainhart W, Moreno M, Chu VM, Vinetz JM, Conn JE. A sensitive, specific and reproducible real-time polymerase chain reaction method for detection of plasmodium vivax and plasmodium falciparum infection in field-collected anophelines. Mem Inst Oswaldo Cruz. 2015;110(4):573–6.
dc.sourceCDC. Methods in Anopheles. 4 Edition. Atlanta; 2014.
dc.sourceAlvarez N, Rosero D, Gomez G, Correa M. Detección de mosquitos Anopheles infectados naturalmente con Plasmodium spp . en Puerto Libertador , Córdoba ... 2012;(October)
dc.sourceRyan JR, Dave K, Emmerich E, Garcia L, Yi L, Coleman RE, et al. Dipsticks for rapid detection of Plasmodium in vectoring Anopheles mosquitoes. Med Vet Entomol. 2001;15(2):225–30.
dc.sourceCollins KM, Hochberg L, Ryan JR, Dave K, Coleman RE, Dunton RF, et al. Extensive multiple test centre evaluation of the VecTest. Med Vet Entomol. 2002;16:321–7.
dc.sourceAchee NL, Grieco JP, Rejmankova E, Andre RG, Vanzie E, Polanco J, et al. Biting patterns and seasonal densities of Anopheles mosquitoes in the Cayo District, Belize, Central America with emphasis on Anopheles darlingi. J Vector Ecol. 2008;31(1):45–57.
dc.sourcePovoa MM, Machado R, Segura M, Vianna G, Vasconcelos A, Conn J. Infectivity of malaria vector mosquitoes : correlation of positivity between ELBA and PCR-ELISA tests. Trans R Soc Trop Med Hyg. 1995;94:106–7.
dc.sourcePovoa MM, Wirtz RA, Lacerda RNL, Miles MA, Warhurst D. Malaria Vectors in the Municipality of Serra do Navio, State (Póvoa 2001.pdf. Mem Inst Oswaldo Cruz. 2001;96(February):179–84.
dc.sourceNaranjo-diaz N, Rosero DA, Rua-uribe G, Luckhart S, Correa MM. Abundance , behavior and entomological inoculation rates of anthropophilic anophelines from a primary Colombian malaria endemic area. 2013;1–11.
dc.sourceSingh B, Bobogare A, Cox-Singh J, Snnounou G, Abdullah MS, Rahman HA. A Genus and Specific Nested Polymerase Chain Reaction Malaria Detection Assay for Epidemiologic Studies. Am J Trop Med Hyg. 1999;60(4):687–92.
dc.sourceSnounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol. 1993;58(2):283–92.
dc.sourceRocha M, Oliveira SB De, Povoa MM, Moreira LA, Krettli U. Malaria Vectors in Areas of Plasmodium falciparum Epidemic Transmission in the Amazon Region , Brazil. Am J Trop Med Hyg. 2008;78(6):872–7.
dc.sourceRondon S, Leon C, Link A, Gonzalez C. Prevalence of Plasmodium parasites in non ‑ human primates and mosquitoes in areas with different degrees of fragmentation in Colombia. Malar J [Internet]. 2019;18(276):1–10. Available from: https://doi.org/10.1186/s12936-019-2910-z
dc.sourceRosero DA, Naranjo-Diaz N, Alvarez N, Ceinfuegos A V, Torres C, Luckhart S, et al. Colombian Anopheles triannulatus ( Diptera : Culicidae ) Naturally Infected with Plasmodium spp . ISRN Parasitol. 2013;2013.
dc.sourceAhumada M, Pareja PX, Buitrago LS, Quiñonez ML. Comportamiento de picadura de Anopheles darlingi Root , 1926 ( Diptera : Culicidae ) y su asociación con la transmisión de malaria en Villavicencio ( Colombia ). Biomédica. 2013;33(Suplemento 1):241–50.
dc.sourceGutierrez LA, Gomez GF, Gonzalez JJ, Castro MI, Luckhart S, Conn JE, et al. Microgeographic genetic variation of the malaria vector Anopheles darlingi root (Diptera: Culicidae) from Córdoba and Antioquia, Colombia. Am J Trop Med Hyg. 2010;83(1):38–47.
dc.sourceJimenez P, Conn JE, Wirtz R, Brochero H. Anopheles (Díptera:Culicidae) vectores de malaria en el municipio de Puerto Carreño, Vichada, Colombia. Biomédica. 2012;32:13–21.
dc.sourceOrjuela LI, Ahumada ML, Avila I, Herrera S, Beier JC, Quiñonez ML. Human biting activity, spatial – temporal distribution and malaria vector role of Anopheles calderoni in the southwest of Colombia. Malar J. 2015;14(256):1–9.
dc.sourceVinetz JM, Peñataro P, Paredes M, Parker BS, Cardenas R, Capcha L, et al. Hyperendemic malaria transmission in areas of occupation-related travel in the Peruvian Amazon. Malar J. 2013;12(1):178.
dc.sourceFlores-Mendoza AC, Fernandez R, Escobedo-Vargas KS, Vela-Perez Q, Schoeler GB. Natural Plasmodium Infections in Anopheles darlingi and Anopheles benarrochi ( Diptera : Culicidae ) from Eastern Peru Natural Plasmodium Infections in Anopheles darlingi and Anopheles benarrochi ( Diptera : Culicidae ) from Eastern Peru. J Med Entomol. 2004;41(3):489–94
dc.sourcePrussing C, Bickersmith SA, Moreno M, Saavedra MP, Alava F, Anice M, et al. Nyssorhynchus dunhami : bionomics and natural infection by Plasmodium falciparum and P . vivax in the Peruvian Amazon. Mem Inst Oswaldo Cruz. 2018;113(12):1–8
dc.sourceWorld Health Organization (WHO). Malaria entomology and Vector Control (Guide for Participants). Train Modul Malar Control. 2015;175 pp.
dc.sourceMboera LEG. Sampling techniques for adult Afrotropical malaria vectors and their reliability. Tanzanian Res Bull. 2005;7(September):117–24
dc.sourceWilkerson RC, Strickman D, Ernandez-Salas I, Ibañez-Bernal S, Litwac T. Clave Ilustrada Para la Identificacion de las Hembras de Mosquitos Anofelinos de MExico y Centroamerica.pdf. Secretaria. Mexico; 1993. 45 p.
dc.sourceFaran M, Linthicum K. Handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera, Culicidae). Mosq Syst [Internet]. 1981;13(1):1–81.
dc.sourceBoehme P, Aamendt J, Zehner R. The use of COI barcodes for molecular identification of forensically important fly species in Germany. Parasitol Res. 2012;110(6):2325–32.
dc.sourceHall BG. Building Phylogenetic Trees from Molecular Data with MEGA. Mol Biol Evol. 2015;(October):1–7.
dc.sourceLibrado P, Rozas J. DnaSP v5 : A Software for Comprehensive Analysis of DNA Polymorphism Data DnaSP v5 : a software for comprehensive analysis of DNA polymorphism data. BIOINFORMATICS. 2009;25(11):10–2.
dc.sourceMorrison DA. Networks in phylogenetic analysis : new tools for population biology. Inyternational J Parasitol. 2005;35:567–82.
dc.sourceLooker M, Taylor-Robinson AW. A Protocol for a Highly Consistent , High Level Production in Vivo of Plasmodium falciparum Oocysts and Sporozoites. Advace Biocience Biotechnol [Internet]. 2014;5(November):985–93.
dc.sourceForster P, Torroni A, Renfrew C, Ro A. Phylogenetic Star Contraction Applied to Asian and Papuan mtDNA Evolution. Mol Biol Evol. 2001;18(10):1864–81.
dc.sourceAhumada ML, Oorjuela LI, Pareja PX, Conde M, Cabarcas DM, Cubillos EFG, et al. Spatial distributions of Anopheles species in relation to malaria incidence at 70 localities in the highly endemic Northwest and South Pacific coast regions of Colombia. Malar J. 2016;15(407):1–16.
dc.sourceCañon BA, Ahumada ML, Jara JA, Perez P, Conde M, Pareja PX, et al. Larval habitat characteristics of the main malaria vectors in the most endemic regions of Colombia: potential implications for larval control. Malar J. 2015;14(1):1–14.
dc.sourceMartins-Campos KM, Pinheiro WD, Vitor-Silva S, Siqueira AM, Melo GC, Rodrigues ÍC, et al. Integrated vector management targeting Anopheles darlingi populations decreases malaria incidence in an unstable transmission area, in the rural Brazilian Amazon. Malar J. 2012;11(351):1–9.
dc.sourceMoutinho PR, Gil LHS, Cruz RB, Ribolla PEM. Population dynamics, structure and behavior of Anopheles darlingi in a rural settlement in the Amazon rainforest of Acre, Brazil. Malar J [Internet]. 2011;10(1):174.
dc.sourceRies IC, Codeco CT, Camara DCP, Carvajar JJ, Pereira GR, Keppeler EC, et al. Diversity of Anopheles spp. (Diptera: Culicidae) in an Amazonian Urban Area. Neotrop Entomol. 2018;47(3):412–7
dc.sourceChaves L, Bernal D, Rigg C, Calzada J, Dutary S, Koo S, et al. Population Dynamics of Anopheles albimanus (Diptera: Culicidae) at Ipetí-Guna, a Village in a Region Targeted for Malaria Elimination in Panamá. Insects. 2018;9(4):164.
dc.sourceMarinho-E-Silva M, Sallum MAM, Rosa-Freitas MG, Lourenco-De-Oliveira R, Silva-Do-Nascimento TF. Anophelines species and the receptivity and vulnerability to malaria transmission in the pantanal Wetlands, central Brazil. Mem Inst Oswaldo Cruz. 2018;113(2):87–95
dc.sourceSánchez-Ribas J, Oliveira-Ferreira J, Gimnig JE, Pereira-Ribeiro C, Santos-Neves MSA, Silva-Do-Nascimento TF. Environmental variables associated with anopheline larvae distribution and abundance in Yanomami villages within unaltered areas of the Brazilian Amazon. Parasites and Vectors. 2017;10(1):1–15.
dc.sourceFouque F, Gaborit P, Carinci R, Issaly J, Girod R. Annual variations in the number of malaria cases related to two different patterns of Anopheles darlingi transmission potential in the Maroni area of French Guiana. Malar J. 2010;9(1):1–15.
dc.sourceSouza-Santos R. Distribuição sazonal de vetores da malária Amazônica , Brasil Seasonal distribution of malaria vectors in Machadinho d ’ Oeste , Rondônia State , Amazon Region , Brazil. Cad Saude Publica. 2002;18(6):1813–8.
dc.sourceMoreno JE, Rubio-Palis Y, Páez E, Pérez E, Sánchez V. Abundance, biting behaviour and parous rate of anopheline mosquito species in relation to malaria incidence in gold-mining areas of southern Venezuela. Med Vet Entomol. 2007;21(4):339–49.
dc.sourceMoreno M, Chu VM, Vinetz JM, Lainhart W, Bickersmith SA, Ribolla PE, et al. Evidence for temporal population replacement and the signature of ecological adaptation in a major Neotropical malaria vector in Amazonian Peru. Malar J. 2015;14(1):1–17.
dc.sourceCampos M, Conn JE, Alonso DP, Vinetz JM, Emerson KJ, Ribolla PEM. Microgeographical structure in the major Neotropical malaria vector Anopheles darlingi using microsatellites and SNP markers. Parasites and Vectors. 2017;10(1):1–8
dc.sourceVinetz JM, Schlichting CD, Alava F, Moreno M, Emerson KJ, Bickersmith SA, et al. Decreasing proportion of Anopheles darlingi biting outdoors between long-lasting insecticidal net distributions in peri-Iquitos, Amazonian Peru. Malar J [Internet]. 2018;17(1):1–14.
dc.sourceMirabello L, Vineis JH, Yanoviak SP, Scarpassa VM, Povoa MM, Padilla N, et al. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America. BMC Ecol. 2008;8(genotype 1):1–15.
dc.sourceMagris M, Rubio-Palis Y, Menares C, Villegas L. Vector bionomics and malaria transmission in the Upper Orinoco River, Southern Venezuela. Mem Inst Oswaldo Cruz. 2007;102(3):303–11.
dc.sourceCollins WE, Jefrery GM. Plasmodium malariae: Parasite and disease. Clin Microbiol Rev. 2007;20(4):579–92.
dc.sourceBass C, Nikou D, Blagborough AM, Vontas J, Sinden RE, Williamson MS, et al. PCR-based detection of Plasmodium in Anopheles mosquitoes: A comparison of a new high-throughput assay with existing methods. Malar J. 2008;7(177):1–9.
dc.sourceRider MA, Byrd BD, Keating J, Wesson DM, Caillouet KA. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature. Malar J. 2012;11(193):1–6.
dc.sourceLaporta GZ, Nascimento M, Levy D, Akemi L, Marques T, De Oliveira P, et al. Plasmodium falciparum in the southeastern Atlantic forest: a challenge to the bromeliad-malaria paradigm? Malar J [Internet]. 2015;14(1):1–12.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectMalaria
dc.subjectPlasmodium
dc.subjectAnopheles
dc.subjectInfección
dc.titleInfección de Anopheles SPP por Plasmodium SPP y su importancia en la transmisión de Malaria en comunidades indígenas del Amazonas colombiano
dc.typemasterThesis


Este ítem pertenece a la siguiente institución