dc.contributorLamprea Rodriguez, Marisol
dc.contributorOrtega Murillo, Leonardo Augusto
dc.creatorNovoa Paloma, Carlos Eduardo
dc.date.accessioned2021-01-14T17:36:14Z
dc.date.available2021-01-14T17:36:14Z
dc.date.created2021-01-14T17:36:14Z
dc.date.issued2020-12-09
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78737
dc.description.abstractMultiple learning and memory systems interact to produce adapted responses to environmental demands. However, these interactions can result in abnormal response patterns when events that control brain organization favor one system over the others. In this sense, the potential of drugs of abuse to generate long-term behavioral adaptations could lie in their ability to promote neural reorganization processes that alter fundamental brain functions (e.g. reinforcement and stress response) and, consequently, individual sensitivity to different stimuli and learning situations. The present study examined the long-term adaptation of brain emotional systems and their modulation of learning processes and spatial memory, during a period of protracted withdrawal after chronic exposure to nicotine. Two experiments were performed. For the first experiment 22 male Wistar rats were treated with nicotine (0.14 mg/kg free base) or vehicle (0.9% saline solution), administered by one subcutaneous (s.c.) injection per day for a period of 21 days. Following this, the treatment was suspended for a period of 30 days and then the animals were trained and evaluated on a spatial task using the Barnes maze (LCB). For the second experiment 22 Wistar rats received the same treatment described above and were trained under the same conditions; unlike the first experiment, the animals of the second experiment were challenged with an acute stress event using movement restriction before the recovery test in the LCB. Immediately after the recovery test, brain tissue samples were collected and the induction of the c-Fos protein in response to acute stress was determined by means of an immunohistochemical assay. The results showed that: 1) for the short term, chronic nicotine induced sensitization of locomotor activity; 2) for the long term, chronic nicotine did not affect acquisition in the LCB, but improved performance during the recovery test under standard conditions; 3) in contrast, for the long term, chronic nicotine impaired recovery performance in the LCB under the effects of stress, and 4) selectively increased the induction of the c-Fos protein in response to acute stress in regions of brain emotional systems. Together, these results may suggest that nicotine exerts modulatory actions on learning and memory processes thanks to the remodeling of regions involved in emotional processing, taking advantage of molecular mechanisms recruited during chronic exposure to the drug.
dc.description.abstractMúltiples sistemas de aprendizaje y memoria interactúan para producir respuestas ajustadas a las exigencias del ambiente. Sin embargo, estas interacciones pueden resultar en patrones de respuesta anormales cuando eventos que controlan procesos de organización cerebral favorecen a un sistema sobre los demás. En este sentido, el potencial de las drogas de abuso para generar adaptaciones comportamentales de largo plazo podría radicar en su capacidad para promover procesos de reorganización neural que afectan funciones cerebrales fundamentales (e.g. refuerzo y respuesta de estrés) y la sensibilidad individual a diferentes estímulos y a las situaciones de aprendizaje. En el presente estudio se examinó la adaptación a largo plazo de sistemas emocionales cerebrales y su modulación de procesos de aprendizaje y memoria espacial, durante un periodo de retirada prolongada posterior a la exposición crónica a nicotina. Para esto se realizaron dos experimentos. En el primer experimento 22 ratas Wistar macho fueron tratadas con nicotina (0.14 mg/kg base libre) o vehículo (solución salina 0.9%), suministrados por medio de una inyección diaria por vía subcutánea (s.c.) por un periodo de 21 días. Posteriormente, el tratamiento fue suspendido por un periodo de 30 días y después los animales fueron entrenados y evaluados en la tarea espacial del laberinto circular de Barnes (LCB). En el segundo experimento 22 ratas Wistar recibieron el mismo tratamiento descrito anteriormente y fueron entrenadas bajo las mismas condiciones; a diferencia del primer experimento, los animales del segundo experimento fueron desafiados con un evento de estrés agudo por restricción de movimientos antes de la prueba de recobro en el LCB. Inmediatamente después de la prueba de recobro se recolectaron muestras de tejido cerebral y se determinaron los niveles de inducción de la proteína c-Fos en respuesta al estrés agudo por medio de un ensayo de inmunohistoquímica. Los resultados mostraron que: 1) a corto plazo la nicotina crónica indujo sensibilización de la actividad locomotriz; 2) a largo plazo la nicotina crónica no afectó la adquisición en el LCB, pero mejoró el desempeño durante el recobro bajo condiciones estándar; 3) en contraste, a largo plazo la nicotina crónica deterioró el desempeño durante el recobro en el LCB bajo los efectos del estrés y 4) incrementó selectivamente la inducción de la proteína c-Fos en respuesta al estrés agudo en regiones de sistemas emocionales cerebrales. En conjunto, estos resultados podrían sugerir que la nicotina ejerce acciones moduladoras de los procesos de aprendizaje y memoria gracias a la remodelación de regiones implicadas en el procesamiento emocional, sacando provecho de mecanismos moleculares reclutados durante la exposición crónica a la droga.
dc.languagespa
dc.publisherBogotá - Ciencias Humanas - Maestría en Psicología
dc.publisherDepartamento de Psicología
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbdulla, F. A., Gray, J. A., Sinden, J. D., Bradbury, E., Calaminici, M. R., Lippiello, P. M., & Wonnacott, S. (1996). Relationship between up-regulation of nicotine binding sites in rat brain and delayed cognitive enhancement observed after chronic or acute nicotinic receptor stimulation. Psychopharmacology, 124(4), 323–331. https://doi.org/10.1007/BF02247437
dc.relationAbel, T., & Lattal, K. M. (2001). Molecular mechanisms of memory acquisition, consolidation and retrieval. Current Opinion in Neurobiology, 11(2), 180–187. https://doi.org/10.1016/S0959-4388(00)00194-X
dc.relationAlheid, G. F. (2006). Extended Amygdala and Basal Forebrain. Annals of the New York Academy of Sciences, 985(1), 185–205. https://doi.org/10.1111/j.1749-6632.2003.tb07082.x
dc.relationAmaya Durán, L. E. (2018). Caracterización de las Estrategias de Aprendizaje de una Tarea Espacial en el Laberinto Circular de Barnes [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/70168/
dc.relationArnsten, A. F. T., & Pliszka, S. R. (2011). Catecholamine influences on prefrontal cortical function: Relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacology Biochemistry and Behavior, 99(2), 211–216. https://doi.org/10.1016/j.pbb.2011.01.020
dc.relationAttar, A., Liu, T., Chan, W.-T. C., Hayes, J., Nejad, M., Lei, K., & Bitan, G. (2013). A Shortened Barnes Maze Protocol Reveals Memory Deficits at 4-Months of Age in the Triple-Transgenic Mouse Model of Alzheimer’s Disease. PLoS ONE, 8(11), e80355. https://doi.org/10.1371/journal.pone.0080355
dc.relationBaker, L. K., Mao, D., Chi, H., Govind, A. P., Vallejo, Y. F., Iacoviello, M., Herrera, S., Cortright, J. J., Green, W. N., McGehee, D. S., & Vezina, P. (2013). Intermittent nicotine exposure upregulates nAChRs in VTA dopamine neurons and sensitises locomotor responding to the drug. European Journal of Neuroscience, 37(6), 1004–1011. https://doi.org/10.1111/ejn.12114
dc.relationBale, T. L. (2015). Epigenetic and transgenerational reprogramming of brain development. Nature Reviews Neuroscience, 16(6), 332–344. https://doi.org/10.1038/nrn3818
dc.relationBalfour, D. J. K. (2015). The Role of Mesoaccumbens Dopamine in Nicotine Dependence (pp. 55–98). https://doi.org/10.1007/978-3-319-13482-6_3
dc.relationBallesteros Cadena, D. C. (2018). Efectos del estrés agudo sobre la reconsolidación de la memoria espacial y el patrón de expresión de la proteina c-Fos. [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/69849/
dc.relationBecker, J. A. J., Kieffer, B. L., & Le Merrer, J. (2017). Differential behavioral and molecular alterations upon protracted abstinence from cocaine versus morphine, nicotine, THC and alcohol. Addiction Biology, 22(5), 1205–1217. https://doi.org/10.1111/adb.12405
dc.relationBerridge, C. W., & Arnsten, A. F. T. (2013). Psychostimulants and motivated behavior: Arousal and cognition. Neuroscience & Biobehavioral Reviews, 37(9), 1976–1984. https://doi.org/10.1016/j.neubiorev.2012.11.005
dc.relationBrown, R. W., & Gill, W. D. (2019). Nicotine, Neural Plasticity, and Nicotine’s Therapeutic Potential. In Neuroscience of Nicotine (pp. 65–70). Elsevier. https://doi.org/10.1016/B978-0-12-813035-3.00009-5
dc.relationBurton, A. C., Nakamura, K., & Roesch, M. R. (2015). From ventral-medial to dorsal-lateral striatum: Neural correlates of reward-guided decision-making. Neurobiology of Learning and Memory, 117, 51–59. https://doi.org/10.1016/j.nlm.2014.05.003
dc.relationCarola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research, 134(1–2), 49–57. https://doi.org/10.1016/S0166-4328(01)00452-1
dc.relationChen, H., Fu, Y., & Sharp, B. M. (2008). Chronic Nicotine Self-Administration Augments Hypothalamic–Pituitary–Adrenal Responses to Mild Acute Stress. Neuropsychopharmacology, 33(4), 721–730. https://doi.org/10.1038/sj.npp.1301466
dc.relationChrousos, G. P. (1992). The Concepts of Stress and Stress System Disorders. JAMA, 267(9), 1244. https://doi.org/10.1001/jama.1992.03480090092034
dc.relationDanjo, T., Toyoizumi, T., & Fujisawa, S. (2018). Spatial representations of self and other in the hippocampus. Science, 359(6372), 213–218. https://doi.org/10.1126/science.aao3898
dc.relationDay, J. J., & Carelli, R. M. (2007). The Nucleus Accumbens and Pavlovian Reward Learning. The Neuroscientist, 13(2), 148–159. https://doi.org/10.1177/1073858406295854
dc.relationde Kloet, E. R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience, 6(6), 463–475. https://doi.org/10.1038/nrn1683
dc.relationDeiana, S., Platt, B., & Riedel, G. (2011). The cholinergic system and spatial learning. Behavioural Brain Research, 221(2), 389–411. https://doi.org/10.1016/j.bbr.2010.11.036
dc.relationDiFranza, J., & Wellman, R. (2007). Sensitization to nicotine: How the animal literature might inform future human research. Nicotine & Tobacco Research, 9(1), 9–20. https://doi.org/10.1080/14622200601078277
dc.relationDomino, E. F. (2001). Nicotine induced behavioral locomotor sensitization. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 25(1), 59–71. https://doi.org/10.1016/S0278-5846(00)00148-2
dc.relationEiland, L., & Romeo, R. D. (2013). Stress and the developing adolescent brain. Neuroscience, 249, 162–171. https://doi.org/10.1016/j.neuroscience.2012.10.048
dc.relationElliott, B. M., Faraday, M. M., Phillips, J. M., & Grunberg, N. E. (2004). Effects of nicotine on elevated plus maze and locomotor activity in male and female adolescent and adult rats. Pharmacology Biochemistry and Behavior, 77(1), 21–28. https://doi.org/10.1016/j.pbb.2003.09.016
dc.relationEllis, B., Jackson, J., & Boyce, W. (2006). The stress response systems: Universality and adaptive individual differences. Developmental Review, 26(2), 175–212. https://doi.org/10.1016/j.dr.2006.02.004
dc.relationFaillace, M. P., & Bernabeu, R. O. (2019). Effects of Nicotine and Histone Deacetylase Inhibitors on the Brain. In Neuroscience of Nicotine (pp. 365–373). Elsevier. https://doi.org/10.1016/B978-0-12-813035-3.00045-9
dc.relationFujii, S., Ji, Z., Morita, N., & Sumikawa, K. (1999). Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Research, 846(1), 137–143. https://doi.org/10.1016/S0006-8993(99)01982-4
dc.relationGawel, K., Gibula, E., Marszalek-Grabska, M., Filarowska, J., & Kotlinska, J. H. (2019). Assessment of spatial learning and memory in the Barnes maze task in rodents—methodological consideration. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392(1), 1–18. https://doi.org/10.1007/s00210-018-1589-y
dc.relationGiuliani, A. (2017). The application of principal component analysis to drug discovery and biomedical data. Drug Discovery Today, 22(7), 1069–1076. https://doi.org/10.1016/j.drudis.2017.01.005
dc.relationGold, P. E. (2017). Protein Synthesis and Memory. In Learning and Memory: A Comprehensive Reference (Second Edi, Vol. 4, pp. 293–310). Elsevier. https://doi.org/10.1016/B978-0-12-809324-5.21119-X
dc.relationGoodman, J., McIntyre, C., & Packard, M. G. (2017). Amygdala and Emotional Modulation of Multiple Memory Systems. In The Amygdala - Where Emotions Shape Perception, Learning and Memories (Vol. 395, pp. 116–124). InTech. https://doi.org/10.5772/intechopen.69109
dc.relationGould, T. (2009). Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests. Humana press.
dc.relationGould, T. J. (2010). Addiction and cognition. Addiction Science & Clinical Practice, 5(2), 4–14. http://www.ncbi.nlm.nih.gov/pubmed/22002448
dc.relationGruber, A. J., & McDonald, R. J. (2012). Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Frontiers in Behavioral Neuroscience, 6(AUGUST), 1–26. https://doi.org/10.3389/fnbeh.2012.00050
dc.relationGulinello, M., Mitchell, H. A., Chang, Q., Timothy O’Brien, W., Zhou, Z., Abel, T., Wang, L., Corbin, J. G., Veeraragavan, S., Samaco, R. C., Andrews, N. A., Fagiolini, M., Cole, T. B., Burbacher, T. M., & Crawley, J. N. (2019). Rigor and reproducibility in rodent behavioral research. Neurobiology of Learning and Memory, 165(January 2018), 106780. https://doi.org/10.1016/j.nlm.2018.01.001
dc.relationHarrison, F. E., Reiserer, R. S., Tomarken, A. J., & McDonald, M. P. (2006). Spatial and nonspatial escape strategies in the Barnes maze. Learning and Memory, 13(6), 809–819. https://doi.org/10.1101/lm.334306
dc.relationHyman, S. E. (2005). Addiction: A disease of learning and memory. American Journal of Psychiatry, 162(8), 1414–1422. https://doi.org/10.1176/appi.ajp.162.8.1414
dc.relationIllouz, T., Madar, R., Clague, C., Griffioen, K. J., Louzoun, Y., Okun, E., & Gan, R. (2016). Data and text mining Unbiased classification of spatial strategies in the Barnes maze. 32(July), 3314–3320. https://doi.org/10.1093/bioinformatics/btw376
dc.relationItzhak, Y., & Martin, J. L. (1999). Effects of cocaine, nicotine, dizocipline and alcohol on mice locomotor activity: cocaine–alcohol cross-sensitization involves upregulation of striatal dopamine transporter binding sites. Brain Research, 818(2), 204–211. https://doi.org/10.1016/S0006-8993(98)01260-8
dc.relationKelley, A. E. (2004). Memory and Addiction. Neuron, 44(1), 161–179. https://doi.org/10.1016/j.neuron.2004.09.016
dc.relationKenney, J. W., & Gould, T. J. (2008). Modulation of Hippocampus-Dependent Learning and Synaptic Plasticity by Nicotine. Molecular Neurobiology, 38(1), 101–121. https://doi.org/10.1007/s12035-008-8037-9
dc.relationKohlmeier, K. A. (2019). Synaptically Located Nicotinic Acetylcholine Receptor Subunits in Neurons Involved in Dependency to Nicotine. In Neuroscience of Nicotine (pp. 49–56). Elsevier. https://doi.org/10.1016/B978-0-12-813035-3.00007-1
dc.relationKolb, B., & Gibb, R. (2014). Searching for the principles of brain plasticity and behavior. Cortex, 58, 251–260. https://doi.org/10.1016/j.cortex.2013.11.012
dc.relationKoob, G. F., & Schulkin, J. (2019). Addiction and stress: An allostatic view. Neuroscience & Biobehavioral Reviews, 106, 245–262. https://doi.org/10.1016/j.neubiorev.2018.09.008
dc.relationKoob, G. F., & Volkow, N. D. (2010). Neurocircuitry of Addiction. Neuropsychopharmacology, 217–238. https://doi.org/10.1038/npp.2009.110
dc.relationKovács, L. Á., Schiessl, J. A., Nafz, A. E., Csernus, V., & Gaszner, B. (2018). Both Basal and Acute Restraint Stress-Induced c-Fos Expression Is Influenced by Age in the Extended Amygdala and Brainstem Stress Centers in Male Rats. Frontiers in Aging Neuroscience, 10(AUG), 1–20. https://doi.org/10.3389/fnagi.2018.00248
dc.relationKutlu, M. G., & Gould, T. J. (2015). Nicotinic Receptors, Memory, and Hippocampus. In D. J. K. Balfour & M. R. Munafò (Eds.), Current topics in behavioral neurosciences (Vol. 23, Issue August 2016, pp. 137–163). Springer International Publishing. https://doi.org/10.1007/978-3-319-13665-3_6
dc.relationKvetnansky, R., Sabban, E. L., & Palkovits, M. (2009). Catecholaminergic Systems in Stress: Structural and Molecular Genetic Approaches. Physiological Reviews, 89(2), 535–606. https://doi.org/10.1152/physrev.00042.2006
dc.relationLevine, A., Huang, Y., Drisaldi, B., Griffin, E. A., Pollak, D. D., Xu, S., Yin, D., Schaffran, C., Kandel, D. B., & Kandel, E. R. (2011). Molecular Mechanism for a Gateway Drug: Epigenetic Changes Initiated by Nicotine Prime Gene Expression by Cocaine. Science Translational Medicine, 3(107), 107ra109-107ra109. https://doi.org/10.1126/scitranslmed.3003062
dc.relationLi, H., Penzo, M. A., Taniguchi, H., Kopec, C. D., Huang, Z. J., & Li, B. (2013). Experience-dependent modification of a central amygdala fear circuit. Nature Neuroscience, 16(3), 332–339. https://doi.org/10.1038/nn.3322
dc.relationLupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434–445. https://doi.org/10.1038/nrn2639
dc.relationMarinelli, M., Rougé-Pont, F., Deroche, V., Barrot, M., De Jésus-Oliveira, C., Le Moal, M., & Piazza, P. V. (1997). Glucocorticoids and behavioral effects of psychostimulants. I: locomotor response to cocaine depends on basal levels of glucocorticoids. The Journal of Pharmacology and Experimental Therapeutics, 281(3), 1392–1400. http://www.ncbi.nlm.nih.gov/pubmed/9190875
dc.relationMarttila, K., Raattamaa, H., & Ahtee, L. (2006). Effects of chronic nicotine administration and its withdrawal on striatal FosB/ΔFosB and c-Fos expression in rats and mice. Neuropharmacology, 51(1), 44–51. https://doi.org/10.1016/j.neuropharm.2006.02.014
dc.relationMatta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R., Craig, C. R., Collins, A. C., Damaj, M. I., Donny, E. C., Gardiner, P. S., Grady, S. R., Heberlein, U., Leonard, S. S., Levin, E. D., Lukas, R. J., Markou, A., Marks, M. J., McCallum, S. E., … Zirger, J. M. (2007). Guidelines on nicotine dose selection for in vivo research. Psychopharmacology, 190(3), 269–319. https://doi.org/10.1007/s00213-006-0441-0
dc.relationMatthews, S. G., & McGowan, P. O. (2019). Developmental programming of the HPA axis and related behaviours: epigenetic mechanisms. Journal of Endocrinology, 242(1), T69–T79. https://doi.org/10.1530/JOE-19-0057
dc.relationMcDonald, R. J., Devan, B. D., & Hong, N. S. (2004). Multiple memory systems: The power of interactions. Neurobiology of Learning and Memory, 82(3), 333–346. https://doi.org/10.1016/j.nlm.2004.05.009
dc.relationMcDonald, R. J., Hong, N. S., & Devan, B. D. (2017). Interactions Among Multiple Parallel Learning and Memory Systems in the Mammalian Brain. In Learning and Memory: A Comprehensive Reference (Second Edi, Vol. 3, Issue 5, pp. 9–47). Elsevier. https://doi.org/10.1016/B978-0-12-809324-5.21067-5
dc.relationMcDonald, R. J., & White, N. M. (1993). A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 127(6), 835–853. https://doi.org/10.1037/a0034883
dc.relationMcEwen, B. S., Bowles, N. P., Gray, J. D., Hill, M. N., Hunter, R. G., Karatsoreos, I. N., & Nasca, C. (2015). Mechanisms of stress in the brain. Nature Neuroscience, 18(10), 1353–1363. https://doi.org/10.1038/nn.4086
dc.relationMcEwen, B. S., Nasca, C., & Gray, J. D. (2016). Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology, 41(1), 3–23. https://doi.org/10.1038/npp.2015.171
dc.relationMcGaugh, J. L. (2000). Memory--a Century of Consolidation. Science, 287(5451), 248–251. https://doi.org/10.1126/science.287.5451.248
dc.relationMcGaugh, J. L., & Roozendaal, B. (2017). Memory Modulation. In Learning and Memory: A Comprehensive Reference (Second Edi, Vol. 3, Issue April 2016, pp. 411–443). Elsevier. https://doi.org/10.1016/B978-0-12-809324-5.21092-4
dc.relationMiller, D., Wilkins, L., Bardo, M., Crooks, P., & Dwoskin, L. (2001). Once weekly administration of nicotine produces long-lasting locomotor sensitization in rats via a nicotinic receptor-mediated mechanism. Psychopharmacology, 156(4), 469–476. https://doi.org/10.1007/s002130100747
dc.relationMorel, G. R., Andersen, T., Pardo, J., Zuccolilli, G. O., Cambiaggi, V. L., Hereñú, C. B., & Goya, R. G. (2015). Cognitive impairment and morphological changes in the dorsal hippocampus of very old female rats. Neuroscience, 303, 189–199. https://doi.org/10.1016/j.neuroscience.2015.06.050
dc.relationMorud, J., Adermark, L., Perez-Alcazar, M., Ericson, M., & Söderpalm, B. (2016). Nicotine produces chronic behavioral sensitization with changes in accumbal neurotransmission and increased sensitivity to re-exposure. Addiction Biology, 21(2), 397–406. https://doi.org/10.1111/adb.12219
dc.relationMorud, J., Strandberg, J., Andrén, A., Ericson, M., Söderpalm, B., & Adermark, L. (2018). Progressive modulation of accumbal neurotransmission and anxiety-like behavior following protracted nicotine withdrawal. Neuropharmacology, 128, 86–95. https://doi.org/10.1016/j.neuropharm.2017.10.002
dc.relationMoser, E. I., Moser, M.-B., & McNaughton, B. L. (2017). Spatial representation in the hippocampal formation: a history. Nature Neuroscience, 20(11), 1448–1464. https://doi.org/10.1038/nn.4653
dc.relationMoussawi, K., Pacchioni, A., Moran, M., Olive, M. F., Gass, J. T., Lavin, A., & Kalivas, P. W. (2009). N-Acetylcysteine reverses cocaine-induced metaplasticity. Nature Neuroscience, 12(2), 182–189. https://doi.org/10.1038/nn.2250
dc.relationMukhara, D., Banks, M. L., & Neigh, G. N. (2018). Stress as a Risk Factor for Substance Use Disorders: A Mini-Review of Molecular Mediators. Frontiers in Behavioral Neuroscience, 12(December), 1–8. https://doi.org/10.3389/fnbeh.2018.00309
dc.relationNestler, E. J., & Lüscher, C. (2019). The Molecular Basis of Drug Addiction: Linking Epigenetic to Synaptic and Circuit Mechanisms. Neuron, 102(1), 48–59. https://doi.org/10.1016/j.neuron.2019.01.016
dc.relationNisell, M., Nomikos, G. G., & Svensson, T. H. (1994). Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse, 16(1), 36–44. https://doi.org/10.1002/syn.890160105
dc.relationOrtega, L., Lamprea, M., Novoa, C., & Solano López, J. L. (2019). Differences of nicotine-induced locomotor sensitization in adolescent and adult Wistar rats. Póster presentado en Neuroscience 2019, Chicago, IL
dc.relationPackard, M. G., & Goodman, J. (2012). Emotional arousal and multiple memory systems in the mammalian brain. Frontiers in Behavioral Neuroscience, 6(MARCH 2012), 1–38. https://doi.org/10.3389/fnbeh.2012.00014
dc.relationPaxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates (6ta ed.). Elsevier Inc
dc.relationPicciotto, M. R., Brunzell, D. H., & Caldarone, B. J. (2002). Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport, 13(9), 1097–1106. https://doi.org/10.1097/00001756-200207020-00006
dc.relationRenthal, W., & Nestler, E. J. (2008). Epigenetic mechanisms in drug addiction. Trends in Molecular Medicine, 14(8), 341–350. https://doi.org/10.1016/j.molmed.2008.06.004
dc.relationRousselet, G. A., Pernet, C. R., & Wilcox, R. R. (2017). Beyond differences in means: robust graphical methods to compare two groups in neuroscience. European Journal of Neuroscience, 46(2), 1738–1748. https://doi.org/10.1111/ejn.13610
dc.relationRupprecht, L. E., Smith, T. T., Schassburger, R. L., Buffalari, D. M., Sved, A. F., & Donny, E. C. (2015). Behavioral Mechanisms Underlying Nicotine Reinforcement (pp. 19–53). https://doi.org/10.1007/978-3-319-13482-6_2
dc.relationSagar, S., Sharp, F., & Curran, T. (1988). Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science, 240(4857), 1328–1331. https://doi.org/10.1126/science.3131879
dc.relationSandi, C. (2013). Stress and cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 4(3), 245–261. https://doi.org/10.1002/wcs.1222
dc.relationScerri, C., Stewart, C. A., Breen, K. C., & Balfour, D. J. K. (2006). The effects of chronic nicotine on spatial learning and bromodeoxyuridine incorporation into the dentate gyrus of the rat. Psychopharmacology, 184(3–4), 540–546. https://doi.org/10.1007/s00213-005-0086-4
dc.relationSchwabe, L., Schächinger, H., de Kloet, E. R., & Oitzl, M. S. (2010). Corticosteroids Operate as a Switch between Memory Systems. Journal of Cognitive Neuroscience, 22(7), 1362–1372. https://doi.org/10.1162/jocn.2009.21278
dc.relationSchwabe, L., & Wolf, O. T. (2013). Stress and multiple memory systems: from ‘thinking’ to ‘doing.’ Trends in Cognitive Sciences, 17(2), 60–68. https://doi.org/10.1016/j.tics.2012.12.001
dc.relationShabel, S. J., & Janak, P. H. (2009). Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proceedings of the National Academy of Sciences, 106(35), 15031–15036. https://doi.org/10.1073/pnas.0905580106
dc.relationShim, I., Javaid, J. I., Wirtshafter, D., Jang, S.-Y., Shin, K.-H., Lee, H.-J., Chung, Y.-C., & Chun, B.-G. (2001). Nicotine-induced behavioral sensitization is associated with extracellular dopamine release and expression of c-Fos in the striatum and nucleus accumbens of the rat. Behavioural Brain Research, 121(1–2), 137–147. https://doi.org/10.1016/S0166-4328(01)00161-9
dc.relationShiotsuki, H., Yoshimi, K., Shimo, Y., Funayama, M., Takamatsu, Y., Ikeda, K., Takahashi, R., Kitazawa, S., & Hattori, N. (2010). A rotarod test for evaluation of motor skill learning. Journal of Neuroscience Methods, 189(2), 180–185. https://doi.org/10.1016/j.jneumeth.2010.03.026
dc.relationSinha, R. (2008). Chronic Stress, Drug Use, and Vulnerability to Addiction. Annals of the New York Academy of Sciences, 1141(1), 105–130. https://doi.org/10.1196/annals.1441.030
dc.relationSocci, D. J., Sanberg, P. R., & Arendash, G. W. (1995). Nicotine enhances morris water maze performance of young and aged rats. Neurobiology of Aging, 16(5), 857–860. https://doi.org/10.1016/0197-4580(95)00091-R
dc.relationSolano López, J. L. (2019). Modulación de la respuesta emocional y la memoria espacial en la adultez por exposición temprana a nicotina. [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/75747
dc.relationSpencer, R. L., & Deak, T. (2017). A users guide to HPA axis research. Physiology & Behavior, 178, 43–65. https://doi.org/10.1016/j.physbeh.2016.11.014
dc.relationSquire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171–177. https://doi.org/10.1016/j.nlm.2004.06.005
dc.relationSquire, L. R., Genzel, L., Wixted, J. T., & Morris, R. G. (2015). Memory Consolidation. Cold Spring Harbor Perspectives in Biology, 7(8), a021766. https://doi.org/10.1101/cshperspect.a021766
dc.relationStahn, C., & Buttgereit, F. (2008). Genomic and nongenomic effects of glucocorticoids. Nature Clinical Practice Rheumatology, 4(10), 525–533. https://doi.org/10.1038/ncprheum0898
dc.relationTasker, J. G., & Joëls, M. (2015). The Synaptic Physiology of the Central Nervous System Response to Stress. In Neuroendocrinology of Stress (Issue March 2019, pp. 43–70). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118921692.ch3
dc.relationThompson, R. F., & Kim, J. J. (1996). Memory systems in the brain and localization of a memory. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13438–13444. https://doi.org/10.1073/pnas.93.24.13438
dc.relationTroncoso, J., Lamprea, M., Cuestas, D. M., & Múnera, B. A. (2010). Acute stress impairs evocation and promotes extinction of spatial memory in the Barnes maze. Acta Biologica Colombiana, 15(1), 207–222.
dc.relationVargas-López, V., Lamprea, M. R., & Múnera, A. (2011). Characterizing spatial extinction in an abbreviated version of the Barnes maze. Behavioural Processes, 86(1), 30–38. https://doi.org/10.1016/j.beproc.2010.08.002
dc.relationVolkow, N. D. (2011). Epigenetics of Nicotine: Another Nail in the Coughing. Science Translational Medicine, 3(107), 107ps43-107ps43. https://doi.org/10.1126/scitranslmed.3003278
dc.relationWhite, N. M., Packard, M. G., & McDonald, R. J. (2013). Dissociation of memory systems: The story unfolds. Behavioral Neuroscience, 127(6), 813–834. https://doi.org/10.1037/a0034859
dc.relationWHO. (2020). Tobacco. https://www.who.int/news-room/fact-sheets/detail/tobacco
dc.relationWise, R. A., & Rompre, P. P. (1989). Brain Dopamine and Reward. Annual Review of Psychology, 40(1), 191–225. https://doi.org/10.1146/annurev.ps.40.020189.001203
dc.relationWolfer, D. P., Stagljar-Bozicevic, M., Errington, M. L., & Lipp, H. (1998). Spatial Memory and Learning in Transgenic Mice: Fact or Artifact? Physiology, 13(3), 118–123. https://doi.org/10.1152/physiologyonline.1998.13.3.118
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleAdaptaciones de sistemas emocionales cerebrales causadas por la exposición crónica a nicotina y su retirada prolongada
dc.typeOtro


Este ítem pertenece a la siguiente institución