dc.contributor | Correa Morales, Juan Carlos | |
dc.creator | Obando Arbeláez, Cristian Daniel | |
dc.date.accessioned | 2021-02-24T14:55:57Z | |
dc.date.available | 2021-02-24T14:55:57Z | |
dc.date.created | 2021-02-24T14:55:57Z | |
dc.date.issued | 2020-12-22 | |
dc.identifier | Obando, C. D., Estimación del parámetro λ y del número de ceros n0 de la distribución Poisson Truncada en cero. Universidad Nacional de Colombia, Medellín (Colombia) | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79292 | |
dc.description.abstract | La distribución Poisson Truncada en cero tiene múltiples aplicaciones en problemas de
conteo. Por ejemplo, cuando se desea estimar el número de personas que han tenido, o
tienen, problemas de adicción, se cuenta únicamente con información del número de ingresos
de cada individuo y se desconoce el número de consumidores que no han ingresado a los
centros de rehabilitación. En este trabajo se proponen diferentes estimadores puntuales y por
intervalos para el parámetro λ y el número de ceros n0 de la distribución Poisson Truncada
en cero. Los estimadores puntuales y los intervalos son construidos mediante técnicas propias
de la estadística clásica y bayesiana. Estos estimadores son comparados en conjunto con
los encontrados en la literatura mediante simulación utilizando el software estadístico R.
Se encontró que entre los estimadores puntuales el mejor es el de máxima verosimilitud
modificada. En cuanto a los estimadores por intervalo el que tiene mayor probabilidad de
cobertura fue el propuesto por Vélez and Correa (2013), no obstante el algoritmo para calcular
este estimador fracasa con tamaños de muestra grandes, en este caso se prefieren el intervalo
de confianza exacto o el de verosimilitud. | |
dc.description.abstract | The Poisson Truncated at Zero distribution has multiple applications in counting problems. For example, when you want to estimate the number of people who have had, or are
having, addiction problems, you count only information on the number of incomes of each
individual and you do not know the number of consumers who have not been admitted to
rehabilitation centers. This paper proposes different point and interval estimators for the λ
parameter and the number of zeros n0 in the Poisson Truncated at Zero distribution. The
point estimators and the intervals are constructed using classical and Bayesian statistical
techniques. These estimators are compared in conjunction with those found in the literature
through simulation using R statistical software. It was found that among the point estimators
the best is the modified maximum likelihood one. As for the interval estimators, the one with
the highest coverage probability was proposed by Vélez and Correa (2013), but the algorithm for calculating this estimator fails with large sample sizes. | |
dc.language | spa | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Estadística | |
dc.publisher | Escuela de estadística | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Berkson, J. (1980). Minimum chi-square, not maximum likelihood 8(3):457–487. | |
dc.relation | Blumental, S., Dahiya, R. C., and Gross, J. A. (1978). Estimating the Complete Size from
an Incomplete Sample. Journal of the American Statistical Association, 73:182–187. | |
dc.relation | Cohen, A. C. (1960). Estimating the Parameter in a Condicional Poisson Distribution.
Biometrics, 16:203–211. | |
dc.relation | Cullen, M. J., Walsh, J., Nicholson, L. V. B., and Harris, J. B. (1990). Ultrastructural
localization of dystrophin in human muscle by using gold immunolabelling. Proceedings of
the Royal Society of London. Series B, Biological Sciences, 240(1297):197–210. | |
dc.relation | Dahiya, R. C. and Gross, J. A. (1973). Estimating the Zero Class from a Truncated Poisson
Sample. Journal of the American Statistical Association, 68:731–733. | |
dc.relation | Daidoji, K. and Iwasaki, M. (2012). On interval estimation of the poisson parameter in a
zero−truncated poisson distribution. J. Jpn. Soc. Comp. Statist., 25:1–12. | |
dc.relation | David, F. N. and Johnson, N. L. (1952). The Truncated Poisson. Biometrics, 8:275–285. | |
dc.relation | Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society Series B (Methodological),
39:1–38. | |
dc.relation | Finney, D. J. and Varley, G. C. (1955). An Example of the Truncated Poisson Distribution.
Biometrics, 11:387–394. | |
dc.relation | Harris, R. R. and Kanji, G. K. (1983). On the use of minimum chi-square estimation.
32(4):379–394. | |
dc.relation | Hassan, A., Ahmad, P., and Bhatti, M. (2008). On the bayes estimator of parameter and
reliability function of the zero-truncated poisson distribution. Journal of the Korea Society
for Industrial and Applied Mathematics, 12:97–108. | |
dc.relation | Irwin, J. O. (1959). Note: On the Estimation of the Mean of a Poisson Distribution from a
Sample with the Zero Class Missing. Biometrics, 15:324–326. | |
dc.relation | Kalbfleisch, J. G. (1985). Probability and Statistical Inference Volumen 2., volume 2 of
Springer Texts in Statistics. Springer, second edition edition. | |
dc.relation | Mattews, J. N. S. and Appleton, D. R. (1993). An Application of the Truncated Poisson
Distribution to Immunogold Assay. Biometrics, 49:617–621. | |
dc.relation | Mir, K. A. (2011). Estimation in Truncated Poisson Distribution. Mathematica Slovaca,
61:289–296. | |
dc.relation | Mood, A. M., Graybill, F. A., and Boes, D. C. (1974). Introduction to the theory of statistics.
McGraw-Hill, Tokio, third edition. | |
dc.relation | Moore, P. G. (1954). A Note on Truncated Poisson Distribution. Biometrics, 10:402–406. | |
dc.relation | Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood.
Oxford University Press, USA, 1 edition. | |
dc.relation | Plackett, R. L. (1953). The Truncated Poisson Distribution. Biometrics, 9:485–488. | |
dc.relation | R Core Team (2018). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. | |
dc.relation | Rangan, S., Fletcher, A. K., and Goyal, V. K. (2012). Asymptotic analysis of map estimation
via the replica method and applications to compressed sensing. IEEE Transactions on
Information Theory, 58(3):1902–1923. | |
dc.relation | Rider, P. R. (1953). Truncated Poisson Distributions. Journal of the American Statistical
Association, 48:826–830. | |
dc.relation | Rizzo, M. L. (2007). Statistical Computing with R. Chapman & Hall / CRC, Bow ling Green,
Ohio. | |
dc.relation | Sanathanan, L. (1977). Estimating the Size of a Truncated Sample. Journal of the American
Statistical Association, 72:669–672. | |
dc.relation | Sarabia, J., Déniz, E., and Vázquez-Polo, F. (2006). Estadística Actuarial: Teoría y aplicaciones. | |
dc.relation | Tate, R. F. and Goen, R. L. (1958). Minimum Variance Unbiased Estimation for the
Truncated Poisson Distribution. The Annals of Mathematical Statistics, 29:755–765. | |
dc.relation | Tsiatis, A. A., Rosner, G. L., and Mehta, C. R. (1984). Exact confidence intervals following
a group sequential test. Biometrics, 40(3):797–803. | |
dc.relation | Vélez, J. I. and Correa, J. C. (2013). Estimación bayesiana del parámetro de la distribució
poisson censurada sin ceros. Cuadernos de Estadística Aplicada, 1:1–9. | |
dc.relation | Viwatwongkasem, C. (2016). Em algorithm for truncated and censored poisson likelihoods.
Procedia Computer Science, 86:240–243. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Estimación del parámetro λ y del número de ceros n0 de la distribución Poisson Truncada en cero | |
dc.type | Otro | |