dc.contributor | Olaya Flores, Jhon Jairo | |
dc.contributor | Velasco Estrada, Leonardo | |
dc.contributor | Grupo de investigación en corrosión, tribología y energía | |
dc.creator | Castillo Figueroa, Juan Sebastian | |
dc.date.accessioned | 2022-08-23T14:51:06Z | |
dc.date.accessioned | 2022-09-21T19:58:53Z | |
dc.date.available | 2022-08-23T14:51:06Z | |
dc.date.available | 2022-09-21T19:58:53Z | |
dc.date.created | 2022-08-23T14:51:06Z | |
dc.date.issued | 2021 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82017 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3420103 | |
dc.description.abstract | Los proyectos de diseño y fabricación de materiales requieren muchos esfuerzos de tiempo y dinero. Por este motivo, el desarrollo de nuevas tecnologías para la investigación es imperativo y será de gran utilidad para el aumento en la probabilidad de descubrimiento en el campo de los nuevos materiales. Por ejemplo, con la metodología de alto rendimiento, soportado por el aprendizaje autónomo, es posible hacer predicciones teóricas que facilitará la formulación de nuevas combinaciones de componentes químicos. En este estudio, se presenta el desarrollo de una librería de materiales multicomponentes de alta entropía basada en tierras raras como cerio, praseodimio, lantano, samario e itrio. Se exploró el espacio composicional de estos materiales variando en 5 at.% la composición química de cada uno de los elementos hasta el óxido de alta entropía equiatómico que corresponde al 20 at.% de cada uno de los elementos y en consecuencia se generaron 106 muestras. La síntesis se llevó a cabo por medio de la técnica de pipeteo automatizada con el equipo Opentrons OT-2, el cual tiene diferentes aplicaciones investigativas en el sector de la biología, la farmacéutica y en este trabajo se extendió a la ciencia de los materiales. Este equipo presenta gran versatilidad en los procesos investigativos, alta precisión en la toma de muestras (±1µL) y el espacio físico requerido por la máquina es pequeño, gracias a esto se implementó una metodología de alto rendimiento y de bajo costo. Posterior a la fabricación, se realizó la caracterización de 5 óxidos simples, 10 óxidos binarios, 10 óxidos ternarios, 5 cuaternarios y 76 óxidos de alta entropía, mediante difracción de rayos X automatizado (XRD) con ayuda de una mesa XY, espectroscopia Raman automatizada, espectroscopia de rayos X de energía dispersiva (EDS) con mapas de composición química sobre los materiales producidos y espectroscopia de reflectancia difusa automatizada (Uv-Vis) con ayuda de una mesa XYZ. La visualización de los resultados se realizó mediante diagramas de fase-propiedad multidimensionales, donde se relaciona la estructura cristalina de los materiales producidos con la composición química, brecha de energía prohibida (BG) y concentración de vacancias de oxígeno (OVC). Se pudo observar que tanto el cerio como el praseodimio pueden estabilizar los óxidos de tierras raras multicomponentes en una estructura cristalina monofásica. En este estudio, al menos 78 de las muestras producidas no han sido reportadas antes en la literatura, incluso 2 ternarios no fueron reportados posiblemente porque no forman estructuras cristalinas monofásicas. Además, el valor del band gap varió entre ~1,86 eV y ~2,26 eV dentro de los sistemas quinarios. Se ha demostrado que el band gap del óxido de alta entropía equiatómico puede ajustarse aún más, desde ~2 eV hasta ~3,21 eV. Además, al menos 10 de los materiales fabricados son posibles candidatos para celdas de combustible de óxido sólido. Con esta investigación se pretende dar un primer paso para establecer librerías de materiales de sistemas multicomponentes integrando las estructuras cristalinas y propiedades, junto con el análisis de datos y los enfoques teóricos, lo cual abre caminos hacia el desarrollo virtual de nuevos materiales para aplicaciones tanto funcionales como estructurales. (Texto tomado de la fuente) | |
dc.description.abstract | Materials design and fabrication projects require a lot of time and money; for this reason, the
development of new technologies for research is imperative and will be used for increasing
the probability of discovery in the field of new materials. For example, the highthroughput
methodology, supported by artificial intelligence, allows making theoretical predictions, thus
facilitating the formulation of new combinations of chemical components. This study presents
the development of a material library of high entropy oxides based on rare earths such as
cerium, praseodymium, lanthanum, samarium and yttrium. The compositional space of these
materials was explored by varying the chemical composition of each of the elements in 5 at.
% up to the equiatomic high entropy oxide that corresponds to 20 at.% of each element,
which generated 106 samples. The synthesis was carried out by an automated pipetting
technique with the Opentrons OT-2 liquid handler, which has different research applications
in biology, pharmaceutics and, in this work, it was extended to materials science. This
equipment presents high versatility in the research processes, high precision in liquid
handling (±1µL) and the physical space required by the machine is small. Thanks to these
advantages, a high throughput methodology was implemented with high performance and
low cost.
After synthesis, the characterization was performed of 5 single oxides, 10 binary oxides, 10
ternary oxides, 5 quaternary oxides and 76 high entropy oxides by automated X-ray diffraction
(XRD) using a XY table, automated Raman spectroscopy, energy dispersive Xray
spectroscopy (EDS) with chemical composition maps on the materials produced and
automated diffuse reflectance spectroscopy with a XYZ table. The results were depicted by
means of multidimensional phase-property diagrams, where the crystalline structure of the produced materials is related to chemical composition, band gap (BG) and oxygen vacancy
concentration (OVC).
Cerium and praseodymium proved to be able to stabilize multicomponent rare earth oxides
in a single-phase crystal structure. In this study, at least 78 of the produced samples had
not been reported before in the literature, even 2 ternaries had not been reported as they
form no single-phase crystal structures. The band gap value ranged from ~1.86 eV to ~2.26
eV within quinary systems. The band gap of the equiatomic high entropy oxide can be tuned
from ~2 eV to ~3.21 eV. Additionally, at least 10 of the fabricated materials are possible
candidates for solid oxide fuel cells due to their high oxygen vacancies concentration.
Finally, this research aims to be a first step toward establishing material libraries of
multicomponent systems by integrating crystal structures and properties, together with data
analysis and theoretical approaches, which opens paths for the virtual development of new
materials for both functional and structural applications | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos | |
dc.publisher | Departamento de Ingeniería Mecánica y Mecatrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural
development in equiatomic multicomponent alloys,” Mater. Sci. Eng. A, vol. 375–
377, no. 1-2 SPEC. ISS., pp. 213–218, 2004, doi: 10.1016/j.msea.2003.10.257. | |
dc.relation | J. W. Yeh et al., “Nanostructured high-entropy alloys with multiple principal
elements: Novel alloy design concepts and outcomes,” Adv. Eng. Mater., vol. 6, no.
5, pp. 299-303+274, 2004, doi: 10.1002/adem.200300567. | |
dc.relation | A. Sarkar et al., “High-Entropy Oxides: Fundamental Aspects and Electrochemical
Properties,” Adv. Mater., vol. 31, no. 26, 2019, doi: 10.1002/adma.201806236. | |
dc.relation | J. W. Yeh and S. J. Lin, “Breakthrough applications of high-entropy materials,” J.
Mater. Res., vol. 33, no. 19, pp. 3129–3137, 2018, doi: 10.1557/jmr.2018.283. | |
dc.relation | T. Gebhardt, D. Music, T. Takahashi, and J. M. Schneider, “Combinatorial thin film
materials science: From alloy discovery and optimization to alloy design,” Thin
Solid Films, vol. 520, no. 17, pp. 5491–5499, 2012, doi: 10.1016/j.tsf.2012.04.062. | |
dc.relation | R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam,
“Combinatorial and high-throughput screening of materials libraries: Review of
state of the art,” ACS Combinatorial Science, vol. 13, no. 6. American Chemical
Society, pp. 579–633, Nov. 14, 2011, doi: 10.1021/co200007w. | |
dc.relation | D. P. Tabor et al., “Accelerating the discovery of materials for clean energy in the
era of smart automation,” Nature Reviews Materials, vol. 3, no. 5. Nature
Publishing Group, pp. 5–20, Apr. 26, 2018, doi: 10.1038/s41578-018-0005-z. | |
dc.relation | C. M. Rost et al., “Entropy-stabilized oxides,” Nat. Commun., vol. 6, pp. 1–8, 2015,
doi: 10.1038/ncomms9485. | |
dc.relation | E. Castle, T. Csanádi, S. Grasso, J. Dusza, and M. Reece, “Processing and
Properties of High-Entropy Ultra-High Temperature Carbides,” Sci. Rep., vol. 8, no.
1, pp. 1–12, 2018, doi: 10.1038/s41598-018-26827-1. | |
dc.relation | J. Gild et al., “High-Entropy Metal Diborides: A New Class of High-Entropy
Materials and a New Type of Ultrahigh Temperature Ceramics,” Sci. Rep., vol. 6,
no. October, pp. 2–11, 2016, doi: 10.1038/srep37946. | |
dc.relation | T. Jin et al., “Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride
via a Soft Urea Strategy,” Adv. Mater., vol. 30, no. 23, pp. 1–5, 2018, doi:
10.1002/adma.201707512. | |
dc.relation | R. Z. Zhang, F. Gucci, H. Zhu, K. Chen, and M. J. Reece, “Data-Driven Design of
Ecofriendly Thermoelectric High-Entropy Sulfides,” Inorg. Chem., vol. 57, no. 20,
pp. 13027–13033, 2018, doi: 10.1021/acs.inorgchem.8b02379. | |
dc.relation | Q. Wang et al., “High entropy oxides as anode material for Li-ion battery
applications: A practical approach,” Electrochem. commun., vol. 100, no. January,
pp. 121–125, 2019, doi: 10.1016/j.elecom.2019.02.001. | |
dc.relation | X. Yan and Y. Zhang, “Functional properties and promising applications of high
entropy alloys,” Scr. Mater., vol. 187, pp. 188–193, 2020, doi:
10.1016/j.scriptamat.2020.06.017. | |
dc.relation | F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, “An
understanding of high entropy alloys from phase diagram calculations,” Calphad
Comput. Coupling Phase Diagrams Thermochem., vol. 45, pp. 1–10, 2014, doi:
10.1016/j.calphad.2013.10.006. | |
dc.relation | Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “Solid-solution phase
formation rules for multi-component alloys,” Adv. Eng. Mater., vol. 10, no. 6, pp.
534–538, Jun. 2008, doi: 10.1002/adem.200700240. | |
dc.relation | B. Burger et al., “A mobile robotic chemist,” Nature, 2020, doi: 10.1038/s41586-
020-2442-2. | |
dc.relation | Z. Li et al., “Robot-Accelerated Perovskite Investigation and Discovery,” Chem.
Mater., vol. 32, no. 13, pp. 5650–5663, Jul. 2020, doi:
10.1021/acs.chemmater.0c01153. | |
dc.relation | S. Sun et al., “A data fusion approach to optimize compositional stability of halide
perovskites,” Matter, vol. 4, no. 4, pp. 1305–1322, Apr. 2021, doi:
10.1016/j.matt.2021.01.008. | |
dc.relation | K. Higgins, S. M. Valleti, M. Ziatdinov, S. V. Kalinin, and M. Ahmadi, “Chemical
Robotics Enabled Exploration of Stability in Multicomponent Lead Halide
Perovskites via Machine Learning,” ACS Energy Lett., vol. 5, no. 11, pp. 3426–
3436, Nov. 2020, doi: 10.1021/acsenergylett.0c01749. | |
dc.relation | P. Nikolaev et al., “Autonomy in materials research: A case study in carbon
nanotube growth,” npj Comput. Mater., vol. 2, no. 1, pp. 1–6, Oct. 2016, doi:
10.1038/npjcompumats.2016.31. | |
dc.relation | S. Noda, Y. Tsuji, Y. Murakami, and S. Maruyama, “Combinatorial method to
prepare metal nanoparticles that catalyze the growth of single-walled carbon
nanotubes,” Appl. Phys. Lett., vol. 86, no. 17, pp. 1–3, Apr. 2005, doi:
10.1063/1.1920417. | |
dc.relation | A. M. Cassell, S. Verma, L. Delzeit, M. Meyyappan, and J. Han, “Combinatorial
optimization of heterogeneous catalysts used in the growth of carbon nanotubes,”
Langmuir, vol. 17, no. 2, pp. 260–264, Jan. 2001, doi: 10.1021/la001273a. | |
dc.relation | A. Rar et al., “PVD synthesis and high-throughput property characterization of NiFe-Cr alloy libraries,” Meas. Sci. Technol., vol. 16, no. 1, pp. 46–53, Dec. 2005,
doi: 10.1088/0957-0233/16/1/007. | |
dc.relation | J. J. Hanak, “The ‘multiple-sample concept’ in materials research: Synthesis,
compositional analysis and testing of entire multicomponent systems,” J. Mater.
Sci., vol. 5, no. 11, pp. 964–971, Nov. 1970, doi: 10.1007/BF00558177. | |
dc.relation | K. Kennedy, T. Stefansky, G. Davy, V. F. Zackay, and E. R. Parker, “Rapid method
for determining ternary-alloy phase diagrams,” J. Appl. Phys., vol. 36, no. 12, pp.
3808–3810, 1965, doi: 10.1063/1.1713952. | |
dc.relation | H. Knoll, S. Ocylok, A. Weisheit, H. Springer, E. Jägle, and D. Raabe,
“Combinatorial Alloy Design by Laser Additive Manufacturing,” steel Res. Int., vol.
88, no. 8, p. 1600416, Aug. 2017, doi: 10.1002/SRIN.201600416. | |
dc.relation | P. Wilson, R. Field, and M. Kaufman, “The use of diffusion multiples to examine the
compositional dependence of phase stability and hardness of the Co-Cr-Fe-Mn-Ni
high entropy alloy system,” Intermetallics, vol. 75, pp. 15–24, 2016, doi:
10.1016/j.intermet.2016.04.007. | |
dc.relation | T. Borkar et al., “A Combinatorial Approach for Assessing the Magnetic Properties
of High Entropy Alloys: Role of Cr in AlCoxCr1–xFeNi,” Adv. Eng. Mater., vol. 19,
no. 8, p. 1700048, Aug. 2017, doi: 10.1002/adem.201700048. | |
dc.relation | K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer, and D. Raabe, “Nonequiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design,” Mater. Sci. Eng. A, vol. 648, pp. 183–192, Nov. 2015, doi: 10.1016/j.msea.2015.09.010. | |
dc.relation | A. Sarkar et al., “Multicomponent equiatomic rare earth oxides with a narrow band
gap and associated praseodymium multivalency,” Dalt. Trans., vol. 46, no. 36, pp.
12167–12176, Sep. 2017, doi: 10.1039/c7dt02077e. | |
dc.relation | H. Xu et al., “Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite
oxide supports,” Nat. Commun., vol. 11, no. 1, pp. 1–9, Aug. 2020, doi:
10.1038/s41467-020-17738-9. | |
dc.relation | A. Sarkar et al., “Nanocrystalline multicomponent entropy stabilised transition metal
oxides,” J. Eur. Ceram. Soc., vol. 37, no. 2, pp. 747–754, Feb. 2017, doi:
10.1016/j.jeurceramsoc.2016.09.018. | |
dc.relation | M. Biesuz, L. Spiridigliozzi, G. Dell’Agli, M. Bortolotti, and V. M. Sglavo, “Synthesis
and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet
chemical methods,” J. Mater. Sci., vol. 53, no. 11, pp. 8074–8085, 2018, doi:
10.1007/s10853-018-2168-9. | |
dc.relation | D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related
concepts,” Acta Mater., vol. 122, pp. 448–511, 2017, doi:
10.1016/j.actamat.2016.08.081. | |
dc.relation | O. N. Senkov, S. V. Senkova, C. Woodward, and D. B. Miracle, “Low-density,
refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure
and phase analysis,” Acta Mater., vol. 61, no. 5, pp. 1545–1557, Mar. 2013, doi:
10.1016/j.actamat.2012.11.032. | |
dc.relation | C. Zhang, F. Zhang, S. Chen, and W. Cao, “Computational thermodynamics aided
high-entropy alloy design,” JOM, vol. 64, no. 7, pp. 839–845, Jun. 2012, doi:
10.1007/s11837-012-0365-6. | |
dc.relation | S. Kirklin et al., “The Open Quantum Materials Database (OQMD): Assessing the
accuracy of DFT formation energies,” npj Comput. Mater., vol. 1, no. 1, pp. 1–15,
Dec. 2015, doi: 10.1038/npjcompumats.2015.10. | |
dc.relation | A. Sarkar et al., “Role of intermediate 4 f states in tuning the band structure of high
entropy oxides,” APL Mater., vol. 8, no. 5, p. 051111, May 2020, doi:
10.1063/5.0007944. | |
dc.relation | E. M. Chan et al., “Reproducible, high-throughput synthesis of colloidal
nanocrystals for optimization in multidimensional parameter space,” Nano Lett., vol.
10, no. 5, pp. 1874–1885, May 2010, doi: 10.1021/nl100669s. | |
dc.relation | H. Fleischer et al., “Analytical measurements and efficient process generation
using a dual–arm robot equipped with electronic pipettes,” Energies, vol. 11, no.
10, p. 2567, Sep. 2018, doi: 10.3390/en11102567. | |
dc.relation | L. Velasco, J. S. Castillo, M. V. Kante, J. J. Olaya, P. Friederich, and H. Hahn,
“Phase–Property Diagrams for Multicomponent Oxide Systems toward Materials
Libraries,” Adv. Mater., vol. 33, no. 43, p. 2102301, Oct. 2021, doi:
10.1002/adma.202102301. | |
dc.relation | B. L. Musicó et al., “The emergent field of high entropy oxides: Design, prospects,
challenges, and opportunities for tailoring material properties,” APL Mater., vol. 8,
no. 4, p. 040912, Apr. 2020, doi: 10.1063/5.0003149. | |
dc.relation | Z. Wang, S. Guo, and C. T. Liu, “Phase Selection in High-Entropy Alloys: From
Nonequilibrium to Equilibrium,” Jom, vol. 66, no. 10, pp. 1966–1972, 2014, doi:
10.1007/s11837-014-0953-8. | |
dc.relation | S. J. McCormack and A. Navrotsky, “Thermodynamics of high entropy oxides,”
Acta Mater., vol. 202, pp. 1–21, Jan. 2021, doi: 10.1016/J.ACTAMAT.2020.10.043. | |
dc.relation | W. Hume Rothery and R. G.V., The Structure of Metals and Alloys Institute of
Metals. 1962. | |
dc.relation | M. B.S., J. W. Yeh, S. Ranganathan, and B. P. P., High-entropy alloys, second
Volume, ASMT Handbook. 2019. | |
dc.relation | J. W. Yeh, Overview of high-entropy alloys. 2016 | |
dc.relation | R. A. Swalin, “Thermodynamics of Solids.” p. 386, 1972. | |
dc.relation | Rafael Schmitt et al., “A review of defect structure and chemistry in ceria and its
solid solutions,” Chem. Soc. Rev., vol. 49, no. 2, pp. 554–592, Jan. 2020, doi:
10.1039/C9CS00588A. | |
dc.relation | Changjie Mao, Yixin Zhao, Xiaofeng Qiu, Junjie Zhu, and Clemens Burda,
“Synthesis, characterization and computational study of nitrogen -doped CeO 2
nanoparticles with visible-light activity,” Phys. Chem. Chem. Phys., vol. 10, no. 36,
pp. 5633–5638, Sep. 2008, doi: 10.1039/B805915B. | |
dc.relation | G. R. Bamwenda and H. Arakawa, “Cerium dioxide as a photocatalyst for water
decomposition to O2 in the presence of Ceaq4+ and Feaq3+ species,” J. Mol.
Catal. A Chem., vol. 161, no. 1–2, pp. 105–113, Nov. 2000, doi: 10.1016/S1381-
1169(00)00270-3. | |
dc.relation | A. Corma, P. Atienzar, H. García, and J.-Y. Chane-Ching, “Hierarchically
mesostructured doped CeO2 with potential for solar-cell use,” Nat. Mater. 2004 36,
vol. 3, no. 6, pp. 394–397, May 2004, doi: 10.1038/nmat1129. | |
dc.relation | R. Djenadic et al., “Nebulized spray pyrolysis of Al-doped Li7La3Zr 2O12 solid
electrolyte for battery applications,” Solid State Ionics, vol. 263, pp. 49–56, 2014,
doi: 10.1016/j.ssi.2014.05.007. | |
dc.relation | A. Sarkar, R. Djenadic, N. J. Usharani, and K. P. Sanghvi, “Nanocrystalline
multicomponent entropy stabilised transition metal oxides Journal of the European
Ceramic Society Nanocrystalline multicomponent entropy stabilised transition metal
oxides,” J. Eur. Ceram. Soc., vol. 37, no. 2, pp. 747–754, 2016, doi:
10.1016/j.jeurceramsoc.2016.09.018. | |
dc.relation | E.-E. M. Sherif, Mechanical Alloying, vol. 53, no. 9. 2019 | |
dc.relation | A. J. Lynch and C. A. Rowland, The History of Grinding. 2015. | |
dc.relation | H. Aono, T. Nagamachi, T. Naohara, Y. Itagaki, T. Maehara, and H. Hirazawa,
“Synthesis conditions of nano-sized magnetite powder using reverse
coprecipitation method for thermal coagulation therapy,” J. Ceram. Soc. Japan, vol.
124, no. 1, pp. 23–28, 2016, doi: 10.2109/jcersj2.15183. | |
dc.relation | H. KAZEMZADEH, A. ATAIE, and F. RASHCHI, “ Synthesis of Magnetite Nano-Particles By Reverse Co -Precipitation ,” Int. J. Mod. Phys. Conf. Ser., vol. 05, pp.
160–167, 2012, doi: 10.1142/s2010194512001973. | |
dc.relation | J. M. Morales Tatay, “Modulación de la mesoestructura y composición en sílices
nanoparticuladas con porosidad jerárquica,” 2014. | |
dc.relation | J. Livage, “Sol±gel synthesis of heterogeneous catalysts from aqueous solutions.” | |
dc.relation | M. Henry, J. P. Jolivet, and J. Livage, “Aqueous chemistry of metal cations:
Hydrolysis, condensation and complexation,” Chem. Spectrosc. Appl. Sol-Gel
Glas., pp. 153–206, 2006, doi: 10.1007/bfb0036968. | |
dc.relation | G. Y. Adachi and N. Imanaka, “The binary rare earth oxides,” Chem. Rev., vol. 98,
no. 4, pp. 1479–1514, 1998, doi: 10.1021/cr940055h. | |
dc.relation | “Un nuevo tipo de manipulador de líquidos | Opentrons OT-2.”
https://www.opentrons.com/ot-2 (accessed Oct. 29, 2019) | |
dc.relation | A. Ludwig, “Discovery of new materials using combinatorial synthesis and highthroughput characterization of thin-film materials libraries combined with
computational methods,” npj Comput. Mater., vol. 5, no. 1, 2019, doi:
10.1038/s41524-019-0205-0 | |
dc.relation | D. König, J. Pfetzing-Micklich, J. Frenzel, and A. Ludwig, “Investigation of ternary
subsystems of superalloys by thin-film combinatorial synthesis and high-throughput
analysis,” MATEC Web Conf., vol. 14, pp. 4–7, 2014, doi:
10.1051/matecconf/20141418002. | |
dc.relation | A. Ludwig, R. Zarnetta, S. Hamann, A. Savan, and S. Thienhaus, “HighThroughput Experimentation Methods,” Int. J. Mat. Res., vol. 99, no. NOVEMBER,
pp. 1144–1149, 2008. | |
dc.relation | Y. Lederer, C. Toher, K. S. Vecchio, and S. Curtarolo, “The search for high entropy
alloys: A high-throughput ab-initio approach,” Acta Mater., vol. 159, pp. 364–383,
2018, doi: 10.1016/j.actamat.2018.07.042. | |
dc.relation | S. Guerin and B. E. Hayden, “Physical vapor deposition method for the highthroughput synthesis of solid-state material libraries,” J. Comb. Chem., vol. 8, no.
1, pp. 66–73, 2006, doi: 10.1021/cc050117p | |
dc.relation | S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, “The
high-throughput highway to computational materials design,” Nat. Mater., vol. 12,
no. 3, pp. 191–201, 2013, doi: 10.1038/nmat3568. | |
dc.relation | J. G. de Vries and A. H. M. de Vries, “The Power of High‐Throughput
Experimentation in Homogeneous Catalysis Research for Fine Chemicals,”
European J. Org. Chem., vol. 2003, no. 5, pp. 799–811, Mar. 2003, doi:
10.1002/ejoc.200390122. | |
dc.relation | K. Burgess, H. J. Lim, A. M. Porte, and G. A. Sulikowski, “New Catalysts and
Conditions for a C-H Insertion Reaction Identified by High Throughput Catalyst
Screening,” Angew. Chemie (International Ed. English), vol. 35, no. 2, pp. 220–
222, 1996, doi: 10.1002/anie.199602201. | |
dc.relation | W. Setyawan and S. Curtarolo, “High-throughput electronic band structure
calculations: Challenges and tools,” Comput. Mater. Sci., vol. 49, no. 2, pp. 299–
312, 2010, doi: 10.1016/j.commatsci.2010.05.010. | |
dc.relation | S. Salomon, F. Wöhrle, P. Hübner, P. Decker, and A. Ludwig, “Influences of Si
Substitution on Existence, Structural and Magnetic Properties of the CoMnGe
Phase Investigated in a Co–Mn–Ge–Si Thin-Film Materials Library,” ACS Comb.
Sci., 2019, doi: 10.1021/acscombsci.9b00107. | |
dc.relation | M. Faraldos and C. Goberna, Técnicas de análisis y caracterización de materiales.
2011. | |
dc.relation | S. Kundu, “Synthesis and Characterizations of Some Nanocrystalline Metal Oxide
Semiconductors and Composites With Different Morphologies Dissertation
Submitted To the University of Burdwan in Partial Fulfillment of the Requirements
for the Degree of Doctor of,” UNIVERSITY OF BURDWAN WEST BENGAL713104 INDIA, 2018. | |
dc.relation | B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction. Pearson Education
Limited, 2014 | |
dc.relation | J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy:
Second Edition. 2003. | |
dc.relation | T. Schmid and P. Dariz, “Raman microspectroscopic imaging of binder remnants in historical mortars reveals processing conditions,” Heritage, vol. 2, no. 2, pp. 1662–
1683, Jun. 2019, doi: 10.3390/heritage2020102. | |
dc.relation | Z. Y. Pu, J. Q. Lu, M. F. Luo, and Y. L. Xie, “Study of oxygen vacancies in
Ce0.9Pr0.1O 2-δ solid solution by in situ X-ray diffraction and in situ raman
spectroscopy,” J. Phys. Chem. C, vol. 111, no. 50, pp. 18695–18702, Dec. 2007,
doi: 10.1021/jp0759776. | |
dc.relation | A. Townshen, Principles of Instrumental Analysis, vol. 152. 1983 | |
dc.relation | T. Vickers, “Modern Techniques in Applied Molecular Spectroscopy,” Appl.
Spectrosc., vol. 52, pp. 330A-331A, 1998. | |
dc.relation | J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure
of Amorphous Germanium,” Phys. status solidi, vol. 15, no. 2, pp. 627–637, Jan.
1966, doi: 10.1002/pssb.19660150224. | |
dc.relation | A. Escobedo-Morales, I. I. Ruiz-López, M. de L. Ruiz-Peralta, L. Tepech-Carrillo,
M. Sánchez-Cantú, and J. E. Moreno-Orea, “Automated method for the
determination of the band gap energy of pure and mixed powder samples using
diffuse reflectance spectroscopy,” Heliyon, vol. 5, no. 4, Apr. 2019, doi:
10.1016/j.heliyon.2019.e01505. | |
dc.relation | “Origin Help - Creating Contour Graphs.” https://www.originlab.com/doc/OriginHelp/Create-Contour-Graph (accessed Sep. 04, 2020). | |
dc.relation | “Opentrons Protocol Designer BETA.” https://designer.opentrons.com/ (accessed
Feb. 03, 2022). | |
dc.relation | PerkinElmer, “OptiPlate-96, White Opaque 96-well Microplate, Case 50.”
https://www.perkinelmer.com/product/optiplate-96-50w-6005290 (accessed Oct.
06, 2021). | |
dc.relation | Z. Y. Pu, J. Q. Lu, M. F. Luo, and Y. L. Xie, “Study of oxygen vacancies in
Ce0.9Pr0.1O 2-δ solid solution by in situ X-ray diffraction and in situ raman
spectroscopy,” J. Phys. Chem. C, vol. 111, no. 50, pp. 18695–18702, Dec. 2007,
doi: 10.1021/jp0759776. | |
dc.relation | J. J. Kim, S. R. Bishop, D. Chen, and H. L. Tuller, “Defect Chemistry of Pr Doped
Ceria Thin Films Investigated by in Situ Optical and Impedance Measurements,” Chem. Mater., vol. 29, no. 5, pp. 1999–2007, Mar. 2017, doi:
10.1021/ACS.CHEMMATER.6B03307. | |
dc.relation | M. Singh, M. Goyal, and K. Devlal, “Size and shape effects on the band gap of
semiconductor compound nanomaterials,” J. Taibah Univ. Sci., vol. 12, no. 4, pp.
470–475, Jul. 2018, doi: 10.1080/16583655.2018.1473946. | |
dc.relation | G. Ramalingam et al., “Quantum Confinement Effect of 2D Nanomaterials,” in
Quantum Dots - Fundamental and Applications, IntechOpen, 2020. | |
dc.relation | M. Mishra, P. Kuppusami, T. N. Sairam, A. Singh, and E. Mohandas, “Effect of
substrate temperature and oxygen partial pressure on microstructure and optical
properties of pulsed laser deposited yttrium oxide thin films,” Appl. Surf. Sci., vol.
257, no. 17, pp. 7665–7670, Jun. 2011, doi: 10.1016/j.apsusc.2011.03.156. | |
dc.relation | M. G. Paton and E. N. Maslen, “A refinement of the crystal structure of yttria,” Acta
Crystallogr., vol. 19, no. 3, pp. 307–310, Sep. 1965, doi:
10.1107/s0365110x65003365. | |
dc.relation | S. V. Ushakov, S. Hayun, W. Gong, and A. Navrotsky, “Thermal analysis of high
entropy rare earth oxides,” Materials (Basel)., vol. 13, no. 14, Jul. 2020, doi:
10.3390/ma13143141. | |
dc.relation | H. Kohlmann, “The crystal structure of cubic C-type samarium sesquioxide,
Sm2O3,” Zeitschrift für Naturforsch. B, vol. 74, no. 5, pp. 433–435, May 2019, doi:
10.1515/ZNB-2019-0042. | |
dc.relation | A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, “Periodicity in the band gap
variation of Ln2X3 (X = O, S, Se) in the lanthanide series,” J. Alloys Compd., vol.
242, no. 1–2, pp. 41–44, Sep. 1996, doi: 10.1016/0925-8388(96)02293-1. | |
dc.relation | Masatomo Yashima, Syuuhei Kobayashi, and Tadashi Yasui, “Positional disorder
and diffusion path of oxide ions in the yttria-doped ceria Ce 0.93 Y 0.07 O 1.96,”
Faraday Discuss., vol. 134, no. 0, pp. 369–376, Dec. 2006, doi:
10.1039/B601806H. | |
dc.relation | H. J. Osten, J. P. Liu, and H. J. Müssig, “Band gap and band discontinuities at
crystalline Pr2O3/Si(001) heterojunctions,” Appl. Phys. Lett., vol. 80, no. 2, p. 297,
Jan. 2002, doi: 10.1063/1.1433909. | |
dc.relation | C. H. Gardiner, A. T. Boothroyd, S. J. S. Lister, M. J. McKelvy, S. Hull, and B. H.
Larsen, “An investigation of the magnetic structure of PrO2,” Appl. Phys. A Mater.
Sci. Process., vol. 74, no. SUPPL.II, 2002, doi: 10.1007/S003390201847. | |
dc.relation | R. Srinivasan, R. Yogamalar, A. Vinu, K. Ariga, and A. C. Bose, “Structural and
optical characterization of samarium doped yttrium oxide nanoparticles,” J.
Nanosci. Nanotechnol., vol. 9, no. 11, pp. 6747–6752, Nov. 2009, doi:
10.1166/JNN.2009.1467. | |
dc.relation | M. Mitric, J. Blanusa, T. Barudzija, Z. Jaglicic, V. Kusigerski, and V. Spasojevic,
“Magnetic properties of trivalent Sm ions in SmxY2-xO3,” J. Alloys Compd., vol.
485, no. 1–2, pp. 473–477, Oct. 2009, doi: 10.1016/J.JALLCOM.2009.05.142. | |
dc.relation | R. C. Deus et al., “Photoluminescence properties of cerium oxide nanoparticles as
a function of lanthanum content,” Mater. Res. Bull., vol. C, no. 70, pp. 416–423,
Oct. 2015, doi: 10.1016/J.MATERRESBULL.2015.05.006. | |
dc.relation | X. Cao, R. Vassen, W. Fischer, F. Tietz, W. Jungen, and D. Stöver, “Lanthanum–
Cerium Oxide as a Thermal Barrier-Coating Material for High-Temperature
Applications,” Adv. Mater., vol. 15, no. 17, pp. 1438–1442, Sep. 2003, doi:
10.1002/ADMA.200304132. | |
dc.relation | V. Besikiotis, C. S. Knee, I. Ahmed, R. Haugsrud, and T. Norby, “Crystal structure,
hydration and ionic conductivity of the inherently oxygen-deficient La2Ce2O7,”
Solid State Ionics, vol. 228, pp. 1–7, Nov. 2012, doi: 10.1016/J.SSI.2012.08.023. | |
dc.relation | A. C. Cabral, L. S. Cavalcante, R. C. Deus, E. Longo, A. Z. Simões, and F. Moura,
“Photoluminescence properties of praseodymium doped cerium oxide
nanocrystals,” Ceram. Int., vol. 3, no. 40, pp. 4445–4453, Apr. 2014, doi:
10.1016/J.CERAMINT.2013.08.117. | |
dc.relation | R. Chiba, H. Taguchi, T. Komatsu, H. Orui, K. Nozawa, and H. Arai, “High
temperature properties of Ce1-xPrxO2-δ as an active layer material for SOFC
cathodes,” Solid State Ionics, vol. 197, no. 1, pp. 42–48, Aug. 2011, doi:
10.1016/J.SSI.2011.03.022. | |
dc.relation | L. H. Reddy, G. K. Reddy, D. Devaiah, and B. M. Reddy, “A rapid microwaveassisted solution combustion synthesis of CuO promoted CeO2-MxOy (M = Zr, La, Pr and Sm) catalysts for CO oxidation,” Appl. Catal. A Gen., vol. 445–446, pp.
297–305, Nov. 2012, doi: 10.1016/J.APCATA.2012.08.024. | |
dc.relation | V. Vibhu et al., “Electrochemical ageing study of mixed lanthanum/praseodymium
nickelates La2-PrNiO4+δ as oxygen electrodes for solid oxide fuel or electrolysis
cells Electrochemical ageing study of mixed lanthanum/praseodymium nickelates
La 2-x Pr x NiO 4+δ as oxygen electrodes for solid oxide fuel or electrolysis cells,”
doi: 10.1016/j.jechem.2019.10.012ï. | |
dc.relation | Y. Zhao, K. Kita, K. Kyuno, and A. Toriumi, “Band gap enhancement and electrical
properties of La2O3 films doped with Y2O3 as high-k gate insulators,” Appl. Phys.
Lett., vol. 94, no. 4, p. 042901, Jan. 2009, doi: 10.1063/1.3075954. | |
dc.relation | M. Bharathy, A. H. Fox, S. J. Mugavero, and H. C. zur Loye, “Crystal growth of
inter-lanthanide LaLn′O3 (Ln′ = Y, Ho-Lu) perovskites from hydroxide fluxes,” Solid
State Sci., vol. 11, no. 3, pp. 651–654, Mar. 2009, doi:
10.1016/J.SOLIDSTATESCIENCES.2008.10.005. | |
dc.relation | J. A. Lussier, K. M. Szkop, A. Z. Sharma, C. R. Wiebe, and M. Bieringer,
“Order/Disorder and in Situ Oxide Defect Control in the Bixbyite Phase
YPrO3+δ(0≤δ<0.5),” Inorg. Chem., vol. 55, no. 5, pp. 2381–2389, Mar. 2016, doi:
10.1021/acs.inorgchem.5b02746. | |
dc.relation | M. S. Anwar et al., “Structural and optical study of samarium doped cerium oxide
thin films prepared by electron beam evaporation,” J. Alloys Compd., vol. 509, no.
13, pp. 4525–4529, Mar. 2011, doi: 10.1016/j.jallcom.2011.01.067. | |
dc.relation | J. Zhang, C. Ke, H. Wu, J. Yu, J. Wang, and Y. Wang, “Solubility limits, crystal
structure and lattice thermal expansion of Ln2O3 (Ln=Sm, Eu, Gd) doped CeO2,”
J. Alloys Compd., vol. 718, pp. 85–91, Sep. 2017, doi:
10.1016/J.JALLCOM.2017.05.073 | |
dc.relation | V. Sarasamma Vishnu and M. Lakshmipathi Reddy, “Near-infrared reflecting
inorganic pigments based on molybdenum and praseodymium doped yttrium
cerate: Synthesis, characterization and optical properties,” Sol. Energy Mater. Sol.
Cells, vol. 95, no. 9, pp. 2685–2692, Sep. 2011, doi:
10.1016/J.SOLMAT.2011.05.042. | |
dc.relation | A. I. Ivanov, I. I. Zver’kova, E. V. Tsipis, S. I. Bredikhin, and V. V. Kharton, “Stability and Functional Properties of Fluorite-Like Ce0.6 –xLa0.4PrxO2 – δ as Electrode
Components for Solid Oxide Fuel Cells,” Russ. J. Electrochem. 2020 562, vol. 56,
no. 2, pp. 139–146, Mar. 2020, doi: 10.1134/S1023193520020056. | |
dc.relation | M. Basavad, H. Shokrollahi, H. Ahmadvand, and S. M. Arab, “Structural, magnetic
and magneto-optical properties of the bulk and thin film synthesized cerium- and
praseodymium-doped yttrium iron garnet,” Ceram. Int., vol. 46, no. 8, pp. 12015–
12022, Jun. 2020, doi: 10.1016/J.CERAMINT.2020.01.242. | |
dc.relation | Y. Qiu-Hong, Z. Hong-Xu, and L. Shen-Zhou, “Spectral properties of Ce3+ doped
yttrium lanthanum oxide transparent ceramics,” Chinese Phys. B, vol. 19, no. 2, p.
020701, Feb. 2010, doi: 10.1088/1674-1056/19/2/020701. | |
dc.relation | N. Poovarawan et al., “Second metals (Lanthanum, Cerium, and Yttrium) modified
W/SiO2 catalysts for metathesis of ethylene and 2-butene,” Catal. Today, vol. 309,
pp. 43–50, Jul. 2018, doi: 10.1016/J.CATTOD.2017.11.012. | |
dc.rights | Atribución-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Producción masiva de óxidos multicomponentes de alta entropía con enfoque en el estudio de vacancias de oxígeno | |
dc.type | Tesis | |