dc.contributorZuluaga Gómez, Jairo Alberto
dc.contributorCharpak Hernández, Nathalie
dc.contributorGrupo investigación Fundación Canguro
dc.creatorGómez Ramírez, Sandra Milena
dc.date.accessioned2020-07-13T21:49:23Z
dc.date.available2020-07-13T21:49:23Z
dc.date.created2020-07-13T21:49:23Z
dc.date.issued2020-05-28
dc.identifierGómez-Ramírez S. Desenlaces motores del bajo peso al nacer y el nacimiento pretérmino en adultos jóvenes: efectos del método madre canguro. Universidad Nacional de Colombia – Sede Bogotá; 2020
dc.identifierGómez-Ramírez, S. (2020). Desenlaces motores del bajo peso al nacer y el nacimiento pretérmino en adultos jóvenes: efectos del método madre canguro. Tesis de maestría. Universidad Nacional de Colombia, Bogotá
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77766
dc.description.abstractIntroduction: Low birth weight (LBW) (<2,500g) is cause of mortality and morbidity. One of its consequences is the motor impairment associated with alterations in the white matter, especially the corticospinal tract and the corpus callosum. The Kangaroo Mother Care (KMC) is an alternative to conventional care for LBW infants that consists of skin-to-skin contact, breastfeeding and early hospital discharge, and has been shown to reduce the risk of morbidity and mortality. Objective: The objective of this study was to evaluate the KMC effect on long-term motor development compared to conventional care in a cohort of 441 young adults with a history of LBW, mostly preterm, from a randomized controlled trial (RCT) carried out between 1993 and 1994, having as reference group 50 young people born at term with normal weight. Methods: Transcranial Magnetic Stimulation (TMS) was used to evaluate motor cortex development, corticospinal pathways and interhemispheric interactions through the corpus callosum and the Nine Hole Peg Test (9HPT) for the clinical evaluation of fine manual dexterity. Results: The analyzes by groups revealed a greater time in the 9HPT and less prehension force in the LBW subjects, independent of the type of intervention, with respect to the reference subjects. In contrast, no significant intergroup differences were found between the LBW subjects according to the intervention for the variables of motor interest, so they were disaggregated in the preterm and term, finding worse times in the 9HPT in the preterm subjects who received the KMC compared to those who received conventional care. No differences were found in the group analyzes in any of the neurophysiological measures of TMS between the subjects who received the KMC and conventional care, however, the multivariate logistic model showed that the KMC reduces the risk of developing by 71% (IC 95% 3-92%) alteration of transcallosal conduction time (TCT) in subjects born preterm. Conclusion: We check the heterogeneity of the subjects grouped within LBW category. Alterations in fine manual dexterity and grip strength associated with LBW persist in adulthood. The KMC seems to have a positive impact on interhemispheric communication between primary motor cortices and its effectiveness is 71% in preterm LBW subjects. TCT is a subclinical marker of neurophysiological disorders that may be associated with motor outcomes in subjects with LBW.
dc.description.abstractIntroducción: El bajo peso al nacer (BPN) (<2.500g) es una causa de mortalidad y morbilidad. Una de sus consecuencias es el deterioro motor asociado con alteraciones en la sustancia blanca, en especial del tracto corticoespinal y el cuerpo calloso. El método madre canguro (MMC) es una alternativa a la atención convencional para neonatos de BPN que consiste en el contacto piel a piel, la lactancia materna y el alta hospitalaria temprana, y ha demostrado reducir el riesgo de morbimortalidad. Objetivo: El objetivo de este estudio fue evaluar el efecto del MMC sobre desenlaces motores a largo plazo en comparación al cuidado convencional en una cohorte de 441 adultos jóvenes con antecedente de BPN, en su mayoría pretérmino, proveniente de un ensayo controlado aleatorizado (ECA) realizado entre 1993 y 1994 y teniendo como grupo de referencia a 50 jóvenes nacidos a término con peso normal. Métodos: Se utilizó estimulación magnética transcraneal (EMT) para evaluar el desarrollo de la corteza motora, vías corticoespinales e interacciones interhemisféricas a través del cuerpo calloso y la prueba de clavijas con nueve orificios (9HPT) para la evaluación clínica de la destreza manual fina. Resultados: Los análisis por grupos revelaron un mayor tiempo en el 9HPT y menor fuerza de la prensión de la pinza en los sujetos con BPN, independiente del tipo de intervención, respecto a los sujetos de referencia. En contraste, no se encontraron diferencias significativas intergrupales entre los sujetos de BPN de acuerdo a la intervención que recibieron para las variables de interés motor, por lo que se desagregaron en pretérmino y a término, encontrando peores tiempos en el 9HPT en los sujetos pretérmino que recibieron la intervención MMC comparados con los que recibieron la atención convencional. No se encontraron diferencias en los análisis por grupos en ninguna de las medidas neurofisiológicas de la EMT entre los sujetos que recibieron el MMC y la atención convencional, sin embargo, el modelo logístico multivariado demostró que el MMC reduce en un 71% el riesgo de desarrollar alteración del tiempo de conducción transcallosal (TCT) en los sujetos que nacieron pretérmino. Conclusión: Comprobamos la heterogeneidad de los sujetos agrupados dentro del término de BPN. Las alteraciones en la destreza manual fina y la fuerza de prensión asociadas al BPN persisten en la edad adulta. El MMC parece tener un impacto positivo en la comunicación interhemisférica entre cortezas motoras primarias y su efectividad es de 71% (IC 95% 3-92%) en sujetos con BPN pretérmino. El TCT es un marcador subclínico de alteraciones neurofisiológicas que pueden estar asociadas a desenlaces motores en sujetos con BPN.
dc.languagespa
dc.publisherBogotá - Medicina - Maestría en Neurociencias
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationWorld Health Organization. Guidelines on optimal feeding of low birth-weight infants in low-and middle-income countries. Geneva WHO [Internet]. 2011;16–45. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Guidelines+on+Optimal+feeding+of+low+birth-+weight+infants+in+low-and+middle-income+countries#0
dc.relationSistema Integral de Infomación de la Protección Social (SISPRO) [Internet]. Colombia, Ministerio de Salud y Protección Social. 2019. Available from: http://www.sispro.gov.co/
dc.relationUNICEF, WHO, The World Bank, Division UP. UNICEF: Levels & trends in child mortality: report 2014. Estimates developed by the UN Inter-agency Group for Child Mortality Estimation. United Nations Child Fund 2014. 2014;16–9.
dc.relationWHO. Preterm birth [Internet]. Fact sheet No. 363. 2015. p. 4. Available from: http://www.who.int/mediacentre/factsheets/fs363/en/
dc.relationConde-Agudelo A, Díaz-Rossello JL. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database Syst Rev. 2016;2016(8):1–148.
dc.relationBoundy EO, Dastjerdi R, Spiegelman D, Wafaie W. Kangaroo Mother Care and Neonatal Outcomes : A Meta-analysis. Pediatrics. 2016;137(1):1–16.
dc.relationHuether S, McCance K. Pathophysiology, The biologic basis for disease in adult and children 7e. Elsevier. 2014.
dc.relationMooney-Leber SM, Brummelte S. Neonatal pain and reduced maternal care: Early-life stressors interacting to impact brain and behavioral development. Neuroscience. 2017;342:21–36.
dc.relationVittner D, Casavant S, McGrath JM. A meta-ethnography: Skin-to-skin holding from the Caregiver’s perspective. Adv Neonatal Care. 2015;15(3):191–200.
dc.relationWeber A, Harrison TM, Sinnott L, Shoben A, Steward D. Associations between Nurse-Guided Variables and Plasma Oxytocin Trajectories in Premature Infants during Initial Hospitalization. Adv Neonatal Care. 2018;18(1):E12–23.
dc.relationFietzek UM, Heinen F, Berweck S, Maute S, Hufschmidt A, Schulte-Mönting J, et al. Development of the corticospinal system and hand motor function: Central conduction times and motor performance tests. Dev Med Child Neurol. 2000;42(4):220–7.
dc.relationBack SA. Brain injury in the preterm infant: New horizons for pathogenesis and prevention. Pediatr Neurol. 2015;53(3):185–92.
dc.relationBracewell M, Marlow N. Patterns of motor disability in very preterm children. Ment Retard Dev Disabil Res Rev. 2002;8(4):241–8.
dc.relationAnderson NG, Laurent I, Woodward LJ, Inder TE. Detection of impaired growth of the corpus callosum in premature infants. Pediatrics. 2006;118(3):951–60.
dc.relationMent LR, Kesler S, Vohr B, Katz KH, Baumgartner H, Schneider KC, et al. Longitudinal brain volume changes in preterm and term control subjects during late childhood and adolescence. Pediatrics. 2009;123(2):503–11.
dc.relationFlamand VH, Nadeau L, Schneider C. Brain motor excitability and visuomotor coordination in 8-year-old children born very preterm. Clin Neurophysiol. 2012;123(6):1191–9.
dc.relationMalinger G, Zakut H. The corpus callosum: Normal fetal development as shown by transvaginal sonography. Am J Roentgenol. 1993;161(5):1041–3.
dc.relationWiesendanger M, Serrien DJ. The quest to understand bimanual coordination. Prog Brain Res. 2004;143:491–505.
dc.relationLemon RN. Descending Pathways in Motor Control. Annu Rev Neurosci [Internet]. 2008;31(1):195–218. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18558853
dc.relationTessier R, Nadeau L, Boivin M, Tremblay RE. The Social Behaviour of 11- to 12-year-old Children Born as Low Birthweight and/or Premature Infants. Int J Behav Dev [Internet]. 1997;21(4):795–811. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc3&NEWS=N&AN=1997-38912-009
dc.relationHusby IM, Skranes J, Olsen A, Brubakk A-M, Evensen KAI. Motor skills at 23 years of age in young adults born preterm with very low birth weight. Early Hum Dev [Internet]. 2013;89(9):747–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23810435
dc.relationPrieto J, Garcia A, Pérez C. Valoración de los fenómenos de facilitación e inhibición cortical en humanos mediante estimulación magnética transcraneal. Universidad Complutense de Madrid; 2015.
dc.relationSchneider C, Charpak N, Ruiz-Peláez JG, Tessier R. Cerebral motor function in very premature-at-birth adolescents: A brain stimulation exploration of kangaroo mother care effects. Acta Paediatr Int J Paediatr. 2012;101(10):1045–53.
dc.relationPitcher JB, Schneider LA, Drysdale JL, Ridding MC, Owens JA. Motor System Development of the Preterm and Low Birthweight Infant. Clin Perinatol. 2011;38(4):605–25.
dc.relationZuluaga J. Fundamentos genéticos del desarrollo. In: Neurodesarrollo y Estimulación. Bogotá, Colombia: Editorial Médica Panamericana; 2001. p. 33–41.
dc.relationPurves D. Principles of cognitive neuroscience. Third Edit. Sunderland. Massachusetts, U.S.A; 2004.
dc.relationZuluaga J. Embriología funcional del sistema nervioso. In: Neurodesarrollo y Estimulación. Bogotá, Colombia: Editorial Médica Panamericana; 2001. p. 42–60.
dc.relationLawn JE, Blencowe H, Oza S, You D, Lee ACC, Waiswa P, et al. Every newborn: Progress, priorities, and potential beyond survival. Lancet. 2014;384(9938):189–205.
dc.relationMinisterio de Salud – Dirección General de Promoción y Prevención. Guía de atención del bajo peso al nacer.
dc.relationGold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20(1):32–47.
dc.relationGimpl G, Fahrenholz F. The oxytocin receptor system: Structure, function, and regulation. Physiol Rev. 2001;81(2):629–83.
dc.relationPlacencia FX, McCullough LB. Biopsychosocial risks of parental care for high-risk neonates: Implications for evidence-based parental counseling. J Perinatol. 2012;32(5):381–6.
dc.relationBhutta AT, Cleves M a, Casey PH, Cradock MM, Anand KJS. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA. 2002;288(October 2015):728–37.
dc.relationLosch H, Dammann O. Impact of Motor Skills on Cognitive Test Results in Very-Low-Birthweight Children. J Child Neurol [Internet]. 2004;19(5):318–22. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc4&NEWS=N&AN=2004-15374-002
dc.relationde Kieviet JF, Piek JP, Aarnoudse-Moens CS, Oosterlaan J. Motor development in very preterm and very low-birth-weight children from birth to adolescence: a meta-analysis. JAMA [Internet]. 2009;302(20):2235–42. Available from: http://jama.jamanetwork.com/article.aspx?articleid=184952
dc.relationCerisola A, Baltar F, Ferrán C, Turcatti E. Mecanismos de lesión cerebral en niños prematuros. Medicina (B Aires). 2019;79(III):10–4.
dc.relationVolpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Vol. 8, The Lancet Neurology. 2009. p. 110–24.
dc.relationVolpe JJ, Kinney HC, Jensen FE, Rosenberg PA. Reprint of “The developing oligodendrocyte: Key cellular target in brain injury in the premature infant.” Vol. 29, International Journal of Developmental Neuroscience. 2011. p. 565–82.
dc.relationEikenes L, Lohaugen GC, Brubakk AM, Skranes J, Haberg AK. Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI. Neuroimage. 2011;54(3):1774–85.
dc.relationvan der Knaap LJ. The Corpus Callosum and Brain Hemisphere Communication How does the corpus callosum mediate interhemispheric transfer? [Internet]. Utrecht University; 2010. Available from: https://dspace.library.uu.nl/bitstream/handle/1874/188850/Master_Thesis_Final_LJvanderKnaap.pdf?sequence=1&isAllowed=y
dc.relationWitelson SF. Hand and sex differences in the isthmus and genu of the human corpus callosum: A postmortem morphological study. Brain. 1989;112(3):799–835.
dc.relationKeshavan MS, Diwadkar VA, DeBellis M, Dick E, Kotwal R, Rosenberg DR, et al. Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sci. 2002;70(16):1909–22.
dc.relationRichards LJ, Plachez C, Ren T. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet. 2004;66(4):276–89.
dc.relationvan der Knaap MS, Valk J. Magnetic resonance of myelination and myelin disorders. J Neuroradiol. 2006;33(2):132.
dc.relationHüppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res. 1998;44(4):584–90.
dc.relationThompson DK, Inder TE, Faggian N, Johnston L, Warfield SK, Anderson PJ, et al. Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. Neuroimage. 2011;55(2):479–90.
dc.relationCancelliere A, Mangano FT, Air EL, Jones B V., Altaye M, Rajagopal A, et al. DTI values in key white matter tracts from infancy through adolescence. Am J Neuroradiol. 2013;34(7):1443–9.
dc.relationBloom JS, Hynd GW. The role of the corpus callosum in interhemispheric transfer of information: Excitation or inhibition? Neuropsychol Rev. 2005;15(2):59–71.
dc.relationXydis V, Astrakas L, Drougia A, Gassias D, Andronikou S, Argyropoulou M. Myelination process in preterm subjects with periventricular leucomalacia assessed by magnetization transfer ratio. Pediatr Radiol. 2006;36(9):934–9.
dc.relationPaul LK. Developmental malformation of the corpus callosum: A review of typical callosal development and examples of developmental disorders with callosal involvement. J Neurodev Disord. 2011;3(1):3–27.
dc.relationRademaker KJ, Lam JNGP, Van Haastert IC, Uiterwaal CSPM, Lieftink AF, Groenendaal F, et al. Larger corpus callosum size with better motor performance in prematurely born children. In: Seminars in Perinatology. 2004. p. 279–87.
dc.relationKumar A, Juhasz C, Asano E. Diffusion tensor imaging study of the cortical origin and course of the corticospinal tract in healthy children. Am J Neuroradiol. 2009;30(10):1963–70.
dc.relationQuiénes somos : Fundación Canguro [Internet]. [cited 2019 Oct 21]. Available from: http://fundacioncanguro.co/quienes-somos/
dc.relationRey E, Martínez H. Manejo racional del niño prematuro. In: Universidad Nacional de Colombia, editor. Curso de Medicina Fetal. Bogotá; 1983.
dc.relationWorld Health Organization. Kangaroo mother care: A practical guide. [Internet]. Vol. 73, WHO Reproductive Health and Research. 2003. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22585327
dc.relationEngmann C, Darmstadt G, Valsangkar B, Claeson M, participants of the Istanbul KMC Acceleration Meetin. Consensus on kangaroo mother care acceleration. Lancet. 2013;382(9907):e26–e27.
dc.relationCharpak N, Ruiz-Pelaez JG, Figueroa de Calume Z. Current knowledge of Kangaroo Mother Intervention. Curr Opin Pediatr. 1996;8(2):108–12.
dc.relationLawn JE M-KJ, Horta BL, Barros FC CS. Kangaroo mother care to prevent neonatal deaths due to preterm birth complication. Int J Epidemiol. 2010;39:i144–i1.
dc.relationReynolds LC, Duncan MM, Smith GC, Mathur A, Neil J, Inder T, et al. Parental presence and holding in the neonatal intensive care unit and associations with early neurobehavior. J Perinatol. 2013;33(8):636–41.
dc.relationBera A, Ghosh J, Singh AK, Hazra A, Mukherjee S, Mukherjee R. Effect of kangaroo mother care on growth and development of low birthweight babies up to 12 months of age: A controlled clinical trial. Acta Paediatr Int J Paediatr. 2014;103(6):643–50.
dc.relationMerton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):227.
dc.relationBarker AT, Jalinous R, Freeston IL. Non-Invasive Magnetic Stimulation of Human Motor Cortex. Lancet [Internet]. 1985;325(8437):1106–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0140673685924134
dc.relationPascual-Leone A, Davey N, Wassermann E, Rothwell J, Puri B. Handbook of transcranial magnetic stimulation. London: Arnold Press; 2001.
dc.relationPascual-Leone A, Tormos-Muñoz JM. [Transcranial magnetic stimulation: the foundation and potential of modulating specific neuronal networks]. In: Revista de neurologia [Internet]. 2008. p. S3-10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18302119
dc.relationKobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol [Internet]. 2003;2(3):145–56. Available from: http://www.sciencedirect.com/science/article/pii/S1474442203003211
dc.relationBartrés-Faz D, Junqué C, Tormos-Muñoz JM, Pascual-Leone Á. Aplicación de la estimulación magnética transcraneal a la investigación neuropsicológica. Rev Neurol. 2000;30(12):1169–74.
dc.relationossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.
dc.relationZiemann U, Rothwell JC, Ridding MC. Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol [Internet]. 1996;496(3):873–81. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1160871&tool=pmcentrez&rendertype=abstract
dc.relationDi Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol. 2000;111(5):794–9.
dc.relationHallett M. Transcranial Magnetic Stimulation: A Primer. Neuron. 2007;55(2):187–99.
dc.relationMeyer BU, Röricht S, Woiciechowsky C. Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol. 1998;43(3):360–9.
dc.relationReis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. Vol. 586, Journal of Physiology. 2008. p. 325–51.
dc.relationDavidson T, Tremblay F. Age and hemispheric differences in transcallosal inhibition between motor cortices: An ispsilateral silent period study. BMC Neurosci [Internet]. 2013 [cited 2019 Nov 21];14. Available from: http://www.biomedcentral.com/1471-2202/14/62
dc.relationChen R, Lozano AM, Ashby P. Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res. 1999;128(4):539–42.
dc.relationFerbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. Interhemispheric inhibition of the human motor cortex. J Physiol. 1992;453(1):525–46.
dc.relationSchneider C, Devanne H, Lavoie BA, Capaday C. Neural mechanisms involved in the functional linking of motor cortical points. Exp Brain Res. 2002;146(1):86–94.
dc.relationBeaulé V, Tremblay S, Théoret H. Interhemispheric control of unilateral movement. Neural Plast. 2012;2012.
dc.relationCox BC, Cincotta M, Espay AJ. Mirror movements in movement disorders: a review. Tremor Other Hyperkinet Mov (N Y) [Internet]. 2012;2:2–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23440079%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3569961
dc.relationCiechanski P, Zewdie E, Kirton A. Developmental profile of motor cortex transcallosal inhibition in children and adolescents. J Neurophysiol. 2017;118(1):140–8.
dc.relationGarvey MA, Ziemann U, Bartko JJ, Denckla MB, Barker CA, Wassermann EM. Cortical correlates of neuromotor development in healthy children. Clin Neurophysiol. 2003;114(9):1662–70.
dc.relationWasserman E. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation. Electroencaphalogr Clin Neurophysiol. 1998;108(1):1–16.
dc.relationChan T. An investigation of finger and manual dexterity. Percept Mot Skills. 2000;90(2):537–42.
dc.relationBackman C, Gibson SCD, Parsons J. Assessment of Hand Function: The Relationship between Pegboard Dexterity and Applied Dexterity. Can J Occup Ther [Internet]. 1992;59(4):208–13. Available from: http://cjo.sagepub.com/content/59/4/208.abstract
dc.relationExner C. In-hand manipulation skills in normal young children: A pilot study. OT Pract. 1999;1:63–72.
dc.relationPoole JL, Burtner PA, Torres TA, McMullen CK, Markham A, Marcum ML, et al. Measuring dexterity in children using the Nine-hole Peg Test. J Hand Ther. 2005;18(3):348–51.
dc.relationde Vries L, van Hartingsveldt MJ, Cup EHC, Nijhuis-van der Sanden MWG, de Groot IJM. Evaluating fine motor coordination in children who are not ready for handwriting: Which test should we take? Occup Ther Int. 2015;22(2):61–70.
dc.relationKellor M, Frost J, Silberberg N, Iversen I, Cummings R. Hand strength and dexterity. Am J Occup Ther Off Publ Am Occup Ther Assoc. 1971;25(2):77–83.
dc.relationMathiowetz V, Weber K, Kashman N, Volland G. Adult norms for the Nine Hole Peg Test of finger dexterity. Occup Ther J Res [Internet]. 1985;5(1):24–38. Available from: http://otj.sagepub.com/lookup/doi/10.1177/153944928500500102%5Cnhttp://psycnet.apa.org/psycinfo/1986-05316-001%5Cnhttp://nhpt.wikispaces.com/file/view/9-Hole+Norms.pdf
dc.relationGrice KO, Vogel KA, Le V, Mitchell A, Muniz S, Vollmer MA. Adult norms for a commercially available nine hole peg test for finger dexterity. Am J Occup Ther. 2003;57(5):570–3.
dc.relationPitcher JB, Schneider LA, Burns NR, Drysdale JL, Higgins RD, Ridding MC, et al. Reduced corticomotor excitability and motor skills development in children born preterm. J Physiol. 2012;590(22):5827–44.
dc.relationKurth F, Mayer EA, Toga AW, Thompson PM, Luders E. The right inhibition? Callosal correlates of hand performance in healthy children and adolescents callosal correlates of hand performance. Hum Brain Mapp. 2013;34(9):2259–65.
dc.relationCharpak N, Ruiz-Peláez JG, Figueroa de C Z, Charpak Y. Kangaroo mother versus traditional care for newborn infants </=2000 grams: a randomized, controlled trial. Pediatrics. 1997;100(4):682–8.
dc.relationCharpak N, Tessier R, Ruiz JG, Hernandez JT, Uriza F, Villegas J, et al. Twenty-year follow-up of kangaroo mother care versus traditional care. Pediatrics. 2017;139(1).
dc.relationSäisänen L, Julkunen P, Lakka T, Lindi V, Könönen M, Määttä S. Development of corticospinal motor excitability and cortical silent period from mid-childhood to adulthood – a navigated TMS study. Neurophysiol Clin. 2018;48(2):65–75.
dc.relationCarson RG. Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Rev. 2005;49(3):641–62.
dc.relationFling BW, Seidler RD. Task-dependent effects of interhemispheric inhibition on motor control. Behav Brain Res. 2012;226(1):211–7.
dc.relationDavidson T, Tremblay F. Hemispheric Differences in Corticospinal Excitability and in Transcallosal Inhibition in Relation to Degree of Handedness. PLoS One. 2013;8(7).
dc.relationHadders-Algra M, Touwen BCL. Body measurements, neurological and behavioural development in six-year-old children born preterm and/or small-for-gestational-age. Early Hum Dev. 1990;22(1):1–13.
dc.relationTuvemo T, Lundgren EM. Neurological and intellectual consequences of being born small for gestational age. Pediatr Adolesc Med. 2009;13:134–47.
dc.relationLundgren EM, Tuvemo T. Effects of being born small for gestational age on long-term intellectual performance. Best Pract Res Clin Endocrinol Metab. 2008;22(3):477–88.
dc.relationFlamand VH, Denis A, Allen-Demers F, Lavoie M, Tessier R, Schneider C. Altered transcallosal inhibition evidenced by transcranial magnetic stimulation highlights neurophysiological consequences of premature birth in early adulthood. J Neurol Sci. 2018;393:18–23.
dc.relationSzymanska M, Schneider M, Chateau-Smith C, Nezelof S, Vulliez-Coady L. Psychophysiological effects of oxytocin on parent–child interactions: A literature review on oxytocin and parent–child interactions. Psychiatry Clin Neurosci. 2017;71(10):690–705.
dc.relationHake-Brooks SJ, Anderson GC. Kangaroo care and breastfeeding of mother-preterm infant dyads 0-18 months: a randomized, controlled trial. Neonatal Netw. 2008;27(3):151–9.
dc.relationSuman Rao PN, Udani R, Nanavati R. Kangaroo mother care for low birth weight infants: A randomized controlled trial. Indian Pediatr. 2008;45(1):17–23.
dc.relationSharma D, Shastri S, Sharma P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin Med Insights Pediatr. 2016;
dc.relationHutton JL, Pharoah POD, Cooke RWI, Stevenson RC. Differential effects of preterm birth and small gestational age on cognitive and motor development. Arch Dis Child Fetal Neonatal Ed. 1997;76(2).
dc.relationNetz J, Ziemann U, Hömberg V. Hemispheric asymmetry of transcallosalinhibition in man. Exp Brain Res. 1995;104(3):527–33.
dc.relationBeauchamp MS, Beurlot MR, Fava E, Nath AR, Parikh NA, Saad ZS, et al. The developmental trajectory of brain-scalp distance from birth through childhood: Implications for functional neuroimaging. PLoS One. 2011;6(9).
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleDesenlaces motores del bajo peso al nacer y el nacimiento pretérmino en adultos jóvenes: efectos del método madre canguro
dc.typeOtro


Este ítem pertenece a la siguiente institución