dc.contributorMarín Montoya, Mauricio Alejandro
dc.contributorGutiérrez Sánchez, Pablo Andrés
dc.creatorGallo García, Yuliana Marcela
dc.date.accessioned2020-08-28T16:41:26Z
dc.date.available2020-08-28T16:41:26Z
dc.date.created2020-08-28T16:41:26Z
dc.date.issued2020-02-08
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78313
dc.description.abstractLa familia Solanaceae es considerada como el tercer taxón botánico más importante a nivel agronómico y uno de los grupos de plantas mejor estudiados en su biología, ecología e interacciones con otros organismos, incluyendo sus patógenos. En la región andina de Colombia, las especies de solanáceas de mayor importancia económica son afectadas por diversas enfermedades de origen biótico que limitan sus rendimientos y la calidad final de sus productos, destacándose las enfermedades de origen viral, ya que no sólo disminuyen los rendimientos de los cultivos, sino también su longevidad y las características organolépticas de sus frutos y/o tubérculos, con la consecuente reducción de su valor comercial. En las regiones andinas de Colombia se cultivan diferentes solanáceas para el consumo interno y con gran potencial para su exportación como frutas y tubérculos exóticos; entre estas especies de plantas se destacan las variedades locales de papa común (Solanum tuberosum subsp. andigena), tomate (S. lycopersicum), pimentón (Capsicum annuum), lulo (S. quitoense) y uchuva (Physalis peruviana). Desafortunadamente, el nivel de conocimiento que se tiene de los agentes causales y de los efectos de las enfermedades virales sobre dichos cultivos es aún incipiente en nuestro país y por consiguiente las estrategias de manejo que emplean los agricultores para su manejo resultan ineficientes y con un alto costo no sólo económico sino ambiental. Dada esta problemática de desconocimiento de los componentes del viroma de solanáceas cultivadas en los Andes, en esta tesis se utilizaron diversas metodologías moleculares, incluyendo la Secuenciación de alto rendimiento (HTS), utilizando como región de estudio el oriente de Antioquia. Como base para los análisis moleculares, se utilizó tanto la extracción de ARN total como de ARN de doble cadena (ARNdc), encontrándose que son metodologías complementarias con respecto a la diversidad viral y a la cobertura de los genomas a identificar. Las secuencias obtenidas mediante HTS fueron empleadas para 7 dirigir la detección por RT-PCR convencional y RT-PCR en tiempo real (RT-qPCR) de los virus en muestras individuales de dichas plantas. Los resultados del trabajo indicaron la presencia de los virus: PLRV, PYVV, PMTV, PVY, PVX, PVS, BPEV, ANSV y CMV en cultivos de lulo, siendo algunos de estos virus los primeros reportes en el mundo sobre este hospedante. Para el caso de la uchuva, se logró detectar un nuevo virus del género Ilarvirus (CGIV-1); así como PVY, PMTV, PYVV, PYV, STV y PVS. Por otra parte, en pimentón se destaca la detección con altos niveles de incidencia del tospovirus ANSV, así como también del CMV, PVY y BPEV; mientras que, en cultivos de tomate, se detectó por primera vez en el país el virus STV, del cual también se obtuvo su secuencia genómica completa, al igual que del PYVV, PVX, PVS y PVY. En papa se logró aumentar el número de secuencias genómicas de los virus PVY, PVX, PYVV, PLRV y PVS. Finalmente, en el trabajo se evaluó la infección de virus directamente en tubérculos-semilla de papa y en semilla sexual de tomate (comercial y no comercial), evidenciándose una alta prevalencia de algunos virus en este material de siembra. Se espera que la información obtenida sobre el viroma de este grupo de hospedantes sea utilizada en Colombia y en otros países para diseñar programas de manejo integrado de enfermedades virales que reduzcan las pérdidas económicas ocasionadas por dichos patógenos; así como también que se implementen las herramientas moleculares aquí evaluadas para la detección rutinaria de virus en programas cuarentenarios, epidemiológicos, de mejoramiento genético y de producción de semilla certificada en estos cultivos.
dc.description.abstractThe Solanaceae family is considered the third most important botanical taxon in agronomy. As such, it is one of the most studied plant groups when it comes to its biology, ecology and plant-microbe interactions. The Andean region of Colombia is known for growing numerous Solanaceae species of great economic importance, which are constantly affected by different diseases of biotic origin that can significantly reduce their yield and compromise the final quality of their products. Among these, viral diseases stand out due to their potential to reduce the crop’s yield, interfere with its longevity and impact the organoleptic properties of its fruits and/or tubers, therefore reducing their commercial value. South America is known for being one of the main centers of diversity of Solanaceae species. In Colombia, these crops are grown both to supply internal demand of produce and as important export products due to their exotic and nutritional properties. Among these Solanaceae species, local varieties of potato (Solanum tuberosum subsp. andigena), tomato (S. lycopersicum), bell pepper (Capsicum annuum), lulo (S. quitoense) and cape gooseberry (Physalis peruviana) stand out. Despite the importance of this Solanaceous crops, information regarding their viral diseases, specific causal agents and their effects on the crop is still scarce. As a consequence, management strategies directed towards preventing or controlling the disease are often ineffective, but nevertheless expensive both from an economic and from an environmental standpoint. 9 The goal of this work was to expand the knowledge about the virome of Solanaceous species cultivated in the Andes, using eastern Antioquia as the study region and different molecular techniques, including Throughput Sequencing (HTS), to identify and characterize viral pathogens. As source material, both total RNA and double stranded RNA (dsRNA) were extracted from plant tissue and analyzed for viral RNA. We found that both methodologies complement each other increasing the sensibility of the analysis. Simultaneously using both techniques resulted in a larger number of virus identified and an improved coverage of their sequenced genomes. The sequences obtained through HTS were used to guide the detection of viruses in individual plant samples by conventional RT-PCR and real time RT-PCR (RT-qPCR). The main result of this work is a comprehensive list of the viruses found infecting different Solanaceous crops. The viruses PLRV, PYVV, PMTV, PVY, PVX, PVS, BPEV, ANSV and CMV were identified in lulo, with some of these being the first worldwide report of the particular virus infecting this crop. In the case of cape gooseberry, a new virus from the genera Ilarvirus (CGIV-1) was detected. Additionally, PVY, PMTV, PYVV, PYV, STV and PVS were also found infecting this crop. For bell pepper, ANSV tospovirus was detected with high incidence, as well as CMV, PVY and BPEV. In tomato, STV virus was reported for the first time in Colombia, and its complete genomic sequence was obtained. PYVV, PVX, PVS and PVY were also identified infecting tomato. Finally, in potato, PVY, PVX, PYVV, PLRV and PVS were detected and sequenced, increasing the number of complete genome sequences available for these viruses. Furthermore, we directly used potato seed tubers and tomato sexual seeds (commercial and non-commercial) for virus detection and we were able to observe a high prevalence of viruses in this planting material. 10 The results obtained in this work regarding the virome of Solanaceous provide valuable information that can be used, not only in Colombia, but many other regions to design more effective integrated management programs for prevention and control of viral diseases. The implementation of informed management decision could significantly decrease the economic losses caused by viral pathogens. In a similar manner, the implementation of the molecular tools evaluated and designed here could facilitate efforts for the routine detection of viruses for quarantine and epidemiological purposes as well as to complement programs focusing on the genetic improvement and certified seed production of these crops.
dc.languagespa
dc.publisherMedellín - Ciencias - Doctorado en Biotecnología
dc.publisherEscuela de biociencias
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAdams, I. P., Fox, A., Boonham, N., Massart, S., & De Jonghe, K. (2018). The impact of high throughput sequencing on plant health diagnostics. European Journal of Plant Pathology, 152(4), 909–919. https://doi.org/10.1007/s10658-018-1570-0
dc.relationAgindotan, B. O., Shiel, P. J., & Berger, P. H. (2007). Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods, 142(1–2), 1–9. https://doi.org/10.1016/j.jviromet.2006.12.012
dc.relationAgrios, G. (2005). Plant pathology (5th ed.). Elsevier.
dc.relationAgronet. (2014). Red de información y comunicación del sector agropecuario Colombiano. http://www.agronet.gov.co/estadistica/Paginas/default.aspx
dc.relationAgronet. (2019). Agronet. http://www.agronet.gov.co/estadistica/Paginas/default.aspx
dc.relationAhmadvand, R., Takács, A., Taller, J., Wolf, I., & Polgár, Z. (2012). Potato viruses and resistance genes in potato. Acta Agronomica Humgarica, 60(3), 283–298. https://doi.org/10.1556/AAgr.60.2012.3.10
dc.relationAlba, V. (1950). Viropatógenos. Conferencia Latinoamericana de Especialistas En Papa, 52–58.
dc.relationAlcalá, R., Coşkan, S., Londoño, M., & Polston, J. (2017). Genome sequence of Southern tomato virus in asymptomatic tomato “Sweet Hearts.” Genome Announcements, 5(7), 1–2. https://doi.org/10.1128/genomeA.01374-16
dc.relationAlemu, K. (2015). Detection of diseases, identification and diversity of viruses: A Review. Journal of Biology, Agriculture and Healthcare, 5(1), 204–214.
dc.relationAlfaro García, J. P., & Franco Lara, L. (2015). Potato virus Y (PVY) Y Potato yellow veinvirus (PYVV) eninfecciones mixtas no causan síntomas atípicos en plantas de papa. Universidad Militar Nueva Grana, 11(2), 26–37. https://doi.org/http://dx.doi.org/10.18359/rfcb.1297
dc.relationAlfson, K. J., Beadles, M. W., & Griffiths, A. (2014). A new approach to determining whole viral genomic sequences including termini using a single deep sequencing run. Journal of Virological Methods, 208, 1–5. https://doi.org/10.1016/j.jviromet.2014.07.023
dc.relationAltschul, S., W, G., Miller, W., Myers, E., & Lipman, D. (1990). Basic local alignment search tool. Journal Molecular Biology, 215, 403–410.
dc.relationÁlvarez, D., Gutiérrez, P., & Marín, M. (2016). Molecular Characterization of Potato virus V ( PVV ) Infecting Solanum phureja Using Next-Generation Sequencing. Acta Biológica Colombiana, 21(3), 521–531. https://doi.org/http://dx.doi.org/10.15446/abc.v21n3.54712
dc.relationÁlvarez, D., Gutiérrez, P., & Marín, M. (2017). Secuenciación del genoma del Potato yellow vein virus ( PYVV ) y desarrollo de una prueba molecular para su detección. Bioagro, 29(1), 3–14.
dc.relationÁlvarez, N., Jaramillo, H., Gallo, Y., Gutiérrez, P., & Marín, M. (2017). Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) (Potyvirus, Potyviridae) naturally infecting Cape gooseberry (Physalis peruviana L.) in Antioquia (Colombia). The Plant Pathology. https://doi.org/10.1039/b000000x
dc.relationAnders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol., 11, 106.
dc.relationAndrews, S. (2014). A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
dc.relationArciniegas, N. (2003). Técnicas de diagnóstico y evaluación de resistencia al virus del Amarillamiento de las Nervaduras de la papa (PYVV) en accesiones de la Colección Central Colombiana de Solanum phureja. Universidad Nacional de Colombia.
dc.relationAstier, S., Albouy, J., Maury, Y., Robaglia, C., & Lecoq, H. (2007). Principles of Plant Virology. Principles of Plant Virology, 112.
dc.relationBabacar, N., Yancheng, G., Xiliang, W., & Dingren, B. (2010). Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Analytical and Bioanalytical Chemistry, 397, 1113–1135.
dc.relationBaena, L. M., Andrés, P., Sánchez, G., & Montoya, M. M. (2017). Genome Sequencing of Potato yellow vein virus ( PYVV ) Strain Infecting Solanum lycopersicum in Colombia. Acta Biológica Colombiana, 22(1), 5–17.
dc.relationBaker, C., Jeyaprakash, A., Webster, C., & Adkins, S. (2014). Plant Pathology Circular No. 415. Florida Department of Agriculture and Consumer Services. http://www.freshfromflorida.com/content/download/40511/873282/ppcirc415.pdf
dc.relationBeemster, A. B. R., & Bokx, A. de. (1987). Survey of properties and symptoms. In J. A. De Bokx & J. P. H. van der Want (Eds.), Viruses of potatoes and seed potato production (Secon edit, pp. 84–113). Wageningen University.
dc.relationBennett, C. W. (1953). Interactions between Viruses and Virus Strains. Advances in Virus Research, 1(C), 39–67. https://doi.org/10.1016/S0065-3527(08)60461-3
dc.relationBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic : a flexible trimmer for Illumina sequence data. Genome Analysis, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
dc.relationBoonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., & Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20–31. https://doi.org/10.1016/j.virusres.2013.12.007
dc.relationBright, A., Patrick, S., & Philip, B. (2007). Simultaneous detection of potato viruses , PLRV , PVA , PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods, 142, 1–9. https://doi.org/10.1016/j.jviromet.2006.12.012
dc.relationBuchen, O. (2010). The Universal Virus Database of the International Committe on Taxonomy of Virus. http://www.ictvdb.org
dc.relationCandresse, T., Marais, A., & Faure, C. (2013). First Report of Southern Tomato Virus on Tomatoes in Southwest France. Plant Disease, 97(8), 1124–1124. https://doi.org/https://doi.org/10.1094/PDIS-01-13-0017-PDN
dc.relationCOLOMBIA. MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. (2018). Indicadores e Instrumentos Enero 2018 Indicadores Generales. https://sioc.minagricultura.gov.co/Cacao/Documentos/002 - Cifras Sectoriales/002 - Cifras Sectoriales - 2018 Enero Cacao.pdf
dc.relationCompanyo, R., Granados, M., Guiteras, J., & Prat, M. (2009). Analytical and Bioanalytical chemistry. 395, 877–891.
dc.relationConesa, A., Madrigal, P., Tarazona, S., Gómez-Cabrero, D., Cervera, A., McPherson, A., Szczesniak, M., Gaffney, D., Elo, L., Zhang, X., & Mortazavi, A. (2016). A surver of best practices for RNA-seq data analysis. Genome Biology, 17–13.
dc.relationCorpoica. (2016). Virus de la papa. http://corpoica.org.co/noticias/generales/virus-de-la-papa.
dc.relationCortazar, A., & Silva, E. P. (2004). Métodos físico-químicos en biotecnología: PCR. In PCR en Tiempo Real. http://www.ibt.unam.mx/computo/pdfs/met/pcr.pdf
dc.relationDanks, C., & Barker, I. (2000). On site detection of plant pathogens usinf lateral flow devices.
dc.relationDiez, A., & Martín, V. (2013). Implementación de algoritmos de ensamblaje de genomas en sistemas de memoria compartida y memoria distribuida. univesidad Politécnica de Madrid.
dc.relationDonaire, L., Pagán, I., & Ayllón, M. A. (2016). Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology, 499, 212–218. https://doi.org/10.1016/j.virol.2016.09.017
dc.relationEdgar, R. C., Drive, R. M., & Valley, M. (2004). MUSCLE : multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340
dc.relationFang, Y, & Ramasamy, R. (2015). Current and Prospective Methods for Plant Disease Detection. Rains GC, Ed. Biosensors, 5, 537–561.
dc.relationFang, Yi, & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537–561. https://doi.org/10.3390/bios5030537
dc.relationFAO. (2008). Organización de las Naciones Unidas para la Alimentación y la Agricultura. http://www.fao.org/publications/sofa/2008/es/
dc.relationFAOSTAT. (2019). Organización de las Naciones Unidas para la Alimentación y la agricultura. http://www.fao.org/faostat/es/#data/QC/visualize
dc.relationFedepapa. (2018). Revista Fedepapa : El agricultor y su papel en el país. FEDEPAPA, 43, 48. http://fedepapa.com/wp-content/uploads/2017/01/REVISTA-43-OK.pdf
dc.relationFischer, G., Almanza, P. J., & Miranda, D. (2014). Importancia y cultivo de la Uchuva (Physalis peruviana L .). Scielo, 36(1), 1–15. https://doi.org/10.1590/0100-2945-441/13
dc.relationFischer, G., & Velásquez, M. (2010). Uchuva Physalis peruviana L. Solanaceae. Agr. Sci, April.
dc.relationFrost, K. E., Groves, R. L., & Charkowski, A. O. (2013). Integrated Control of Potato Pathogens Through Seed Potato Certification and Provision of Clean Seed Potatoes. Plant Disease, 97(10), 1268–1280. https://doi.org/10.1094/PDIS-05-13-0477-FE
dc.relationFukuhara, T. (2019). Endornaviruses: persistent dsRNA viruses with symbiotic properties in diverse eukaryotes. Virus Genes, 55(2), 165–173. https://doi.org/10.1007/s11262-019-01635-5
dc.relationGallo-García, Y. M., Jaramillo-Mesa, H., Toro-Fernández, L. F., Marín-Montoya, M., & Gutiérrez, P. A. (2018). Characterization of the genome of a novel ilarvirus naturally infecting Cape gooseberry (Physalis peruviana). Archives of Virology, 163(6). https://doi.org/10.1007/s00705-018-3796-8
dc.relationGallo García, Y., Sierra Mejía, A., Donaire Segarra, L., Aranda, M. A., Gutiérrez, P. A., & Montoya, M. M. (2019). Natural coinfection of RNA viruses in potato ( Solanum tuberosum subsp . Andigena ) crops in Antioquia ( Colombia ). Acta Biol. Colomb, 24(3), 546–560.
dc.relationGallo, Y., Gutierrez, P., & Marin, M. (2013). Detection of PMTV Using Polyclonal Antibodies Raised Against a Capsid-Specific Peptide Antigen. Revista Facultad Nacional de Agronomia Medellin, 66(2), 6999–7008.
dc.relationGallo, Y., Gutierrez, P., & Marín, M. (2012). Generación de antígenos derivados de la proteína de la cápside de PVY, TaLMV y PMTV, para la producción de anticuerpos útiles en el desarrollo de pruebas serológicas.
dc.relationGallo, Y., Sierra, A., Muñoz, L., Marín, M., & Gutiérrez, P. A. (2019). Genome characterization of three Alstroemeria necrotic streak orthotospovirus (ANSV) isolates naturally infecting bell pepper (Capsicum annuum) in Antioquia (Colombia). Tropical Plant Pathology, 44(4), 326–334. https://doi.org/10.1007/s40858-019-00292-1
dc.relationGallo, Y., Toro, L. F., Jaramillo, H., Gutiérrez, P. A., & Marín, M. (2018). Identificación y caracterización molecular del genoma completo de tres virus en cultivos de lulo (Solanum quitoense) de Antioquia (Colombia). Revista Colombiana de Ciencias Hortícolas, 12(2), 281–292.
dc.relationGarcía Ruíz, D., Olarte Quintero, M. A., Gutiérrez Sánchez, P. A., & Marín Montoya, M. A. (2016). Detección serológica y molecular del Potato virus X (PVX) en tubérculos-semilla de papa (Solanum tuberosum L. y Solanum phureja Juz. Bukasov) en Antioquia, Colombia. Revista Colombiana de Biotecnología, 18(1), 1–8. https://doi.org/10.15446/rev.colomb.biote.v18n1.51389
dc.relationGil, Jose F, Gutiérrez, P., Cotes, J. M., González, E. P., & MA. (2011). Caracterización genotípica de aislamientos Colombianos del Potato Mop Top Virus (PMTV, Pomovirus). Actual Biol, 33(94), 69–84.
dc.relationGil, Jose F, Marin, M., & Cotes, J. M. (2010). Diagnóstico y caracterización molecular de virus asociados al cultivo de la papa en Colombia, con énfasis en el virus mop-top (PMTV, Pomovirus).
dc.relationGil, José Fernando, Cotes, J. M., & Marín, M. (2011). Incidencia de potyvirus y caracterización molecular de PVY en regiones productoras de papa ( Solanum tuberosum L .) de Colombia. Revista Colombiana de Biotecnología, 85–93.
dc.relationGil, José Fernando, Cotes, J. M., & Marín, M. A. (2013). Incidencia visual de Síntomas asociados a enfermedades virales en cultivos de papa de Colombia. Biotecnología En El Sector Agropecuario y Agroindustrial, 11(2), 101–110.
dc.relationGómez, F., Trejo, L., García, C., & Cadena, J. (2014). Lulo (Solanum quitoense [Lamarck.]) as new landscape crop in the Mexican agro-ecosystem. Revista Mexicana de Ciencias Agrícolas, 9, 1741–1753.
dc.relationGoodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet, 17(6), 333–351. https://doi.org/10.1038/nrg.2016.49
dc.relationGrabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883
dc.relationGurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
dc.relationGutiérrez, P. A., Alzate, J. F., & Marín-Montoya, M. A. (2013). Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology, 158(10), 2205–2208. https://doi.org/10.1007/s00705-013-1730-7
dc.relationGutiérrez, P. A., Alzate, J. F., & Marín Montoya, M. (2014). Genome sequence of a virus isolate from tamarillo (Solanum betaceum) in Colombia: evidence for a new potyvirus. Archives of Virology, 160(2), 557–560. https://doi.org/10.1007/s00705-014-2296-8
dc.relationGutiérrez, P., Alzate, J. F., & Marín, M. (2015). Complete genome sequence of an isolate of Potato virus X ( PVX ) infecting Cape gooseberry ( Physalis peruviana ) in Colombia. Virus Genes, 50(3), 518–522. https://doi.org/10.1007/s11262-015-1181-1
dc.relationGutiérrez, P., Alzate, J., & Marín, M. (2012). Pirosecuenciación del genoma de una cepa andina de Potato virus S ( PVS , Carlavirus ) infectando Solanum phureja ( Solanaceae ) en Colombia. Revista Facultad de Ciencias Básicas, 8(1), 84–93.
dc.relationGuzmán, M., Ruiz, E., Arciniegas, N., & Coutts, R. H. A. (2006). Occurrence and variability of Potato yellow vein virus in three Departments of Colombia. Journal of Phytopathology, 154(11–12), 748–750. https://doi.org/10.1111/j.1439- 0434.2006.01174.x
dc.relationGuzmán, Mónica, Román, V., Franco, L., & Rodríguez, P. (2010). Presencia de cuatro virus en algunas accesiones de la Colección Central Colombiana de papa mantenida en campo. Agronomia Colombiana, 38(2), 225–233.
dc.relationHalterman, D., Charkowski, A., & Verchot, J. (2012). Potato , Viruses , and Seed Certification in the USA to Provide Healthy Propagated Tubers Planted into field. Pest Technology, 1, 1–14.
dc.relationHameed, A., Iqbal, Z., Asad, S., & Mansoor, S. (2014). Detection of Multiple Potato Viruses in the Field Suggests Synergistic Interac- tions among Potato Viruses in Pakistan. Plant Pathol. J, 30(4), 407–415.
dc.relationHanssen, I., Lapidot, M., & Thomma, B. (2010). Emerging Viral Diseases of Tomato Crops. The American Phytopathological Society, 23(5), 539–548. https://doi.org/10.1094 /MPMI -23-5-0539
dc.relationHass, B., Papanicolaou, A., & Yassour, M. (2013). De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nature Protocols, 8, 1494–1512.
dc.relationHe, Z., Larkin, R., & Honeycutt, W. (2012). Sustainable Potato Production: Global Case Studies (S. D. H. N. Y. London (ed.)). https://doi.org/DOI 10.1007/978-94-007-4104-1
dc.relationHily, J. M., Candresse, T., Garcia, S., Vigne, E., Tannière, M., Komar, V., Barnabé, G., Alliaume, A., Gilg, S., Hommay, G., Beuve, M., Marais, A., & Lemaire, O. (2018). High-throughput sequencing and the viromic study of grapevine leaves: From the detection of grapevine-infecting viruses to the description of a new environmental Tymovirales member. Frontiers in Microbiology, 9(AUG). https://doi.org/10.3389/fmicb.2018.01782
dc.relationJagatheeswari, D. (2014). Morphological studies on flowering plants ( Solanaceae ). International Letters of Natural Sciences, 15, 36–43. https://doi.org/10.18052/www.scipress.com/ILNS.15.36
dc.relationKnapp, S., Bohs, L., Nee, M., & Spooner, D. M. (2004). Solanaceae - A model for linking genomics with biodiversity. Comparative and Functional Genomics, 5(3), 285–291. https://doi.org/10.1002/cfg.393
dc.relationKoski, L., Gray, M., Lang, B., & Burger, G. (2005). AutoFACT: an automatic functional annotation and classification tool. BMC Bioinformatics, 6, 151.
dc.relationKumar, S., Stecher, G., & Tamura, K. (2016). MEGA7 : Molecular Evolutionary Genetics Analysis Version 7 . 0 for Bigger Datasets Brief communication. Mol. Biol. Evol, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
dc.relationLangmead, B., & Salzberg, S. (2013). Fast gapped-read alignment with Bowtie 2. Nat Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923.Fast
dc.relationLangmead, B., Trapnell, C., Pop, M., & Salzberg, S. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10(3), R25. https://doi.org/10.1186/gb-2009-10-3-r25
dc.relationLi, B., & Dewey, C. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.
dc.relationLi, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324
dc.relationLi, R., Gao, S., Hernandez, A. G., Wechter, W. P., Fei, Z., & Ling, K. S. (2012). Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0037127
dc.relationLi, Y., Wang, H., Nie, K., Zhang, C., Zhang, Y., Wang, J., Niu, P., & Ma, X. (2016). VIP: an integrated pipeline for metagenomics of virus identification and discovery. Nature Publishing Group. https://doi.org/10.1038/srep23774
dc.relationLiu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., & Law, M. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/251364
dc.relationMADR. (2015). El cultivo de pimentón (capsicum annuum L) bajo invernadero. In Boletin mensual, insumos y factores asociados a la producción agropecuaria (Vol. 37). http://scholar.google.es/scholar?q=pistacho+cultivo+españa&btnG=&hl=ca&as_sdt=0,5#5
dc.relationMadroñero, J., Madroñero, J., Rozo, Z. L. C., Pérez, J. A. E., & Romero, M. L. V. (2019). Plataformas de secuenciación de nueva generación y proteómica aplicadas a la virología vegetal: ¿Cómo ha avanzado Colombia? Acta Biológica Colombiana, 24(3), 423–438. https://doi.org/10.15446/abc.v24n3.79486
dc.relationMaree, H. J., Fox, A., Al Rwahnih, M., Boonham, N., & Candresse, T. (2018). Application of HTS for Routine Plant Virus Diagnostics: State of the Art and Challenges. Frontiers in Plant Science, 9(August), 1–4. https://doi.org/10.3389/fpls.2018.01082
dc.relationMarshall, B. B., Barker, H., & Verrall, S. R. (1988). Effects of potato leafroll virus on the crop processes leading to tuber yield in potato cultivars which differ in tolerance of infection. Annals of Applied Biology, 113, 297–305.
dc.relationMartinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E., & Dandekar, A. M. (2015). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35(1), 1–25. https://doi.org/10.1007/s13593-014-0246-1
dc.relationMatousek, J., Schubert, J., Ptacek, J., Kozlova, P., & Dedic, P. (2004). Complete nucleotide sequence and molecular probing of potato virus S genome. Acta Virologica, 49, 195–205.
dc.relationMcLeish, M. J., Fraile, A., & García-Arenal, F. (2019). Evolution of plant–virus interactions: host range and virus emergence. Current Opinion in Virology, 34, 50–55. https://doi.org/10.1016/j.coviro.2018.12.003
dc.relationMedina, C., Gutiérrez, P., & Marin, M. (2015). Detección del Potato Virus Y (PVY) en tubérculos de papa mediante TAS-ELISA Y qRT-PCR en Antioquia (Colombia). Bioagro, 27(2), 83–92.
dc.relationMedina, H., Gutiérrez, P., & Marín, M. (2017). Detection and sequencing of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro. Acta Agronomica, 66(1), 625–632. https://doi.org/https://doi.org/10.15446/acag.v66n4.59753 Detection
dc.relationMesa, M., González, M., Gutiérrez, P., & Marín, M. (2016). Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia , Colombia. Acta Agronomica, 65(2), 204–210. https://doi.org/http://dx.doi.org/10.15446/acag.v65n2.50764 Diagnóstico
dc.relationMiller, J. R., Koren, S., & Sutton, G. (2010). Assembly algorithms for next-generation sequencing data. Genomics, 95(6), 315–327. https://doi.org/10.1016/j.ygeno.2010.03.001
dc.relationMumford, R. A., Walsh, K., Barker, I., & Boonham, N. (2000). Detection of Potato mop top virus and Tobacco rattle virus Using a Multiplex Real-Time Fluorescent Reverse-Transcription Polymerase Chain Reaction Assay. Virology, 90(5), 448–453.
dc.relationMuñoz-baena, L., Marín-montoya, M., & Gutiérrez, P. A. (2017). Genome sequencing of two Bell pepper endornavirus (BPEV) variants infecting Capsicum annuum in Colombia. Agronomia Colombiana, 35(1), 44–52. https://doi.org/10.15446/agron.colomb.v35n1.60626
dc.relationMuñoz, D., Gutiérrez, P., & Marín, M. (2016). Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa ( Solanum tuberosum L .) del norte de Antioquia , Colombia. Protección Veg., 31(1), 9–19.
dc.relationMuñoz, L., Gutiérrez, P., & Marín, M. (2016b). Detección y secuenciación del genoma del Potato Virus Y (PVY) que infecta plantas de tomate en Antioquia, Colombia. Bioagro, 28(2), 69–80.
dc.relationMuñoz, L., Gutiérrez, P., & Marín, M. (2017). Secuenciación del genoma completo del Potato yellow vein virus (PYVV) en tomate (Solanum lycopersicum) en Colombia. Acta Biológica Colombiana, 22(1), 5. https://doi.org/10.15446/abc.v22n1.59211
dc.relationMusacchia, F., Basu, S., Petrosino, G., Salvemini, M., & Sanges, R. (2015). Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs. Bioinformatics, 31, 2199–2201
dc.relationNavarrete, I., Pnchi, N., Kromann, P., Forbes, G., & Andrade, J. (2017). Health quality of seed potato and yield losses in Ecuador. Revista Latinoamericana de La Papa, 21(2), 69–88. https://doi.org/http://dx.doi.org/10.1101/108712
dc.relationNie, X., & Singh, R. P. (2001). A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves and tubers. Journal of Virological Methods, 91, 37–49.
dc.relationNikitin, M. M., Statsyuk, N. V., Frantsuzov, P. A., Dzhavakhiya, V. G., & Golikov, A. G. (2018). Matrix approach to the simultaneous detection of multiple potato pathogens by real-time PCR. Journal of Applied Microbiology, 124(3), 797–809. https://doi.org/10.1111/jam.13686
dc.relationNolte, P., Whitworth, J. L., Thornton, M. K., & McIntosh, C. S. (2004). Effect of Seedborne Potato virus Y on Performance of Russet Burbank , Russet Norkotah , and Shepody Potato. Plant Disease, 88(3), 248–252.
dc.relationOsman, F., Leutenegger, C., Golino, D., & Rowhani, A. (2008). Comparison of low-density arrays , RT-PCR and real-time TaqMan RT-PCR in detection of grapevine viruses. Journal of Virological Methods, 149, 292–299. https://doi.org/10.1016/j.jviromet.2008.01.012
dc.relationPanno, S., Davino, S., Rubio, L., Rangel, E., Davino, M., García-Hernández, J., & Olmos, A. (2012). Simultaneous detection of the seven main tomato-infecting RNA viruses by two multiplex reverse transcription polymerase chain reactions. Journal of Virological Methods, 186(1–2), 152–156. https://doi.org/10.1016/j.jviromet.2012.08.003
dc.relationParella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C., & Carchoux, G. (2003). An update on the host range of Tomato spotted wilt virus. Plant Pathology, 85, 227.
dc.relationPark, M. ., Kwon, S. ., Choi, H., Hemenway, C., & Kim, K. (2008). Mutations that alter a repeat ACCA element located at 5‟ end of Potato virus X genome affect RNA accumulation. Virology Journal, 378, 133–141.
dc.relationPecman, A., Kutnjak, D., Gutiérrez-Aguirre, I., Adams, I., Fox, A., Boonham, N., & Ravnikar, M. (2017). Next generation sequencing for detection and discovery of plant viruses and viroids: Comparison of two approaches. Frontiers in Microbiology, 8(OCT), 1–10. https://doi.org/10.3389/fmicb.2017.01998
dc.relationPérez, M., Castañón, G., & Ramírez, M. (2015). Avances y Perspectivas sobre el estudio del origen y la diversidad genética de Capsicum spp. Ecosistemas y Recursos Agropecuarios, 2(4), 117–128.
dc.relationPuchades, A., Carpino, C., Alfaro-Fernandez, A., Font-San-Ambrosio, M., Davino, S., Guerri, J., Rubio, L., & Galipienso, L. (2017). Detection of Southern tomato virus by molecular hybridisation. Annals of Applied Biology, 171(2), 172–178. https://doi.org/10.1111/aab.12367
dc.relationPuente, L., Pinto, M. C., Castro, E., & Cortés, M. (2011). Physalis peruviana L, the multiple properties of a highly functional fruit: A review. Food Research International, 44, 1733–1740.
dc.relationRadford, A., Chapman, D., Dixon, L., Chatrey, J., Darby, A., & Hall, N. (2012). Application of next generation sequencing technologies in virology. Journal of General Virology, 93, 1853–1868.
dc.relationRadford, A. D., Chapman, D., Dixon, L., Chantrey, J., Darby, A. C., & Hall, N. (2012). Application of next-generation sequencing technologies in virology. Journal of General Virology, 93(PART 9), 1853–1868. https://doi.org/10.1099/vir.0.043182-0
dc.relationRiascos, M., Gutiérrez Sánchez, P. A., Marín Montoya, M. A., & Montoya, M. A. M. (2018). Identificación molecular de Potyvirus infectando cultivos de papa en el oriente de Antioquia (Colombia). Acta Biológica Colombiana, 23(1), 39–50. https://doi.org/10.15446/abc.v23n1.65683
dc.relationRobinson, M., McCarthy, D., & Smyth, G. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140.
dc.relationRuffalo, M., Laframboise, T., & Koyutürk, M. (2011). Comparative analysis of algorithms for next-generation sequencing read alignment. Bioinformatics, 27(20), 2790–2796. https://doi.org/10.1093/bioinformatics/btr477
dc.relationSabanadzovic, S., Valverde, R. A., Brown, J. K., Martin, R. R., & Tzanetakis, I. E. (2009). Southern tomato virus: The link between the families Totiviridae and Partitiviridae. Virus Research, 140(1–2), 130–137. https://doi.org/10.1016/j.virusres.2008.11.018
dc.relationSalomone, A., Bruzzone, C., Minuto, G., Minuto, A., & Roggero, P. (2002). A compararison of lateral flow and ELISA for detection of Tomato mosaic virus in tomato. Journal of Plant Pathology, 84, 1993.
dc.relationSalomone, A., Mongelli, M., Roggero, P., & Boscia, D. (2004). Reliability of detection of citrus tristeza virus by an inmunochromatographic lateral flow assay in comparison with ELISA. Journal of Plant Pathology, 86, 43 – 48.
dc.relationSalomone, A., & Roggero, P. (2002). Host range, seed transmission and detection by ELISA and lateral flow of an Italian isolate of pepino mosaic virus. Journal of Plant Pathology, 84, 65–68.
dc.relationSantillan, F. W., Fribourg, C. E., Adams, I. P., Gibbs, A. J., Boonham, N., Kehoe, M. A., Maina, S., & Jones, R. A. C. (2018). The Biology and Phylogenetics of Potato virus S Isolates from the Andean Region of South America. Plant Disease, 102(5), 869–885. https://doi.org/10.1094/PDIS-09-17-1414-RE
dc.relationSavary, S., Willocquet, L., Pethybridge, S. J., Esker, P., Mcroberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. NatEcoEvol, 3(3), 430–439. https://doi.org/10.1038/s41559-018-0793-y
dc.relationSavenkov, E., Germundsson, A., Zamyathin, A., Sandgren, M., & Valkonen, J. (2003). Potato mop-top virus: The coat protein- encoding RNA and the gene for cystein -rich protein are dispensable for systemic virus movement in Nicotianan benthamiana. Journal of General Virology, 80, 2779–2784.
dc.relationSavenkov, E. I., & Valkonen, J. P. . (2001). Potyviral helper-component proteinase expressed in transgenic plants enhances titers of Potato Leaf Roll Virus but does not alleviate its phloem limitation. Virology, 283, 285–293.
dc.relationScholthof, K., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938–954. https://doi.org/10.1111/j.1364-3703.2011.00752.x
dc.relationSchulte-Geldermann, E., Gildemacher, P. R., & Struik, P. C. (2012). Improving Seed Health and Seed Performance by Positive Selection in Three Kenyan Potato Varieties. American Journal of Potato Research, 89(6), 429–437. https://doi.org/10.1007/s12230-012-9264-1
dc.relationSifres, A. B., & Nuez, F. (2011). Pattern of genetic variability of Solanum habrochaites in its natural area of distribution. Genet Resour Crop, 58, 347–360.
dc.relationSingh, M., Singh, R. P., & Fageria, M. S. (2012). Optimization of a Real-Time RT-PCR Assay and its Comparison with ELISA , Conventional RT-PCR and the Grow-out Test for Large Scale Diagnosis of Potato virus Y in Dormant Potato Tubers. American Journal of Potato Research, 90(1), 43–50. https://doi.org/10.1007/s12230-012-9274-z
dc.relationSingh, R. P., Kurz, J., Boiteau, G., & Bernard, G. (1995). Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potencial epidemiological application. Journal of Virological Methods, 1(506), 133–143.
dc.relationSpooner, D. M., Ghislain, M., Simon, R., Jansky, S. H., & Gavrilenko, T. (2014). Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Botanical Review, 80(4), 283–383. https://doi.org/10.1007/s12229-014-9146-y
dc.relationStammler, J., Oberneder, A., Kellermann, A., & Hadersdorfer, J. (2018). Detecting potato viruses using direct reverse transcription quantitative PCR (DiRT-qPCR) without RNA purification: an alternative to DAS-ELISA. European Journal of Plant Pathology, 152(1), 237–248. https://doi.org/10.1007/s10658-018-1468-x
dc.relationStevenson, W., Loria, R., & Gardy, F. (2001). Compendium of Potato Diseases (Second Edi).
dc.relationSyller, J. (2012). Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 13(2), 204–216. https://doi.org/10.1111/j.1364-3703.2011.00734.x
dc.relationTamayo, P., & Jaramillo, J. (2013). Enfermedades del tomate ,pimenton, aji y berenjena en Colombia. Guía para su diagnóstico y manejo. https://repository.agrosavia.co/handle/20.500.12324/13267
dc.relationTamayo, P., Navarro, R., & de la Rotta, M. C. (2001). Enfermedades del cultivo del lulo en Colombia. Boletín Técnico 9 - CORPOICA.
dc.relationThomas-Sharma, S., Abdurahman, A., Ali, S., Andrade-Piedra, J. L., Bao, S., Charkowski, A. O., Crook, D., Kadian, M., Kromann, P., Struik, P. C., Torrance, L., Garrett, K. A., & Forbes, G. A. (2016). Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology, 65(1), 3–16. https://doi.org/10.1111/ppa.12439
dc.relationTurco, S., Golyaev, V., Seguin, J., Farinelli, L., Boller, T., Schumpp, O., & Pooggin, M. (2018). Small RNA-Omics for Virome Reconstruction and Antiviral Defense Characterization in Mixed Infections of Cultivated Solanum Plants. The American Phytopathological Society, 31(7), 707–723.
dc.relationUrcuqui-inchima, S., Haenni, A., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74, 157–175.
dc.relationVaca Vaca, J., Betancur Pérez, J., & López-López, K. (2012). Distribución y diversidad genética de Begomovirus que infectan tomate (Solanum lycopersicum L) en Colombia. Revista Colombiana de Biotecnología, 14(1), 60–76.
dc.relationVallejo, D., Gutiérrez, P., & Marín, M. (2016). Genome characterization of a Potato virus S ( PVS ) variant from tuber sprouts of Solanum phureja Juz . et Buk . Agronomia Colombiana, 34(1), 51–60. https://doi.org/10.15446/agron.colomb.v34n1.53161
dc.relationValverde, R., Nameth, S., & Jordan, R. (1990). Analysis of double-stranded RNA for plant virus diagnosis. Plant Disease, 74, 255–258.
dc.relationVance, V. B. (1991). Replication of Potato Virus X RNA Is Altered in Coinfections with Potato Virus Y. Virology Journal, 494, 486–494.
dc.relationVillamil-Garzón, A, Cuellas, W., & Guzmán-Barney, M. (2014). Co-infección natural de Potato yellow vein virus y potivirus en cultivos de Solanum tuberosum en Colombia. Agronomia Colombiana, 32, 213–223.
dc.relationVillamil-Garzón, Angela, Cuellar, W. J., & Guzmán-Barney, M. (2014). Co-infección natural de potato yellow vein virus y potivirus en cultivos de Solanum tuberosum en Colombia. Agronomia Colombiana, 32(2), 213–223. https://doi.org/10.15446/agron.colomb.v32n2.43968
dc.relationVillegas, M. D., Montoya, M. M., & Gutiérrez, P. A. (2017). Genome comparison and primer design for detection of Tamarillo leaf malformation virus ( TaLMV ). Archives of Phytopathology and Plant Protection, 5408(September), 1–14. https://doi.org/10.1080/03235408.2017.1370934
dc.relationWang, B., Ma, Y., Zhang, Z., Wu, Z., Wu, Y., Wang, Q., & Li, M. (2011). Potato viruses in China. Crop Protection, 30(9), 1117–1123. https://doi.org/10.1016/j.cropro.2011.04.001
dc.relationWilm, A., Poh, P., Aw, K., Bertrand, D., Hui, G., Yeo, T., Ong, S. H., Wong, C. H., Khor, C. C., Petric, R., Hibberd, M. L., & Nagarajan, N. (2012). LoFreq : a sequence-quality aware , ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acid Research, 40(22), 11189–11201. https://doi.org/10.1093/nar/gks918
dc.relationXu, C., Sun, X., Taylor, A., Jiao, C., Xu, Y., Cai, X., Whang, X., Ge, C., Pan, G., Whang, Q., Fei, Z., & Wang, Q. (2017). Diversity , Distribution , and Evolution of Tomato Viruses en China Uncovered by Small RNA Sequencing. Journal of Virology, 91(11), 1–14. https://doi.org/10.1128/JVI.00173-17
dc.relationYadav, R., Rathi, M., Pednekar, A., & Rewachandani, Y. (2016). A DETAILED REVIEW ON SOLANACEAE FAMILY. Europan Journal of Pharmaceutical and Medical Research, 3(1), 369–378.
dc.relationYang, I., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13, 119–125.
dc.relationYang, L., Nie, B., Liu, J., & Song, B. (2013). A Reexamination of the Effectiveness of Ribavirin on Eradication of Viruses in Potato Plantlets in vitro Using ELISA and Quantitative RT-PCR. American Journal of Potato Research, 91(3), 304–311. https://doi.org/10.1007/s12230-013-9350-z
dc.relationYang, L., Nie, B., Liu, J., & Song, B. (2014). A Reexamination of the Effectiveness of Ribavirin on Eradication of Viruses in Potato Plantlets in vitro Using ELISA and Quantitative RT-PCR. American Journal of Potato Research, 91(3), 304–311. https://doi.org/10.1007/s12230-013-9350-z
dc.relationZapata, J., Saldarriaga, A., Londoño, M., & Díaz, C. (2002). Manejo del cultivo de la uchuva en Colombia. Repositorio agrosavia. Disponible: http://hdl.handle.net/20.500.12324/12833
dc.relationZhang, W., Zhang, Z., Fan, G., Gao, Y., & Wen, J. (2017). Development and application of a universal and simplified multiplex RT-PCR assay to detect five potato viruses. Journal of General Plant Pathology, 83(1), 33–45. https://doi.org/10.1007/s10327-016-0688-1
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleCaracterización molecular del viroma de plantas solanáceas de importancia económica en Antioquia
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución