dc.contributor | Torres Galindo, Diego Alejandro | |
dc.creator | Lagares Casarrubia, Julio Antonio | |
dc.date.accessioned | 2021-02-05T16:59:08Z | |
dc.date.available | 2021-02-05T16:59:08Z | |
dc.date.created | 2021-02-05T16:59:08Z | |
dc.date.issued | 2020-11-13 | |
dc.identifier | Lagares Casarrubia, J. A. (2020). Frenado de iones en la materia y usos en hadronterapia [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79093 | |
dc.description.abstract | Hadrontherapy is a type of radiotherapy characterized by the use of ion beams for the treatment of oncological diseases (cancer). Due to the nature of the interaction of ions with matter, hadrontherapy has the advantage of delivering treatment doses in a more localized way with respect to how it happens with the use of electron or photon beams. To date, experimental studies with different ions are carried out, however in real treatments only ions of 1H and 12C are used.
In this work a set of simulations of the transport and stopping of ions in matter was performed using a software called SRIM. In this simulation, it is considered independently, 1H ions with 9 energies between 70 and 141 MeV and 12C ions with 9 energies between 1.53 and 3.17 GeV. These were first interacted with a medium composed entirely of water and then in a medium that includes a human tissues combination. The obtained results allow to analyze the transferred energy curves produced by the ions in their path through the simulated media and therefore identify the characteristic Bragg peaks for this type of particles and estimate both at which they occur, as well as the values of the maximum energy transferred in said peaks for each case simulated.
The study also allows to identify the variation, as much in the distribution of the transferred energy as in the depth of the maximum, caused by the inclusion of the combination of the tissues and also allows to recognize the differences that appear between the use of ions of 1H and ions of 12C. Additionally a relationship between the initial energy of the ion beam and the maximun depth of maximum transferred energy value. | |
dc.description.abstract | La hadronterapia es un tipo de radioterapia que se caracteriza por el uso de haces de iones para el tratamiento de enfermedades oncológicas (cáncer) y que, debido a la naturaleza de la interacción de los iones con la materia, presenta la ventaja de entregar las dosis de tratamiento de manera más localizada respecto a como ocurre con el uso de haces de electrones o fotones. En la actualidad se realizan estudios experimentales con diferentes iones, sin embargo en tratamiento real sólo se utilizan iones de 1H (protones) y de 12C.
En este trabajo se realizó un conjunto de simulaciones del transporte y frenado de iones en la materia empleando un software denominado SRIM. En dicha simulación se consideraron, independientemente, iones de 1H con 9 energías comprendidas entre 70 y 141 MeV e iones de 12C con 9 energías comprendidas entre 1.53 y 3.17 GeV. Estos se hicieron interactuar primeramente con un medio compuesto en su totalidad por agua y luego con un medio que incluía cierta porción de una combinación de tejidos humanos. Los resultados obtenidos permiten analizar las curvas de energía transferida producidas por los iones en su recorrido a través de los medios simulados y por tanto identificar los picos de Bragg característicos para este tipo de partículas y estimar tanto la profundidad a la que se dan, como los valores de la máxima energía transferida en dichos picos para cada caso simulado.
El estudio realizado permite identificar además la variación, tanto en la distribución de la energía transferida como en la profundidad del máximo, ocasionada por la inclusión de la combinación de tejidos y también permite reconocer las diferencias que se presentan entre el empleo de iones de 1H y 12C. Adicionalmente se pudo establecer una relación funcional entre la energía inicial de los iones y la profundidad del máximo valor de energía transferida. | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Física Médica | |
dc.publisher | Departamento de Física | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | World Health Organization (2017), http://www.who.int/mediacentre/factsheets/fs297/es | |
dc.relation | Instituto Nacional de Cancerología (2016), http://www.cancer.gov.co/cancer en cifras | |
dc.relation | R. Schulte, V. Bashkirov, M. Loss Klock, T. Li, A. Wroe, I. Evseev, D. Williams, and T. Satogata, Density Resolution of Proton Computed Tomography, University of Wollongong, Faculty of Engineering - Papers. Australia (2005) | |
dc.relation | M. Solans, C. Almazán, y J. Espinàs, La Protonterapia en el Tratamiento del Cáncer, Agència de Qualitat i Avaluació Sanitàries de Catalunya, Barcelona (2014) | |
dc.relation | D. Cussol, Nuclear Physics and Hadrontherapy, LPC Caen, ENSICAEN, Universitè de Caen Basse-Normandie, IN2P3/CNRS | |
dc.relation | S. Lozares, F. Mañeru, S. Pellejero, Radioterapia con Partículas Pesadas, Servicio de Radiofísica y Protección Radiológica Hospital de Navarra, Pamplona, An. Sist. Sanit. Navar. 2009, Vol. 32, Suplemento 2 | |
dc.relation | K. Abdullah, Hadron Therapy for Cancer Using Heavy Ions, Tesis de Maestría. University of Surrey, England, (2011) | |
dc.relation | E. Podgorsak, Radiation Oncology Physics: a Handbook for Teachers and Students, IAEA, Austria (2005) | |
dc.relation | W. Wieszczycka, and W. Scharf, Proton Radiotherapy Acelerators, World Scientific Publishing, Singapur (2001) | |
dc.relation | Particle Therapy Co-Operative Group (2020), http://www.ptcog.ch | |
dc.relation | V. Sánchez, Terapia con protones: un plan contra el cáncer en México, Agencia Informativa Conacyt (http://conacytprensa.mx), Puebla. 18 de febrero de 2015 | |
dc.relation | L. Ballas, E. Elkin, D. Schrag, B. Minsky, and P. Bach, Radiation therapy facilities in the United States, International Journal of Radiation Oncology-Biology-Physics, Volume 66, Issue 4, 15 November 2006, Pages 1204–1211 | |
dc.relation | Chakravarti, Ciezki, Dicker, Efstathiou, Enke and Mahajan Proton Beam Therapy Holds Great Promise at a Step Cost, Healio (https://www.healio.com), August 25, 2012 | |
dc.relation | M. Schillo, Global Industrial Development of Accelerators for Charged Particle Therapy, WEIB01BH, Proceedings of IPAC, Dresden, Germany (2014) | |
dc.relation | B. Vanderstraeten, J. Verstraete, R. De Croock, W. De Neve, and Y. Lievens, In Search of the Economic Sustainability of Hadron Therapy: The Real Cost of Setting Up and Operating a Hadron Facility, International Journal of Radiation Oncology-Biology-Physics, Volume 89, Issue 1, 1 May 2014, Pages 152–160 | |
dc.relation | K. Tadashi, H. Tsujii, E. Blakely, J. Debus, W. De Neve, M. Durante, O. Jäkel, R. Mayer, R. Orecchia, R. Pötter, S. Vatnitsky, and W. Chu, Carbon ion radiotherapy in Japan: an Assessment of 20 Years of Clinical Experience,The Lancet Oncology, Volume 16, Issue 2, February 2015, Pages e93–e100 | |
dc.relation | V.Aleksandrov, N. Kazarinov, V. Shevtsov, A. Tuzikov, Axial Injection Beam-line of C400 Cyclotron for Hadron Therapy: Particles Dynamics and Magnetic Field Screening, Cyclotrons and Their Applications 2007, Eighteenth International Conference | |
dc.relation | Y. Jongen, W. Kleeven, S. Zaremba, D. Vandeplassche, W. Beeckman, V. Aleksandrov, G. Karamysheva, N. Kazarinov, I. Kian, S. Kostromin, N. Morozov, E. Samsonov, G. Shirkov, V. Shevtsov, and E. Syresin, Design Studies of the Compact Superconducting Cyclotron for Hadron Therapy, TUPLS078 Proceedings of EPAC 2006, Edinburgh, Scotland | |
dc.relation | M. Muramatsu and A. Kitagawa, A Review of Ion Sources for Medical Accelerators,Rev. Sci. Instrum. 83, 02B909 (2012) | |
dc.relation | T. Kalvas, O. Tarvainen, J. Komppula, M. Laitinen, T. Sajavaara, H. Koivisto, A. Jokinen and M. P. Dehnel, Recent Negative Ion Source Activity at JYFL,AIP Conf. Proc. 1515, 349 (2013) | |
dc.relation | M. Muramatsu, A. G. Drentje, and A. Kitagawa, Development of Electron Cyclotron Resonance Ion Source for Carbon-Ion Radiotherapy,Proceedings of HIAT (2015), Yokohama, Japan WEPB23 | |
dc.relation | M. Abdelrahman, Factors Enhancing Production of Multicharged Ion Sources and Their Applications,Science and Technology, p-ISSN: 2163-2669, e-ISSN: 2163-2677(2012); 2(4):98- 108 | |
dc.relation | B. Schlitt, G. Clemente, C.M. Kleffner, M. Maier, A. Reiter, W. Vinzenz and H. Vormann, LINAC Commissioning at the Italian Hadrontherapy Centre CNAO, Proceedings of IPAC’10, Kyoto, Japan, MOPEA003 | |
dc.relation | A. Lombardi, The Radio Frequency Quadrupole (RFQ) , CERN European Organization For Nuclear Research CAS - CERN Accelerator School, Small Accelerators, Zeegse, The Netherlands, 24 May - 2 Jun 2005, pp.201-207 Geneva (2006) | |
dc.relation | H. Widemann, D. Brandt, E. Perevedentsev, S. Kurokawa, Physics and Technology of Linear Acelerator Sistems, Proceedings of the 2002 Joint USPAS-CAS-JApan-Rusia Acelerator School, World Scientific Publishing Co., Singapore (2004) | |
dc.relation | W. Burcham, Física Nuclear, Reverté, Barcelona (2003) | |
dc.relation | J. Staples, RFQ’s- An Introduction, Lawrence Berkeley Laboratory University of California
Berkeley, California 94720, (1990) | |
dc.relation | H. Widemann, Particle Accelerator Physics, Graduate Texts in Physics, Springer International Publishing Switzerland (2015) | |
dc.relation | E. Podgorsak, Radiation Physics for Medical Physicists, 2nd Edition, Springer, Berlin, (2010) | |
dc.relation | S. Peggs, T. Satogata, and J. Flanz, A Survey Of Hadrontherapy Acelerator Technologies,Proceedings of PAC07, Albuquerque, New Mexico, USA, MOZAC02 | |
dc.relation | A. Green, Nuclear Physics, McGraw Hill Book Co., Inc. (1955) | |
dc.relation | Britannica Kids Students, Nuclear Energy, (2017), https://kids.britannica.com/students
/article/nuclear-energy/276131/media | |
dc.relation | S. Braccini, Scientific And Technological Development Of Hadrontherapy, Albert Einstein Centre for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland | |
dc.relation | U. Weinrich, Gantry Design For Proton And Carbon Hadrontherapy Facilities,Proceedings of EPAC 2006, Edinburgh, Scotland | |
dc.relation | H. Owen, D. Holder, J. Alonso, R. Mackay Technologies For Delivery Of Proton And Ion Beams For Radiotherapy, Preprint submitted to Int. J. Mod. Phys. A October 2, 2013 | |
dc.relation | MEVION Medical Systems, Proton Therapy, (2017), http://www.mevion.com /products/mevions250protontherapysystem | |
dc.relation | Universitats KliniKum Heidelberg, (2017), https://www.klinikum.uni-heidelberg.de /Treatment-rooms.129457.0.html?&L=1 | |
dc.relation | U. Amaldi, Radiotherapy With Beams Of Carbon Ions,Proceedings of EPAC 2006, Edin- burgh, Scotland | |
dc.relation | M. Jermann, Particle Theraphy Statistics in 2014, Secretary of the Particle Therapy Cooperative Group Paul Scherrer Institute, Villigen, Switzerland. International Journal of Particle Therapy, (2015) | |
dc.relation | M. Rosenchold, S. Engelholm, L. Ohlhues, I. Law, I. Vogelius, S. A. Egelholm, Pho- ton and Proton Therapy Planning Comparison for Malignant Glioma Based on CT, FDG-PET, DTI- MRI and Giber Tracking, Acta Oncologica, 50:6, 777-783, DOI: 10.3109/0284186X.2011.584555 | |
dc.relation | M. Jermann, Particle Therapy Patient Statistics (per end of 2015), Data collected by the Particle Therapy Co-Operative Group, November 2016 | |
dc.relation | A. Ferrer, E. Ros, Física de Partículas y de Astropartículas, Universitat de Vàlencia, Valencia (2005) | |
dc.relation | T. DeLaney, H. Kooy, Proton and Charged Particle Radiotherapy , Lippincott Williams and Wilkins, Philadelphia (2008) | |
dc.relation | J. Ziegler, IThe Stopping of Energetic Light Ions in Elemental Matter, J. Appl. Phys / Rev. Appl. Phys., 85, 1249-1272 (1999) | |
dc.relation | F. Attix, Introduction to Radiological Physics and Radiation Dosimetry, WILEY-VHC, Wenhein (2004) | |
dc.relation | J. Turner, Atoms, Radiation and Radiation Protection, 3th Edition, WILEY-VHC, Wenhein (2007) | |
dc.relation | National Institud of Standard and Technology, (2020), https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html | |
dc.relation | SRIM - Página Web Oficial, (2015), http://www.srim.org/#SRIM | |
dc.relation | A. Quiroga, Aspectos Físicos de la Hadronterapia, Tesis de Maestría, Universidad Nacional de Colombia, Bogotá (2014) | |
dc.relation | American Assocition of Physicists in Medicine, sTask Group 20 (AAPM): Protocol for heavy-charged particle therapy beam dosimetry. AA-PM Report No. 16 American. Association of Physicists in Medicine, New York (1986) | |
dc.relation | Aspectos Físicos de la Garantía de Calidad en Radioterapia: Protocolo de Control de Calidad. Organismo Internacional de Energía Atómica (OIEA). IAEA-TECDOC-1151, Viena (2000) | |
dc.relation | L. Gartner, J. Hiatt, Texto Atlas de Histolog ́ıa, 2da ed. McGraw-Hill Interamerica editores, S.A. Mexico, D.F. (2007) | |
dc.relation | M. Palencia, Diversidad Craneométrica Humana. Estudio del Espesor Craneal en Cadáveres Provenientes de Diversas Regiones Colombianas, Tesis de Maestría. Universidad Nacional de Colombia, Bogotá, DC., (2018) | |
dc.relation | J. Ziegler, J. Biersack, M. Ziegler. SRIM, The Stopping and Range of Ions in Matter. SRIM Company, (2008) | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | Acceso abierto | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Frenado de iones en la materia y usos en hadronterapia | |
dc.type | Otro | |