dc.contributorUribe-Velez, Daniel
dc.contributorGarcía- Dominguez, Celsa
dc.contributorUniversidad Nacional de Colombia - Sede Bogotá
dc.contributorMicrobiologia Agricola
dc.creatorBenavides- Rodriguez, Laura Karina
dc.date.accessioned2020-03-08T20:12:23Z
dc.date.available2020-03-08T20:12:23Z
dc.date.created2020-03-08T20:12:23Z
dc.date.issued2019-10-11
dc.identifierBenavides Rodriguez, Laura Karina (2020). Selección de cepas nativas de bacterias aerobias formadoras de endospora como promotoras de crecimiento vegetal con enfasis en su capacidad antagonista contra Xanthomonas campestris pv. vitians del cultivo de lechuga
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75964
dc.description.abstractLa producción de lechuga en el mundo ha venido presentando un aumento progresivo, dado el auge que ha tenido el consumo de vegetales por su papel en la prevención de enfermedades. Colombia no se ha quedado atrás aumentando la producción en los últimos años convirtiéndose en una fuente de empleo significativa para el sector rural. Sin embargo, la dinámica de producción ha llevado al uso intensivo de suelos, generando problemáticas ambientales, lo que se ve representado en una disminución en el rendimiento y pérdidas económicas, razón por la cual, nuevas alternativas biológicas están siendo estudiadas con el fin de mitigar el impacto de la explotación de los suelos y uso desmesurado de productos químicos. Por tanto, este estudio evaluó de manera in vitro e in vivo cincuenta aislamientos de bacterias aerobias formadoras de endospora (BAFEs) como promotoras de crecimiento vegetal en el cultivo de lechuga haciendo énfasis en su capacidad para promover en presencia de roca fosfórica y en su actividad antagónica frente al aislamiento LC100 de Xanthomonas campestris pv. vitians (Xcv). De los cincuenta aislamientos evaluados, doce cepas presentaron actividad promotora destacándose el aislamiento 4p-03 que en presencia de roca fosfórica arrojó valores de peso seco de raíz y vástago 100% mayores al control, once cepas tuvieron actividad antagonista in vitro y cinco in vivo destacándose los aislamientos 7p-03 y 2p-03 con una reducción promedio en la severidad de la enfermedad del 25%. Se observó una interacción entre los aislamientos cuando fueron aplicados en una misma planta disminuyendo el efecto promotor, pero mitigando los impactos de la enfermedad.
dc.description.abstractThe production of lettuce in the world has been presenting a progressive increase, given the boom that has taken the consumption of vegetables for their role in disease prevention. Colombia has not been left behind increasing production in recent years becoming a significant source of employment for the rural sector. However, the dynamics of production have led to the intensive use of soils, generating environmental problems, which is represented in a decrease in yield and economic losses, which is why new biological alternatives are being studied to mitigate the impact of the exploitation of soils and excessive use of chemical products. Therefore, this study evaluated in vitro and in vivo fifty isolates of aerobic endospore-forming bacteria (BAFEs) as promoters of plant growth in lettuce cultivation emphasizing their ability to promote in the presence of phosphoric rock and its activity antagonistic against the LC100 isolation of Xanthomonas campestris pv. vitians (Xcv). Of the fifty isolates evaluated, twelve strains showed promoter activity, highlighting the 4p-03 isolation, which in the presence of phosphoric rock yielded values of 100% greater root and stem dry weight than the control, eleven strains had antagonistic activity in vitro and five in vivo standing out 7p-03 and 2p-03 isolates with an average reduction in disease severity of 25%. An interaction between the isolates was observed when they were applied in the same plant reducing the promoter effect but mitigating the impacts of the diseases.
dc.languagespa
dc.publisherInstituto de Biotecnología
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAgronet. (2019). Agronet. Retrieved from https://www.agronet.gov.co/Paginas/inicio.aspx Agronet - MINAGRICULTURA. (2017). Evaluaciones agropecuarias municupales - Lechuga.
dc.relationAgyarko, K., Abunyewa, A., Kwasi Asiedu, E., y Heva, E. (2016). Dissolution of rock phosphate in animal manure soil amendment and lettuce growth. In Eurasian Journal of Soil Science (EJSS) (Vol. 5).
dc.relationAhemad, M., y Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1), 1–20. https://doi.org/https://doi.org/10.1016/j.jksus.2013.05.001
dc.relationAl-Saleh, M. A., Ibrahim, Y. E., Abo-Elyousr, K. A. M., y Alibrahim, J. S. (2011). Population dynamics of Xanthomonas campestris pv. vitians on different plant species and management of bacterial leaf spot of lettuce under greenhouse conditions. Crop Protection, 30(7), 883–887. https://doi.org/http://dx.doi.org/10.1016/j.cropro.2011.03.032
dc.relationAl-Saleh, M., y Ibrahim, Y. (2009). First Report of Bacterial Leaf Spot of Lettuce (Lactuca sativa) Caused by Xanthomonas campestris pv. vitians in Saudi Arabia. In Plant Disease - PLANT DIS (Vol. 93). https://doi.org/10.1094/PDIS-93-1-0107B
dc.relationAlejandro Antúnez B., Sofía Felmer E., Patricia Estay P, Paulina Sepúlveda R, Fabio Corradini S, R., G. S. Del. (2017). Manual de producción de lechuga. Santiago de Chile.
dc.relationAli, B., Sabri, A., Ljung, K., y Hasnain, S. (2008). Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). In World Journal of Microbiology and Biotechnology (Vol. 25). https://doi.org/10.1007/s11274-008-9918-9
dc.relationAlkhader, A., Abu-Rayyan, A., y Rusan, M. (2013). The effect of phosphorus fertilizers on the growth and quality of lettuce (Lactuca sativa L.) under greenhouse and field conditions. In Journal of Food, Agriculture and Environment (Vol. 11).
dc.relationAlori, E. T., Glick, B. R., y Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8, 971. https://doi.org/10.3389/fmicb.2017.00971
dc.relationAlvez, B., Alonso, G., y Oropeza, M. (2016). GENOTIPIFICACIÓN Y PERFIL BIOQUÍMICO DE AISLADOS DE Xanthomonas albilineans EN VENEZUELA. Interciencia, 41(11), 732–739. Retrieved from http://www.redalyc.org/articulo.oa?id=33948191002
dc.relationArkhipova, T., U. Veselov, S., Melent’ev, A., V. Martynenko, E., y Kudoyarova, G. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. In Plant and Soil - PLANT SOIL (Vol. 272). https://doi.org/10.1007/s11104-004-5047-x
dc.relationASOHOFRUCOL, C. C. I. C. (2007). Plan Horticola Nacional PHN.
dc.relationASOHOFRUCOL, y Ministerio de Ambiente Vivienda y Desarrollo rural. (2009). Guía ambiental Hortofruticola de Colombia.
dc.relationBarak, J. D., Koike, S. T., y Gilbertson, R. L. (2001). Role of Crop Debris and Weeds in the Epidemiology of Bacterial Leaf Spot of Lettuce in California. Plant Disease, 85(2), 169–178. https://doi.org/10.1094/PDIS.2001.85.2.169
dc.relationBarak, J., T. Koike, S., y Gilbertson, R. (2002). Movement of Xanthomonas campestris pv. vitians in the stems of lettuce and seed contamination. In Plant Pathology (Vol. 51). https://doi.org/10.1046/j.1365-3059.2002.00730.x
dc.relationBeneduzi, A., Ambrosini, A., y Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4 (suppl)), 1044–1051. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23411488
dc.relationBull, C., y Koike, S. T. (2005). Evaluating the Efficacy of Commercial Products for Management of Bacterial Leaf Spot on Lettuce. Plant Health Progress. https://doi.org/10.1094/PHP-2005-1121-01-RS
dc.relationCamara de comercio. (2015). Manual lechuga. Producción y Calidad Vol. 22, pp. 1–53. Retrieved from http://hdl.handle.net/11520/14316
dc.relationCarisse, O., Ouimet, A., Toussaint, V., y Philion, V. (2000). Evaluation of the effect of seed treatments, bactericides, and cultivars on bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians. Plant Disease, 84(3), 295–299. https://doi.org/10.1094/PDIS.2000.84.3.295
dc.relationCassan, F., Vanderleyden, J., y Spaepen, S. (2013). Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum. In Journal of Plant Growth Regulation (Vol. 33). https://doi.org/10.1007/s00344-013-9362-4
dc.relationChan, J. W. Y. F., y Goodwin, P. H. (1999). The molecular genetics of virulence of Xanthomonas campestris. Biotechnology Advances, 17(6), 489–508. https://doi.org/http://dx.doi.org/10.1016/S0734-9750(99)00025-7
dc.relationChoudhary, D. K., y Johri, B. N. (2009). Interactions of Bacillus spp. and plants – With special reference to induced systemic resistance (ISR). Microbiological Research, 164(5), 493–513. https://doi.org/https://doi.org/10.1016/j.micres.2008.08.007
dc.relationCompant, S., Van der Heijden, M., y Sessitsch, A. (2010). Climate change effects on beneficial plant-microorganism interactions. In FEMS microbiology ecology (Vol. 73). https://doi.org/10.1111/j.1574-6941.2010.00900.x
dc.relationDANE. (2016). Encuesta nacional agropecuaria ENA.
dc.relationDaniels, M. J. (1989). Chapter 17 - Pathogenicity of Xanthomonas and Related Bacteria Towards Plants A2 - Hopwood, David A. (K. F. B. T.-G. of B. D. Chater, Ed.). https://doi.org/http://dx.doi.org/10.1016/B978-0-12-355574-8.50027-6
dc.relationVries, I. M. (1997). Origin and domestication of Lactuca sativa L. Genetic Resources and Crop Evolution, 44(2), 165–174. https://doi.org/10.1023/A:1008611200727
dc.relationEdnar, W., M. Mguni, C., Mortensen, C., L. Keswani, C., y Hockenhull, J. (2002). Biological Control of Black Rot (Xanthomonas campestris pv. campestris) of Brassicas with an Antagonistic Strain of Bacillus subtilis in Zimbabwe. In European Journal of Plant Pathology (Vol. 108). https://doi.org/10.1023/A:1015671031906
dc.relationElliot, C. (1931). Manual of Bacterial Plant Pathogens. Soil Science, 31(1). Retrieved from https://journals.lww.com/soilsci/Fulltext/1931/01000/Manual_of_Bacterial_Plant_Path ogens.7.aspx
dc.relationEvidente, A., y Mottats, A. (2002). Bioactive metabolites from phytopathogenic bacteria and plants. In B. T.-S. in N. P. C. Atta-ur-Rahman (Ed.), Bioactive Natural Products (Vol. 26, pp. 581–628). https://doi.org/https://doi.org/10.1016/S1572-5995(02)80015
dc.relationFAOFAST. (2019). Retrieved from http://www.fao.org/news/archive/news-by-
dc.relationFINAGRO. (2014). Perspectiva del sector agropecuario.
dc.relationForero, A., Escobar, H., Medina, A., y Monsavel, O. (2010). Uso de materiales 0rgánicos en el manejo del suelo en cultivos de hortalizas (Primera). Bogotá.
dc.relationFritze, D. (2004). Taxonomy of the Genus Bacillus and Related Genera: The Aerobic Endospore-Forming Bacteria. In Phytopathology (Vol. 94). https://doi.org/10.1094/PHYTO.2004.94.11.1245
dc.relationG Santos, B., Lobato, A., Silva, R., Schimidt, D., C L Costa, R., A R Alves, G., y Neto, C. F. (2009). Growth of Lettuce (Lactuca sativa L.) In Protected Cultivation and Open Field. In Journal of Applied Sciences Research (Vol. 5).
dc.relationGalelli, M. E., Sarti, G. C., y Miyazaki, S. S. (2015). Lactuca sativa biofertilization using biofilm from Bacillus with PGPR activity. In Journal of Applied Horticulture (Vol. 17).
dc.relationGalieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., y Stagnari, F. (2015). Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae, 187, 93–101. https://doi.org/10.1016/j.scienta.2015.02.036
dc.relationGardener, B. (2004). Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems. In Phytopathology (Vol. 94). https://doi.org/10.1094/PHYTO.2004.94.11.1252 Garrity, G.,
dc.relationGent, M. (2017). Factors Affecting Relative Growth Rate of Lettuce and Spinach in Hydroponics in a Greenhouse. In HortScience (Vol. 52). https://doi.org/10.21273/HORTSCI12477-17
dc.relationGoto, L. S., Vessoni Alexandrino, A., Malvessi Pereira, C., Silva Martins, C., D’Muniz Pereira, H., Brandão-Neto, J., y Marques Novo-Mansur, M. T. (2016). Structural and functional characterization of the phosphoglucomutase from Xanthomonas citri subsp. citri. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1864(12), 1658– 1666. https://doi.org/http://dx.doi.org/10.1016/j.bbapap.2016.08.014
dc.relationGray, E. J., y Smith, D. L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 37(3), 395–412. https://doi.org/https://doi.org/10.1016/j.soilbio.2004.08.030
dc.relationGurdon, C., Poulev, A., Armas, I., Satorov, S., Tsai, M., y Raskin, I. (2019). Genetic and Phytochemical Characterization of Lettuce Flavonoid Biosynthesis Mutants. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39287-y
dc.relationGuzman Rodriguez, L. (2007). Presencia de bacterias fitopatógenas en hortalizas y su relación con la inocuidad alimentaria (Universidad veracruzana). Retrieved from http://cdigital.uv.mx/handle/123456789/46912
dc.relationHan, H. S., y Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. In Plant, Soil and Environment (Vol. 52). https://doi.org/10.17221/3356-PSE
dc.relationHayes, R. J., Trent, M. A., Truco, M. J., Antonise, R., Michelmore, R. W., y Bull, C. T. (2014). The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars. Horticulture Research, 1, 14066. https://doi.org/10.1038/hortres.2014.66
dc.relationHe, P., Shan, L., y Sheen, J. (2007). Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant–microbe interactions. Cellular Microbiology, 9(6), 1385–1396. https://doi.org/10.1111/j.1462-5822.2007.00944.x
dc.relationHeidel, A. J., Clarke, J. D., Antonovics, J., y Dong, X. (2004). Fitness Costs of Mutations Affecting the Systemic Acquired Resistance Pathway in Arabidopsis thaliana Genetics, 168(4), 2197 LP – 2206. https://doi.org/10.1534/genetics.104.032193
dc.relationHeil, M. (2001). The Ecological Concept of Costs of Induced Systemic Resistance (ISR). European Journal of Plant Pathology, 107, 137–146. https://doi.org/10.1023/A:1008793009517
dc.relationHeil, M., Hilpert, A., Kaiser, W., y Linsenmair, K. E. (2000). Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? Journal of Ecology, 88(4), 645–654. https://doi.org/10.1046/j.1365-2745.2000.00479.x
dc.relationHenry, G., Thonart, P., y Ongena, M. (2012). PAMPs, MAMPs, DAMPs and others: An update on the diversity of plant immunity elicitors. Biotechnology, Agronomy and Society and Environment, 16, 257–268.
dc.relationHernández, T., Chocano, C., Moreno, J.-L., y García, C. (2016). Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—Effects on soil and plant. Soil and Tillage Research, 160, 14–22. https://doi.org/https://doi.org/10.1016/j.still.2016.02.005
dc.relationHoang, L., Joo, G.-J., Kim, W.-C., Jeon, S.-Y., Choi, S.-H., Kim, J.-W., Song, K.-S. (2005). Growth Inhibitors of Lettuce Seedlings From Bacillus cereus EJ-121. In Plant Growth Regulation (Vol. 47). https://doi.org/10.1007/s10725-005-3217-3
dc.relationHuot, B., Yao, J., Montgomery, B. L., & He, S. Y. (2014). Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness. Molecular Plant, 7(8), 1267–1287.
dc.relationJaramillo Noreña, J., Aguilar Aguilar, P. A., Tamayo Molano, P. J., Agropecuaria., C. C. de I., (Colombia)., A., y Rural., S. de A. y D. (2016). Modelo tecnológico para el cultivo de lechuga bajo buenas prácticas agrícolas en el Oriente Antioqueño.
dc.relationJorquera, M. A., Crowley, D. E., Marschner, P., Greiner, R., Fernández, M. T., Romero, D, De La Luz Mora, M. (2011). Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiology Ecology, 75(1), 163–172. https://doi.org/10.1111/j.1574-6941.2010.00995.x
dc.relationKanwa, S. (2011). Aerobic composting of water lettuce for preparation of phosphorus enriched organic manure. In African Journal of Microbiology Research (Vol. 5). https://doi.org/10.5897/AJMR11.053
dc.relationKushima, M., Kakuta, H., Kosemura, S., Yamamura, S., Yamada, K., Yokotani-Tomita, K., y Hasegawa, K. (1998). An allelopathic substance exuded from germinating watermelon seeds. In Plant Growth Regulation (Vol. 25). https://doi.org/10.1023/A:1005907101778
dc.relationLebeda, A., Křístková, E., Kitner, M., Mieslerová, B., Jemelková, M., y Pink, D. A. C. (2014). Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding. European Journal of Plant Pathology, 138(3), 597–640. https://doi.org/10.1007/s10658-013-0254-z
dc.relationLópez Cruz, I. L., van Willigenburg, L. G., y van Straten, G. (2003). Optimal control of nitrate in lettuce by a hybrid approach: differential evolution and adjustable control weight gradient algorithms. Computers and Electronics in Agriculture, 40(1), 179– 197. https://doi.org/https://doi.org/10.1016/S0168-1699(03)00019-X
dc.relationLugtenberg, B., y Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology, 63(1), 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
dc.relationMartinez F., Garcés, G. (2012). Crecimiento y producción de lechuga (Lactuca sativa L.var. romana) bajo diferentes niveles de potasio. Revista Colombiana de Ciencias Hortícolas, 4(2 SE-SECCION DE HORTALIZAS).
dc.relationMarschner, P., y Rengel, Z. (2012). Chapter 12 - Nutrient Availability in Soils (P. B. T.-M. M. N. of H. P. (Third E. Marschner, Ed.). https://doi.org/https://doi.org/10.1016/B978- 0-12-384905-2.00012-1
dc.relationMartínez, O., Jorquera, M., Crowley, D. E., Gajardo, G., y Mora, M. L. (2010).
dc.relationMechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. In Journal of Soil Science and Plant Nutrition (Vol. 10). https://doi.org/10.4067/S0718-95162010000100006
dc.relationMassomo, S., N. Mortensen, C., B. Mabagala, R., Newman, M.-A., y Hockenhull, J. (2004). Biological Control of Black Rot (Xanthomonas campestris pv. campestris) of Cabbage in Tanzania with Bacillus strains. In Journal of Phytopathology (Vol. 152). https://doi.org/10.1111/j.1439-0434.2003.00808.x
dc.relationMolinaro, A., Evidente, A., Lanzetta, R., Parrilli, M., y Zoina, A. (2000). O-specific polysaccharide structure of the aqueous lipopolysaccharide fraction from Xanthomonas campestris pv. vitians strain 1839. Carbohydrate Research, 328(3), 435–439. https://doi.org/ http://dx.doi.org/10.1016/S0008-6215(00)00112-9
dc.relationMoss, W. P., Byrne, J. M., Campbell, H. L., Ji, P., Bonas, U., Jones, J. B., y Wilson, M. (2007). Biological control of bacterial spot of tomato using hrp mutants of Xanthomonas campestris pv. vesicatoria. Biological Control, 41(2), 199–206. https://doi.org/ http://dx.doi.org/10.1016/j.biocontrol.2007.01.008
dc.relationNadeem, S., Naveed, M., Zahir, Z., y Hafi z Naeem Asghar, and. (2013). Plant–Microbe Interactions for Sustainable Agriculture: Fundamentals and Recent Advances. In Plant Microbe Symbiosis: Fundamentals and Advances (pp. 51–103). https://doi.org/10.1007/978-81-322-1287-4_2
dc.relationNavarrete, F., y De La Fuente, L. (2015). Zinc detoxification is required for full virulence and modification of the host leaf ionome by Xylella fastidiosa. Molecular Plant- Microbe Interactions, 28(4), 497–507. https://doi.org/10.1094/MPMI-07-14-0221-R
dc.relationNeocleous, D., y Savvas, D. (2019). The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. Scientia Horticulturae, 252, 379– 387. https://doi.org/10.1016/j.scienta.2019.04.007
dc.relationNicolas, O, Charles, M. T., Jenni, S., Toussaint, V., Parent, S.-É., y Beaulieu, C. (2019). The ionomics of lettuce infected by Xanthomonas campestris pv. vitians. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00351
dc.relationNicolas, Olbert, Charles, M., Jenni, S., Toussaint, V., & Beaulieu, C. (2018). Relationships between Xanthomonas campestris pv. vitians population sizes, stomatal density and lettuce resistance to bacterial leaf spot. In Canadian Journal of Plant Pathology.
dc.relationNoumedem, J. A. K., Djeussi, D. E., Hritcu, L., Mihasan, M., y Kuete, V. (2017). Chapter 20 - Lactuca sativa (V. B. T.-M. S. and V. from A. Kuete, Ed.). https://doi.org/https://doi.org/10.1016/B978-0-12-809286-6.00020-0
dc.relationOgugua, U., Ntushelo, K., Makungu, M. C., y Kanu, S. (2018). Effect of Bacillus subtilis BD233 on seedlings growth of sweet pepper (Capsicum annuum), Swiss chard (Beta vulgaris) and lettuce (Lactuca sativa). In Acta Horticulturae. https://doi.org/10.17660/ActaHortic.2018.1204.26
dc.relationPanhwar, Q., Othman, R., A Rahman, Z., Meon, S., y Mohd Razi, I. (2011). Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. In Journal of environmental biology / Academy of Environmental Biology, India (Vol. 32).
dc.relationPatten, C., & Glick, B. (1996). Bacterial biosynthesis of indole-3-acetic acid. In Canadian journal of microbiology (Vol. 42). https://doi.org/10.1139/m96-032
dc.relationPearson, S., Wheeler, T. R., Hadley, P., y Wheldon, A. E. (1997). A validated model to predict the effects of environment on the growth of lettuce (Lactuca sativa L.): Implications for climate change. In Journal of Horticultural Science (Vol. 72). https://doi.org/10.1080/14620316.1997.11515538
dc.relationPernezny, K., Nagata, R., Havranek, N., y Sanchez, J. (2008). Comparison of two culture media for determination of the copper resistance of Xanthomonas strains and their usefulness for prediction of control with copper bactericides. Crop Protection, 27(2), 256–262. https://doi.org/ http://dx.doi.org/10.1016/j.cropro.2007.05.012
dc.relationPeyraud, R., Dubiella, U., Barbacci, A., Genin, S., Raffaele, S., y Roby, D. (2017). Advances on plant-pathogen interactions from molecular toward systems biology perspectives. The Plant Journal: For Cell and Molecular Biology, 90(4), 720–737. https://doi.org/10.1111/tpj.13429
dc.relationPishchik, V. N., Vorobyov, N. I., Walsh, O. S., Surin, V. G., y Khomyakov, Y. V. (2016). Estimation of synergistic effect of humic fertilizer and Bacillus subtilis on lettuce plants by reflectance measurements. Journal of Plant Nutrition, 39(8), 1074–1086. https://doi.org/10.1080/01904167.2015.1061551
dc.relationRadhakrishnan, R., Hashem, A., y Abd Allah, E. F. (2017). Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in Physiology, 8, 667. https://doi.org/10.3389/fphys.2017.00667
dc.relationR., & Lee, I.-J. (2016). Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiology and Biochemistry, 109, 181–189. https://doi.org/https://doi.org/10.1016/j.plaphy.2016.09.018
dc.relationRamesh, A., Sharma, S., Yadav, N., y Joshi, O. (2014). Phosphorus Mobilization from Native Soil P-Pool upon Inoculation with Phytate-Mineralizing and Phosphate- Solubilizing Bacillus aryabhattai Isolates for Improved P-Acquisition and Growth of Soybean and Wheat Crops in Microcosm Conditions. In Agricultural Research (Vol. 3). https://doi.org/10.1007/s40003-014-0105-y
dc.relationRobinson, P. E., Jones, J. B., y Pernezny, K. (2006). Bacterial leaf spot of lettuce: Relationship of temperature to infection and potential host range of Xanthomonas campestris pv. vitians. Plant Disease, 90(4), 465–470. https://doi.org/10.1094/PD-90- 0465
dc.relationRosseto, F. R., Manzine, L. R., de Oliveira Neto, M., y Polikarpov, I. (2016). Biophysical and biochemical studies of a major endoglucanase secreted by Xanthomonas campestris pv. campestris. Enzyme and Microbial Technology, 91, 1–7. https://doi.org/ http://dx.doi.org/10.1016/j.enzmictec.2016.05.007
dc.relationSahin, F., & Miller, S. A. (1997). Identification of the bacterial leaf spot pathogen of lettuce, Xanthomonas campestris pv. vitians, in Ohio, and assessment of cultivar resistance and seed treatment. Plant Disease, 81(12), 1443–1446. https://doi.org/10.1094/PDIS.1997.81.12.1443
dc.relationSahoo, R., Ansari, M., Pradhan, M., Dangar, T., Mohanty, S., y Tuteja, N. (2014).
dc.relationPhenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. In Protoplasma. https://doi.org/10.1007/s00709- 013-0607-7
dc.relationSánchez López, D. B., García Hoyos, A. M., Romero Perdomo, F. A., y Bonilla Buitrago, R. R. (2014). Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston TT - Effect of plant growth promoting rhizobacteria phosate solubilizing Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología, 16(2), 122–128. https://doi.org/10.15446/rev.colomb.biote.v16n2.41077
dc.relationScala, F., Evidente, A., Coppola, L., Capasso, R., Lorito, M., y Zoina, A. (1996) Identification and phytotoxicity of 3-methylthiopropanoic and trans-3- methylthiopropenoic acids produced in culture by Xanthomonas campestris pv. vitians. Journal of Phytopathology, 144(6), 325–329. https://doi.org/10.1111/j.1439- 0434.
dc.relationSharma, A., Gautam, S., y Wadhawan, S. (2014). Xanthomonas A2 - Batt, Carl A. (M. L. B. T.-E. of F. M. (Second E. Tortorello, Ed.). https://doi.org/ http://dx.doi.org/10.1016/B978- 0-12-384730-0.00359-1
dc.relationSharma, S. B., Sayyed, R. Z., Trivedi, M. H., y Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587
dc.relationShukla, A. K. (2019). Chapter One - Ecology and Diversity of Plant Growth Promoting Rhizobacteria in Agricultural Landscape (A. K. Singh, A. Kumar, y P. K. B. T.-P. A. in S. A. Singh, Eds.). https://doi.org/https://doi.org/10.1016/B978-0-12-815879- 1.00001- X
dc.relationSingh, R. (2019). Chapter 8 - Microbial Biotechnology: A Promising Implement for Sustainable Agriculture (J. S. Singh & D. P. B. T.-N. and F. D. in M. B. and B. Singh, Eds.). https://doi.org/https://doi.org/10.1016/B978-0-444-64191-5.00008-0
dc.relationSzczech, M., Szafirowska, A., Kowalczyk, W., Szwejda-Grzybowska, J., Włodarek, A., y Maciorowski, R. (2016). The Effect of Plant Growth Promoting Bacteria on Transplants Growth and Lettuce Yield in Organic Production. In Journal of Horticultural Research (Vol. 24). https://doi.org/10.1515/johr-2016-0026
dc.relationT P Ferreira, J., Santos, T. M., S Albuquerque, L., Santos, J., Cardoso Filho, J., y E Ramalho Neto, C. (2011). Isolation and selection of growth-promoting bacteria of the genus Bacillus and its effect on two varieties of lettuce (Lactuca sativa L.).
dc.relationTHEODORACOPOULOS, M., LARDIZABAL, R., & ARIAS, S. (2009). MANUAL DE PRODUCCIÓN - PRODUCCIÓN DE LECHUGA. Honduras.
dc.relationTiwari, S., Prasad, V., y Lata, C. (2019). Chapter 3 - Bacillus: Plant Growth Promoting Bacteria for Sustainable Agriculture and Environment (J. S. Singh & D. P. B. T.-N. and F. D. in M. B. and B. Singh, Eds.). https://doi.org/https://doi.org/10.1016/B978-0- 444- 64191-5.00003-1
dc.relationToussaint, V, Benoit, D. L., y Carisse, O. (2012). Potential of weed species to serve as a reservoir for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Crop Protection, 41, 64–70.
dc.relationToussaint, V, Morris, C. E., y Carisse, O. (2001). A new semi-selective medium for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Plant Disease, 85(2), 131–136.
dc.relationToussaint, Vicky. (2019). Ecology of Xanthomonas campestris pv. vitians in relation to development of bacterial leaf spot of lettuce by Vicky Toussaint.
dc.relationUchida, R. S. (2000). Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. In Plant Nutr Manag Hawaii’s Soils (Vol. 3).
dc.relationVallad, G., y M. Goodman, R. (2004). Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. In Crop Science - CROP SCI (Vol. 44). https://doi.org/10.2135/cropsci2004.1920
dc.relationVan Henten, E. J. (1994). Validation of a dynamic lettuce growth model for greenhouse climate control. Agricultural Systems, 45(1), 55–72. https://doi.org/https://doi.org/10.1016/S0308-521X(94)90280-1
dc.relationVan Wees, S. C. M., Van der Ent, S., & Pieterse, C. M. J. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11(4), 443–448. https://doi.org/https://doi.org/10.1016/j.pbi.2008.05.005
dc.relationVauterin, L., Rademaker, J., y Swings, J. (2000). Synopsis on the Taxonomy of the Genus Xanthomonas. In Phytopathology (Vol. 90). https://doi.org/10.1094/PHYTO.2000.90.7.677
dc.relationVelásquez V, P., Ruíz E, H., Chaves J, G., y Luna C, C. (2014). Productividad de Lechuga Lactuca Sativa en condiciones de Macrotúnel en suelo Vitric Haplustands . Revista de Ciencias Agrícolas, Vol. 31, pp. 93–105. scieloco.
dc.relationVelázquez, M. S., Cabello, M. N., Elíades, L. A., Russo, M. L., Allegrucci, N., y Schalamuk, S. (2017). Combinación de hongos movilizadores y solubilizadores de fósforo con rocas fosfóricas y materiales volcánicos para la promoción del crecimiento de plantas de lechuga (Lactuca sativa L.). Revista Argentina de Microbiología, 49(4), 347–355. https://doi.org/https://doi.org/10.1016/j.ram.2016.07.005
dc.relationWheeler, T. R., Hadley, P., Morison, J. I. L., y Ellis, R. H. (1993). Effects of temperature on the growth of lettuce (Lactuca sativa L.) and the implications for assessing the impacts of potential climate change. European Journal of Agronomy, 2(4), 305–311. https://doi.org/https://doi.org/10.1016/S1161-0301(14)80178-0
dc.relationYobo, K. S., Laing, M. D., y Hunter, C. H. (2004). Effect of commercially available rhizobacteria strains on growth and production of lettuce, tomato and pepper. South African Journal of Plant and Soil, 21(4), 230–235. https://doi.org/10.1080/02571862.2004.10635054
dc.relationZłotek, U., Gawlik-Dziki, U. (2015). Selected biochemical properties of polyphenol oxidase in butter lettuce leaves (Lactuca sativa L. var. capitata) elicited with dl-β- amino-n-butyric acid. Food Chemistry, 168, 423–429. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.07.033
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleSelección de cepas nativas de bacterias aerobias formadoras de endospora como promotoras de crecimiento vegetal con enfasis en su capacidad antagonista contra Xanthomonas campestris pv. vitians del cultivo de lechuga
dc.typeOtro


Este ítem pertenece a la siguiente institución