dc.contributor | Uribe-Velez, Daniel | |
dc.contributor | García- Dominguez, Celsa | |
dc.contributor | Universidad Nacional de Colombia - Sede Bogotá | |
dc.contributor | Microbiologia Agricola | |
dc.creator | Benavides- Rodriguez, Laura Karina | |
dc.date.accessioned | 2020-03-08T20:12:23Z | |
dc.date.available | 2020-03-08T20:12:23Z | |
dc.date.created | 2020-03-08T20:12:23Z | |
dc.date.issued | 2019-10-11 | |
dc.identifier | Benavides Rodriguez, Laura Karina (2020). Selección de cepas nativas de bacterias aerobias formadoras de endospora como promotoras de crecimiento vegetal con enfasis en su capacidad antagonista contra Xanthomonas campestris pv. vitians del cultivo de lechuga | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/75964 | |
dc.description.abstract | La producción de lechuga en el mundo ha venido presentando un aumento progresivo,
dado el auge que ha tenido el consumo de vegetales por su papel en la prevención de
enfermedades. Colombia no se ha quedado atrás aumentando la producción en los
últimos años convirtiéndose en una fuente de empleo significativa para el sector rural.
Sin embargo, la dinámica de producción ha llevado al uso intensivo de suelos,
generando problemáticas ambientales, lo que se ve representado en una disminución en
el rendimiento y pérdidas económicas, razón por la cual, nuevas alternativas biológicas
están siendo estudiadas con el fin de mitigar el impacto de la explotación de los suelos y
uso desmesurado de productos químicos. Por tanto, este estudio evaluó de manera in
vitro e in vivo cincuenta aislamientos de bacterias aerobias formadoras de endospora
(BAFEs) como promotoras de crecimiento vegetal en el cultivo de lechuga haciendo
énfasis en su capacidad para promover en presencia de roca fosfórica y en su actividad
antagónica frente al aislamiento LC100 de Xanthomonas campestris pv. vitians (Xcv). De
los cincuenta aislamientos evaluados, doce cepas presentaron actividad promotora
destacándose el aislamiento 4p-03 que en presencia de roca fosfórica arrojó valores de
peso seco de raíz y vástago 100% mayores al control, once cepas tuvieron actividad
antagonista in vitro y cinco in vivo destacándose los aislamientos 7p-03 y 2p-03 con una
reducción promedio en la severidad de la enfermedad del 25%. Se observó una
interacción entre los aislamientos cuando fueron aplicados en una misma planta
disminuyendo el efecto promotor, pero mitigando los impactos de la enfermedad. | |
dc.description.abstract | The production of lettuce in the world has been presenting a progressive increase, given the boom that has taken the consumption of vegetables for their role in disease prevention. Colombia has not been left behind increasing production in recent years becoming a significant source of employment for the rural sector. However, the dynamics of production have led to the intensive use of soils, generating environmental problems, which is represented in a decrease in yield and economic losses, which is why new biological alternatives are being studied to mitigate the impact of the exploitation of soils and excessive use of chemical products. Therefore, this study evaluated in vitro and in vivo fifty isolates of aerobic endospore-forming bacteria (BAFEs) as promoters of plant growth in lettuce cultivation emphasizing their ability to promote in the presence of phosphoric rock and its activity antagonistic against the LC100 isolation of Xanthomonas campestris pv. vitians (Xcv). Of the fifty isolates evaluated, twelve strains showed promoter activity, highlighting the 4p-03 isolation, which in the presence of phosphoric rock yielded values of 100% greater root and stem dry weight than the control, eleven strains had antagonistic activity in vitro and five in vivo standing out 7p-03 and 2p-03 isolates with an average reduction in disease severity of 25%. An interaction between the isolates was observed when they were applied in the same plant reducing the promoter effect but mitigating the impacts of the diseases. | |
dc.language | spa | |
dc.publisher | Instituto de Biotecnología | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Agronet. (2019). Agronet. Retrieved from https://www.agronet.gov.co/Paginas/inicio.aspx
Agronet - MINAGRICULTURA. (2017). Evaluaciones agropecuarias municupales -
Lechuga. | |
dc.relation | Agyarko, K., Abunyewa, A., Kwasi Asiedu, E., y Heva, E. (2016). Dissolution of rock
phosphate in animal manure soil amendment and lettuce growth. In Eurasian Journal
of Soil Science (EJSS) (Vol. 5). | |
dc.relation | Ahemad, M., y Kibret, M. (2014). Mechanisms and applications of plant growth promoting
rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1),
1–20. https://doi.org/https://doi.org/10.1016/j.jksus.2013.05.001 | |
dc.relation | Al-Saleh, M. A., Ibrahim, Y. E., Abo-Elyousr, K. A. M., y Alibrahim, J. S. (2011).
Population dynamics of Xanthomonas campestris pv. vitians on different plant species
and management of bacterial leaf spot of lettuce under greenhouse conditions. Crop
Protection, 30(7), 883–887.
https://doi.org/http://dx.doi.org/10.1016/j.cropro.2011.03.032 | |
dc.relation | Al-Saleh, M., y Ibrahim, Y. (2009). First Report of Bacterial Leaf Spot of Lettuce (Lactuca
sativa) Caused by Xanthomonas campestris pv. vitians in Saudi Arabia. In Plant
Disease - PLANT DIS (Vol. 93). https://doi.org/10.1094/PDIS-93-1-0107B | |
dc.relation | Alejandro Antúnez B., Sofía Felmer E., Patricia Estay P, Paulina Sepúlveda R, Fabio
Corradini S, R., G. S. Del. (2017). Manual de producción de lechuga. Santiago de
Chile. | |
dc.relation | Ali, B., Sabri, A., Ljung, K., y Hasnain, S. (2008). Quantification of indole-3-acetic acid
from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata
(L.). In World Journal of Microbiology and Biotechnology (Vol. 25).
https://doi.org/10.1007/s11274-008-9918-9 | |
dc.relation | Alkhader, A., Abu-Rayyan, A., y Rusan, M. (2013). The effect of phosphorus fertilizers on
the growth and quality of lettuce (Lactuca sativa L.) under greenhouse and field
conditions. In Journal of Food, Agriculture and Environment (Vol. 11). | |
dc.relation | Alori, E. T., Glick, B. R., y Babalola, O. O. (2017). Microbial Phosphorus Solubilization
and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8, 971.
https://doi.org/10.3389/fmicb.2017.00971 | |
dc.relation | Alvez, B., Alonso, G., y Oropeza, M. (2016). GENOTIPIFICACIÓN Y PERFIL
BIOQUÍMICO DE AISLADOS DE Xanthomonas albilineans EN VENEZUELA.
Interciencia, 41(11), 732–739. Retrieved from
http://www.redalyc.org/articulo.oa?id=33948191002 | |
dc.relation | Arkhipova, T., U. Veselov, S., Melent’ev, A., V. Martynenko, E., y Kudoyarova, G. (2005).
Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth
and endogenous hormone content of lettuce plants. In Plant and Soil - PLANT SOIL
(Vol. 272). https://doi.org/10.1007/s11104-004-5047-x | |
dc.relation | ASOHOFRUCOL, C. C. I. C. (2007). Plan Horticola Nacional PHN. | |
dc.relation | ASOHOFRUCOL, y Ministerio de Ambiente Vivienda y Desarrollo rural. (2009). Guía
ambiental Hortofruticola de Colombia. | |
dc.relation | Barak, J. D., Koike, S. T., y Gilbertson, R. L. (2001). Role of Crop Debris and Weeds in
the Epidemiology of Bacterial Leaf Spot of Lettuce in California. Plant Disease, 85(2),
169–178. https://doi.org/10.1094/PDIS.2001.85.2.169 | |
dc.relation | Barak, J., T. Koike, S., y Gilbertson, R. (2002). Movement of Xanthomonas campestris pv.
vitians in the stems of lettuce and seed contamination. In Plant Pathology (Vol. 51).
https://doi.org/10.1046/j.1365-3059.2002.00730.x | |
dc.relation | Beneduzi, A., Ambrosini, A., y Passaglia, L. M. P. (2012). Plant growth-promoting
rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics
and Molecular Biology, 35(4 (suppl)), 1044–1051. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/23411488 | |
dc.relation | Bull, C., y Koike, S. T. (2005). Evaluating the Efficacy of Commercial Products for
Management of Bacterial Leaf Spot on Lettuce. Plant Health Progress.
https://doi.org/10.1094/PHP-2005-1121-01-RS | |
dc.relation | Camara de comercio. (2015). Manual lechuga. Producción y Calidad Vol. 22, pp. 1–53.
Retrieved from http://hdl.handle.net/11520/14316 | |
dc.relation | Carisse, O., Ouimet, A., Toussaint, V., y Philion, V. (2000). Evaluation of the effect of
seed treatments, bactericides, and cultivars on bacterial leaf spot of lettuce caused by
Xanthomonas campestris pv. vitians. Plant Disease, 84(3), 295–299.
https://doi.org/10.1094/PDIS.2000.84.3.295 | |
dc.relation | Cassan, F., Vanderleyden, J., y Spaepen, S. (2013). Physiological and Agronomical
Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria
(PGPR) Belonging to the Genus Azospirillum. In Journal of Plant Growth Regulation
(Vol. 33). https://doi.org/10.1007/s00344-013-9362-4 | |
dc.relation | Chan, J. W. Y. F., y Goodwin, P. H. (1999). The molecular genetics of virulence of
Xanthomonas campestris. Biotechnology Advances, 17(6), 489–508.
https://doi.org/http://dx.doi.org/10.1016/S0734-9750(99)00025-7 | |
dc.relation | Choudhary, D. K., y Johri, B. N. (2009). Interactions of Bacillus spp. and plants – With
special reference to induced systemic resistance (ISR). Microbiological Research,
164(5), 493–513. https://doi.org/https://doi.org/10.1016/j.micres.2008.08.007 | |
dc.relation | Compant, S., Van der Heijden, M., y Sessitsch, A. (2010). Climate change effects on
beneficial plant-microorganism interactions. In FEMS microbiology ecology (Vol. 73).
https://doi.org/10.1111/j.1574-6941.2010.00900.x | |
dc.relation | DANE. (2016). Encuesta nacional agropecuaria ENA. | |
dc.relation | Daniels, M. J. (1989). Chapter 17 - Pathogenicity of Xanthomonas and Related Bacteria
Towards Plants A2 - Hopwood, David A. (K. F. B. T.-G. of B. D. Chater, Ed.).
https://doi.org/http://dx.doi.org/10.1016/B978-0-12-355574-8.50027-6 | |
dc.relation | Vries, I. M. (1997). Origin and domestication of Lactuca sativa L. Genetic Resources and
Crop Evolution, 44(2), 165–174. https://doi.org/10.1023/A:1008611200727 | |
dc.relation | Ednar, W., M. Mguni, C., Mortensen, C., L. Keswani, C., y Hockenhull, J. (2002).
Biological Control of Black Rot (Xanthomonas campestris pv. campestris) of Brassicas
with an Antagonistic Strain of Bacillus subtilis in Zimbabwe. In European Journal of
Plant Pathology (Vol. 108). https://doi.org/10.1023/A:1015671031906 | |
dc.relation | Elliot, C. (1931). Manual of Bacterial Plant Pathogens. Soil Science, 31(1). Retrieved from
https://journals.lww.com/soilsci/Fulltext/1931/01000/Manual_of_Bacterial_Plant_Path
ogens.7.aspx | |
dc.relation | Evidente, A., y Mottats, A. (2002). Bioactive metabolites from phytopathogenic bacteria
and plants. In B. T.-S. in N. P. C. Atta-ur-Rahman (Ed.), Bioactive Natural Products
(Vol. 26, pp. 581–628). https://doi.org/https://doi.org/10.1016/S1572-5995(02)80015 | |
dc.relation | FAOFAST. (2019). Retrieved from http://www.fao.org/news/archive/news-by- | |
dc.relation | FINAGRO. (2014). Perspectiva del sector agropecuario. | |
dc.relation | Forero, A., Escobar, H., Medina, A., y Monsavel, O. (2010). Uso de materiales 0rgánicos
en el manejo del suelo en cultivos de hortalizas (Primera). Bogotá. | |
dc.relation | Fritze, D. (2004). Taxonomy of the Genus Bacillus and Related Genera: The Aerobic
Endospore-Forming Bacteria. In Phytopathology (Vol. 94).
https://doi.org/10.1094/PHYTO.2004.94.11.1245 | |
dc.relation | G Santos, B., Lobato, A., Silva, R., Schimidt, D., C L Costa, R., A R Alves, G., y Neto, C.
F. (2009). Growth of Lettuce (Lactuca sativa L.) In Protected Cultivation and Open Field.
In Journal of Applied Sciences Research (Vol. 5). | |
dc.relation | Galelli, M. E., Sarti, G. C., y Miyazaki, S. S. (2015). Lactuca sativa biofertilization using
biofilm from Bacillus with PGPR activity. In Journal of Applied Horticulture (Vol. 17). | |
dc.relation | Galieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., y
Stagnari, F. (2015). Effects of nutrient deficiency and abiotic environmental stresses
on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.).
Scientia Horticulturae, 187, 93–101. https://doi.org/10.1016/j.scienta.2015.02.036 | |
dc.relation | Gardener, B. (2004). Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems.
In Phytopathology (Vol. 94). https://doi.org/10.1094/PHYTO.2004.94.11.1252 Garrity, G., | |
dc.relation | Gent, M. (2017). Factors Affecting Relative Growth Rate of Lettuce and Spinach in
Hydroponics in a Greenhouse. In HortScience (Vol. 52).
https://doi.org/10.21273/HORTSCI12477-17 | |
dc.relation | Goto, L. S., Vessoni Alexandrino, A., Malvessi Pereira, C., Silva Martins, C., D’Muniz
Pereira, H., Brandão-Neto, J., y Marques Novo-Mansur, M. T. (2016). Structural and
functional characterization of the phosphoglucomutase from Xanthomonas citri subsp.
citri. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1864(12), 1658–
1666. https://doi.org/http://dx.doi.org/10.1016/j.bbapap.2016.08.014 | |
dc.relation | Gray, E. J., y Smith, D. L. (2005). Intracellular and extracellular PGPR: commonalities and
distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry,
37(3), 395–412. https://doi.org/https://doi.org/10.1016/j.soilbio.2004.08.030 | |
dc.relation | Gurdon, C., Poulev, A., Armas, I., Satorov, S., Tsai, M., y Raskin, I. (2019). Genetic and
Phytochemical Characterization of Lettuce Flavonoid Biosynthesis Mutants. Scientific
Reports, 9(1). https://doi.org/10.1038/s41598-019-39287-y | |
dc.relation | Guzman Rodriguez, L. (2007). Presencia de bacterias fitopatógenas en hortalizas y su
relación con la inocuidad alimentaria (Universidad veracruzana). Retrieved from
http://cdigital.uv.mx/handle/123456789/46912 | |
dc.relation | Han, H. S., y Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium
solubilizing bacteria on mineral uptake and growth of pepper and cucumber. In Plant,
Soil and Environment (Vol. 52). https://doi.org/10.17221/3356-PSE | |
dc.relation | Hayes, R. J., Trent, M. A., Truco, M. J., Antonise, R., Michelmore, R. W., y Bull, C. T.
(2014). The inheritance of resistance to bacterial leaf spot of lettuce caused by
Xanthomonas campestris pv. vitians in three lettuce cultivars. Horticulture Research,
1, 14066. https://doi.org/10.1038/hortres.2014.66 | |
dc.relation | He, P., Shan, L., y Sheen, J. (2007). Elicitation and suppression of microbe-associated
molecular pattern-triggered immunity in plant–microbe interactions. Cellular
Microbiology, 9(6), 1385–1396. https://doi.org/10.1111/j.1462-5822.2007.00944.x | |
dc.relation | Heidel, A. J., Clarke, J. D., Antonovics, J., y Dong, X. (2004). Fitness Costs of Mutations
Affecting the Systemic Acquired Resistance Pathway in Arabidopsis thaliana
Genetics, 168(4), 2197 LP – 2206. https://doi.org/10.1534/genetics.104.032193 | |
dc.relation | Heil, M. (2001). The Ecological Concept of Costs of Induced Systemic Resistance (ISR).
European Journal of Plant Pathology, 107, 137–146.
https://doi.org/10.1023/A:1008793009517 | |
dc.relation | Heil, M., Hilpert, A., Kaiser, W., y Linsenmair, K. E. (2000). Reduced growth and seed set
following chemical induction of pathogen defence: does systemic acquired resistance
(SAR) incur allocation costs? Journal of Ecology, 88(4), 645–654.
https://doi.org/10.1046/j.1365-2745.2000.00479.x | |
dc.relation | Henry, G., Thonart, P., y Ongena, M. (2012). PAMPs, MAMPs, DAMPs and others: An
update on the diversity of plant immunity elicitors. Biotechnology, Agronomy and
Society and Environment, 16, 257–268. | |
dc.relation | Hernández, T., Chocano, C., Moreno, J.-L., y García, C. (2016). Use of compost as an
alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.)
crops—Effects on soil and plant. Soil and Tillage Research, 160, 14–22.
https://doi.org/https://doi.org/10.1016/j.still.2016.02.005 | |
dc.relation | Hoang, L., Joo, G.-J., Kim, W.-C., Jeon, S.-Y., Choi, S.-H., Kim, J.-W., Song, K.-S.
(2005). Growth Inhibitors of Lettuce Seedlings From Bacillus cereus EJ-121. In Plant
Growth Regulation (Vol. 47). https://doi.org/10.1007/s10725-005-3217-3 | |
dc.relation | Huot, B., Yao, J., Montgomery, B. L., & He, S. Y. (2014). Growth–Defense Tradeoffs in
Plants: A Balancing Act to Optimize Fitness. Molecular Plant, 7(8), 1267–1287. | |
dc.relation | Jaramillo Noreña, J., Aguilar Aguilar, P. A., Tamayo Molano, P. J., Agropecuaria., C. C.
de I., (Colombia)., A., y Rural., S. de A. y D. (2016). Modelo tecnológico para el cultivo
de lechuga bajo buenas prácticas agrícolas en el Oriente Antioqueño. | |
dc.relation | Jorquera, M. A., Crowley, D. E., Marschner, P., Greiner, R., Fernández, M. T., Romero,
D, De La Luz Mora, M. (2011). Identification of β-propeller phytase-encoding genes in
culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on
volcanic soils. FEMS Microbiology Ecology, 75(1), 163–172.
https://doi.org/10.1111/j.1574-6941.2010.00995.x | |
dc.relation | Kanwa, S. (2011). Aerobic composting of water lettuce for preparation of phosphorus
enriched organic manure. In African Journal of Microbiology Research (Vol. 5).
https://doi.org/10.5897/AJMR11.053 | |
dc.relation | Kushima, M., Kakuta, H., Kosemura, S., Yamamura, S., Yamada, K., Yokotani-Tomita, K.,
y Hasegawa, K. (1998). An allelopathic substance exuded from germinating
watermelon seeds. In Plant Growth Regulation (Vol. 25).
https://doi.org/10.1023/A:1005907101778 | |
dc.relation | Lebeda, A., Křístková, E., Kitner, M., Mieslerová, B., Jemelková, M., y Pink, D. A. C.
(2014). Wild Lactuca species, their genetic diversity, resistance to diseases and pests,
and exploitation in lettuce breeding. European Journal of Plant Pathology, 138(3),
597–640. https://doi.org/10.1007/s10658-013-0254-z | |
dc.relation | López Cruz, I. L., van Willigenburg, L. G., y van Straten, G. (2003). Optimal control of
nitrate in lettuce by a hybrid approach: differential evolution and adjustable control
weight gradient algorithms. Computers and Electronics in Agriculture, 40(1), 179– 197.
https://doi.org/https://doi.org/10.1016/S0168-1699(03)00019-X | |
dc.relation | Lugtenberg, B., y Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. Annual
Review of Microbiology, 63(1), 541–556.
https://doi.org/10.1146/annurev.micro.62.081307.162918 | |
dc.relation | Martinez F., Garcés, G. (2012). Crecimiento y producción de lechuga (Lactuca sativa
L.var. romana) bajo diferentes niveles de potasio. Revista Colombiana de Ciencias
Hortícolas, 4(2 SE-SECCION DE HORTALIZAS). | |
dc.relation | Marschner, P., y Rengel, Z. (2012). Chapter 12 - Nutrient Availability in Soils (P. B. T.-M.
M. N. of H. P. (Third E. Marschner, Ed.). https://doi.org/https://doi.org/10.1016/B978- 0-12-384905-2.00012-1 | |
dc.relation | Martínez, O., Jorquera, M., Crowley, D. E., Gajardo, G., y Mora, M. L. (2010). | |
dc.relation | Mechanisms and practical considerations involved in plant growth promotion by
Rhizobacteria. In Journal of Soil Science and Plant Nutrition (Vol. 10).
https://doi.org/10.4067/S0718-95162010000100006 | |
dc.relation | Massomo, S., N. Mortensen, C., B. Mabagala, R., Newman, M.-A., y Hockenhull, J.
(2004). Biological Control of Black Rot (Xanthomonas campestris pv. campestris) of
Cabbage in Tanzania with Bacillus strains. In Journal of Phytopathology (Vol. 152).
https://doi.org/10.1111/j.1439-0434.2003.00808.x | |
dc.relation | Molinaro, A., Evidente, A., Lanzetta, R., Parrilli, M., y Zoina, A. (2000). O-specific
polysaccharide structure of the aqueous lipopolysaccharide fraction from
Xanthomonas campestris pv. vitians strain 1839. Carbohydrate Research, 328(3),
435–439. https://doi.org/ http://dx.doi.org/10.1016/S0008-6215(00)00112-9 | |
dc.relation | Moss, W. P., Byrne, J. M., Campbell, H. L., Ji, P., Bonas, U., Jones, J. B., y Wilson, M.
(2007). Biological control of bacterial spot of tomato using hrp mutants of
Xanthomonas campestris pv. vesicatoria. Biological Control, 41(2), 199–206.
https://doi.org/ http://dx.doi.org/10.1016/j.biocontrol.2007.01.008 | |
dc.relation | Nadeem, S., Naveed, M., Zahir, Z., y Hafi z Naeem Asghar, and. (2013). Plant–Microbe
Interactions for Sustainable Agriculture: Fundamentals and Recent Advances. In Plant
Microbe Symbiosis: Fundamentals and Advances (pp. 51–103).
https://doi.org/10.1007/978-81-322-1287-4_2 | |
dc.relation | Navarrete, F., y De La Fuente, L. (2015). Zinc detoxification is required for full virulence
and modification of the host leaf ionome by Xylella fastidiosa. Molecular Plant-
Microbe Interactions, 28(4), 497–507. https://doi.org/10.1094/MPMI-07-14-0221-R | |
dc.relation | Neocleous, D., y Savvas, D. (2019). The effects of phosphorus supply limitation on
photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce
grown in a recirculating nutrient solution. Scientia Horticulturae, 252, 379– 387.
https://doi.org/10.1016/j.scienta.2019.04.007 | |
dc.relation | Nicolas, O, Charles, M. T., Jenni, S., Toussaint, V., Parent, S.-É., y Beaulieu, C. (2019).
The ionomics of lettuce infected by Xanthomonas campestris pv. vitians. Frontiers in
Plant Science, 10. https://doi.org/10.3389/fpls.2019.00351 | |
dc.relation | Nicolas, Olbert, Charles, M., Jenni, S., Toussaint, V., & Beaulieu, C. (2018). Relationships
between Xanthomonas campestris pv. vitians population sizes, stomatal density and
lettuce resistance to bacterial leaf spot. In Canadian Journal of Plant Pathology. | |
dc.relation | Noumedem, J. A. K., Djeussi, D. E., Hritcu, L., Mihasan, M., y Kuete, V. (2017). Chapter
20 - Lactuca sativa (V. B. T.-M. S. and V. from A. Kuete, Ed.).
https://doi.org/https://doi.org/10.1016/B978-0-12-809286-6.00020-0 | |
dc.relation | Ogugua, U., Ntushelo, K., Makungu, M. C., y Kanu, S. (2018). Effect of Bacillus subtilis
BD233 on seedlings growth of sweet pepper (Capsicum annuum), Swiss chard (Beta
vulgaris) and lettuce (Lactuca sativa). In Acta Horticulturae.
https://doi.org/10.17660/ActaHortic.2018.1204.26 | |
dc.relation | Panhwar, Q., Othman, R., A Rahman, Z., Meon, S., y Mohd Razi, I. (2011). Role of
phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic
rice. In Journal of environmental biology / Academy of Environmental Biology, India
(Vol. 32). | |
dc.relation | Patten, C., & Glick, B. (1996). Bacterial biosynthesis of indole-3-acetic acid. In Canadian
journal of microbiology (Vol. 42). https://doi.org/10.1139/m96-032 | |
dc.relation | Pearson, S., Wheeler, T. R., Hadley, P., y Wheldon, A. E. (1997). A validated model to
predict the effects of environment on the growth of lettuce (Lactuca sativa L.):
Implications for climate change. In Journal of Horticultural Science (Vol. 72).
https://doi.org/10.1080/14620316.1997.11515538 | |
dc.relation | Pernezny, K., Nagata, R., Havranek, N., y Sanchez, J. (2008). Comparison of two culture
media for determination of the copper resistance of Xanthomonas strains and their
usefulness for prediction of control with copper bactericides. Crop Protection, 27(2),
256–262. https://doi.org/ http://dx.doi.org/10.1016/j.cropro.2007.05.012 | |
dc.relation | Peyraud, R., Dubiella, U., Barbacci, A., Genin, S., Raffaele, S., y Roby, D. (2017).
Advances on plant-pathogen interactions from molecular toward systems biology
perspectives. The Plant Journal: For Cell and Molecular Biology, 90(4), 720–737.
https://doi.org/10.1111/tpj.13429 | |
dc.relation | Pishchik, V. N., Vorobyov, N. I., Walsh, O. S., Surin, V. G., y Khomyakov, Y. V. (2016).
Estimation of synergistic effect of humic fertilizer and Bacillus subtilis on lettuce plants by
reflectance measurements. Journal of Plant Nutrition, 39(8), 1074–1086.
https://doi.org/10.1080/01904167.2015.1061551 | |
dc.relation | Radhakrishnan, R., Hashem, A., y Abd Allah, E. F. (2017). Bacillus: A Biological Tool for
Crop Improvement through Bio-Molecular Changes in Adverse Environments.
Frontiers in Physiology, 8, 667. https://doi.org/10.3389/fphys.2017.00667 | |
dc.relation | R., & Lee, I.-J. (2016). Gibberellins producing Bacillus methylotrophicus
KE2 supports plant growth and enhances nutritional metabolites and food values of
lettuce. Plant Physiology and Biochemistry, 109, 181–189.
https://doi.org/https://doi.org/10.1016/j.plaphy.2016.09.018 | |
dc.relation | Ramesh, A., Sharma, S., Yadav, N., y Joshi, O. (2014). Phosphorus Mobilization from
Native Soil P-Pool upon Inoculation with Phytate-Mineralizing and Phosphate-
Solubilizing Bacillus aryabhattai Isolates for Improved P-Acquisition and Growth of
Soybean and Wheat Crops in Microcosm Conditions. In Agricultural Research (Vol. 3).
https://doi.org/10.1007/s40003-014-0105-y | |
dc.relation | Robinson, P. E., Jones, J. B., y Pernezny, K. (2006). Bacterial leaf spot of lettuce:
Relationship of temperature to infection and potential host range of Xanthomonas
campestris pv. vitians. Plant Disease, 90(4), 465–470. https://doi.org/10.1094/PD-90-
0465 | |
dc.relation | Rosseto, F. R., Manzine, L. R., de Oliveira Neto, M., y Polikarpov, I. (2016). Biophysical
and biochemical studies of a major endoglucanase secreted by Xanthomonas
campestris pv. campestris. Enzyme and Microbial Technology, 91, 1–7.
https://doi.org/ http://dx.doi.org/10.1016/j.enzmictec.2016.05.007 | |
dc.relation | Sahin, F., & Miller, S. A. (1997). Identification of the bacterial leaf spot pathogen of
lettuce, Xanthomonas campestris pv. vitians, in Ohio, and assessment of cultivar
resistance and seed treatment. Plant Disease, 81(12), 1443–1446.
https://doi.org/10.1094/PDIS.1997.81.12.1443 | |
dc.relation | Sahoo, R., Ansari, M., Pradhan, M., Dangar, T., Mohanty, S., y Tuteja, N. (2014). | |
dc.relation | Phenotypic and molecular characterization of native Azospirillum strains from rice fields to
improve crop productivity. In Protoplasma. https://doi.org/10.1007/s00709- 013-0607-7 | |
dc.relation | Sánchez López, D. B., García Hoyos, A. M., Romero Perdomo, F. A., y Bonilla Buitrago,
R. R. (2014). Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras
de fosfato en Lactuca sativa cultivar White Boston TT - Effect of plant growth
promoting rhizobacteria phosate solubilizing Lactuca sativa cultivar White Boston.
Revista Colombiana de Biotecnología, 16(2), 122–128.
https://doi.org/10.15446/rev.colomb.biote.v16n2.41077 | |
dc.relation | Scala, F., Evidente, A., Coppola, L., Capasso, R., Lorito, M., y Zoina, A. (1996)
Identification and phytotoxicity of 3-methylthiopropanoic and trans-3- methylthiopropenoic
acids produced in culture by Xanthomonas campestris pv. vitians. Journal of
Phytopathology, 144(6), 325–329. https://doi.org/10.1111/j.1439- 0434. | |
dc.relation | Sharma, A., Gautam, S., y Wadhawan, S. (2014). Xanthomonas A2 - Batt, Carl A. (M. L.
B. T.-E. of F. M. (Second E. Tortorello, Ed.). https://doi.org/ http://dx.doi.org/10.1016/B978-
0-12-384730-0.00359-1 | |
dc.relation | Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., y Gobi, T. A. (2013). Phosphate solubilizing
microbes: sustainable approach for managing phosphorus deficiency in agricultural
soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587 | |
dc.relation | Shukla, A. K. (2019). Chapter One - Ecology and Diversity of Plant Growth Promoting
Rhizobacteria in Agricultural Landscape (A. K. Singh, A. Kumar, y P. K. B. T.-P. A. in
S. A. Singh, Eds.). https://doi.org/https://doi.org/10.1016/B978-0-12-815879- 1.00001-
X | |
dc.relation | Singh, R. (2019). Chapter 8 - Microbial Biotechnology: A Promising Implement for
Sustainable Agriculture (J. S. Singh & D. P. B. T.-N. and F. D. in M. B. and B. Singh,
Eds.). https://doi.org/https://doi.org/10.1016/B978-0-444-64191-5.00008-0 | |
dc.relation | Szczech, M., Szafirowska, A., Kowalczyk, W., Szwejda-Grzybowska, J., Włodarek, A., y
Maciorowski, R. (2016). The Effect of Plant Growth Promoting Bacteria on Transplants
Growth and Lettuce Yield in Organic Production. In Journal of Horticultural Research
(Vol. 24). https://doi.org/10.1515/johr-2016-0026 | |
dc.relation | T P Ferreira, J., Santos, T. M., S Albuquerque, L., Santos, J., Cardoso Filho, J., y E
Ramalho Neto, C. (2011). Isolation and selection of growth-promoting bacteria of the
genus Bacillus and its effect on two varieties of lettuce (Lactuca sativa L.). | |
dc.relation | THEODORACOPOULOS, M., LARDIZABAL, R., & ARIAS, S. (2009). MANUAL DE
PRODUCCIÓN - PRODUCCIÓN DE LECHUGA. Honduras. | |
dc.relation | Tiwari, S., Prasad, V., y Lata, C. (2019). Chapter 3 - Bacillus: Plant Growth Promoting
Bacteria for Sustainable Agriculture and Environment (J. S. Singh & D. P. B. T.-N. and
F. D. in M. B. and B. Singh, Eds.). https://doi.org/https://doi.org/10.1016/B978-0- 444-
64191-5.00003-1 | |
dc.relation | Toussaint, V, Benoit, D. L., y Carisse, O. (2012). Potential of weed species to serve as a
reservoir for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf
spot of lettuce. Crop Protection, 41, 64–70. | |
dc.relation | Toussaint, V, Morris, C. E., y Carisse, O. (2001). A new semi-selective medium for
Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Plant Disease, 85(2), 131–136. | |
dc.relation | Toussaint, Vicky. (2019). Ecology of Xanthomonas campestris pv. vitians in relation to
development of bacterial leaf spot of lettuce by Vicky Toussaint. | |
dc.relation | Uchida, R. S. (2000). Essential nutrients for plant growth: Nutrient functions and
deficiency symptoms. In Plant Nutr Manag Hawaii’s Soils (Vol. 3). | |
dc.relation | Vallad, G., y M. Goodman, R. (2004). Systemic Acquired Resistance and Induced
Systemic Resistance in Conventional Agriculture. In Crop Science - CROP SCI (Vol.
44). https://doi.org/10.2135/cropsci2004.1920 | |
dc.relation | Van Henten, E. J. (1994). Validation of a dynamic lettuce growth model for greenhouse
climate control. Agricultural Systems, 45(1), 55–72.
https://doi.org/https://doi.org/10.1016/S0308-521X(94)90280-1 | |
dc.relation | Van Wees, S. C. M., Van der Ent, S., & Pieterse, C. M. J. (2008). Plant immune
responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11(4),
443–448. https://doi.org/https://doi.org/10.1016/j.pbi.2008.05.005 | |
dc.relation | Vauterin, L., Rademaker, J., y Swings, J. (2000). Synopsis on the Taxonomy of the
Genus Xanthomonas. In Phytopathology (Vol. 90).
https://doi.org/10.1094/PHYTO.2000.90.7.677 | |
dc.relation | Velásquez V, P., Ruíz E, H., Chaves J, G., y Luna C, C. (2014). Productividad de
Lechuga Lactuca Sativa en condiciones de Macrotúnel en suelo Vitric Haplustands .
Revista de Ciencias Agrícolas, Vol. 31, pp. 93–105. scieloco. | |
dc.relation | Velázquez, M. S., Cabello, M. N., Elíades, L. A., Russo, M. L., Allegrucci, N., y
Schalamuk, S. (2017). Combinación de hongos movilizadores y solubilizadores de
fósforo con rocas fosfóricas y materiales volcánicos para la promoción del crecimiento
de plantas de lechuga (Lactuca sativa L.). Revista Argentina de Microbiología, 49(4),
347–355. https://doi.org/https://doi.org/10.1016/j.ram.2016.07.005 | |
dc.relation | Wheeler, T. R., Hadley, P., Morison, J. I. L., y Ellis, R. H. (1993). Effects of temperature
on the growth of lettuce (Lactuca sativa L.) and the implications for assessing the
impacts of potential climate change. European Journal of Agronomy, 2(4), 305–311.
https://doi.org/https://doi.org/10.1016/S1161-0301(14)80178-0 | |
dc.relation | Yobo, K. S., Laing, M. D., y Hunter, C. H. (2004). Effect of commercially available
rhizobacteria strains on growth and production of lettuce, tomato and pepper. South
African Journal of Plant and Soil, 21(4), 230–235.
https://doi.org/10.1080/02571862.2004.10635054 | |
dc.relation | Złotek, U., Gawlik-Dziki, U. (2015). Selected biochemical properties of polyphenol
oxidase in butter lettuce leaves (Lactuca sativa L. var. capitata) elicited with dl-β-
amino-n-butyric acid. Food Chemistry, 168, 423–429.
https://doi.org/https://doi.org/10.1016/j.foodchem.2014.07.033 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Selección de cepas nativas de bacterias aerobias formadoras de endospora como promotoras de crecimiento vegetal con enfasis en su capacidad antagonista contra Xanthomonas campestris pv. vitians del cultivo de lechuga | |
dc.type | Otro | |