dc.contributorÁvila Álvarez, Guillermo Eduardo
dc.creatorMoncayo Legarda, Carlos Steven
dc.date.accessioned2022-02-01T13:43:49Z
dc.date.available2022-02-01T13:43:49Z
dc.date.created2022-02-01T13:43:49Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80825
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl análisis de los deslizamientos y los daños derivados de estos procesos han requerido el esfuerzo de los profesionales e investigadores en el área de la geotecnia a través de la implementación de herramientas como los estudios de amenaza, vulnerabilidad y riesgo. Uno de los temas que ha recibido especial atención en los últimos años es la evaluación de la distancia de viaje, a través de modelos simples o modelos más sofisticados que involucran análisis más detallados, esto con el fin de mejorar la evaluación de la amenaza. En este estudio, se obtuvo un conjunto de datos con parámetros característicos de 199 deslizamientos en la región Andina de Colombia a partir del inventario digital del Sistema de Información de Movimientos en Masa (SIMMA) implementado por el Servicio Geológico Colombiano. Los análisis muestran que los movimientos en masa de la región se desarrollan en una gran variedad de materiales y son desencadenados principalmente por la acción de la lluvia, además exhiben en su mayoría una movilidad limitada y una magnitud relativamente pequeña. Por otra parte, se evaluó el efecto de distintos factores de influencia en el alcance de los deslizamientos, obteniendo así modelos empíricos para su predicción mediante técnicas de regresión simple y múltiple. Los resultados revelan que el volumen de la masa desplazada, el ángulo del talud antes de la falla, la altura vertical máxima y el ambiente geomorfológico son los factores predominantes en los modelos para la evaluación de la distancia de viaje de los movimientos en masa de la región, asimismo, se encontró una buena correlación entre el área planimétrica y el volumen del evento. Los modelos propuestos muestran un ajuste razonable entre los valores observados y predichos, y para el caso colombiano muestran una capacidad de predicción superior al resto de modelos disponibles aplicados a los datos de este estudio. Las ecuaciones de predicción fueron posteriormente usadas para elaborar un mapa de distancias de viaje que delimita zonas de amenaza para distintas probabilidades de excedencia. Los modelos empíricos presentados en este trabajo son aplicables para la región Andina y otras regiones con similar configuración geológica y geomorfológica y constituyen un aporte para los procesos de gestión de riesgo por movimientos en masa en el país. (Texto tomado de la fuente).
dc.description.abstractThe analysis of the landslides and the damages derived from these processes have required the effort of professionals and researchers in the area of geotechnics through the implementation of tools such as hazard, vulnerability and risk assessment. One of the topics that has received special attention in recent years is the evaluation of travel distance, through simple models or more sophisticated models that involve more detailed analysis, in order to improve hazard assessment. In this study, a dataset with characteristic parameters of 199 landslides in the Andean region of Colombia was obtained from the digital inventory of the Mass Movement Information System (SIMMA) implemented by the Colombian Geological Survey. The analysis shows that mass movements in the region are developed in a wide variety of materials and are mainly triggered by the action of rainfall. In addition, they mostly exhibit limited mobility and relatively small magnitude. On the other hand, the effect of different influential factors on the reach of the landslides was evaluated, thus obtaining empirical models for their prediction by means of simple and multiple regression techniques. The results reveal that the volume of the displaced mass, the angle of the slope before the failure, the maximum vertical height and the geomorphological environment are the predominant factors in the models for the evaluation of the travel distance of the mass movements in the region, likewise, a good correlation was found between the planimetric area and the volume of the event. The proposed models show a reasonable fit between the observed and predicted values, and for the Colombian case they show a higher prediction capacity than the rest of the available models applied to the data of this study. The prediction equations were subsequently used to develop a travel distance map that delineates hazard zones for different exceedance probabilities. The empirical models presented in this work are applicable to the Andean region and other regions with similar geological and geomorphological settings and constitute a contribution to the risk management processes for mass movements in the country.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisherDepartamento de Ingeniería Civil y Agrícola
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAmat, J. (2016a, June). Correlación lineal y regresión lineal simple. https://www.cienciadedatos.net/documentos/24_correlacion_y_regresion_lineal
dc.relationAmat, J. (2016b, July). Introducción a la regresión lineal múltiple. https://www.cienciadedatos.net/documentos/25_regresion_lineal_multiple.html#Varia bles_nominalescateg%C3%B3ricas_como_predictores
dc.relationAmat, J. (2017, July). Árboles de decisión, random forest, gradient boosting y C5.0. https://www.cienciadedatos.net/documentos/33_arboles_decision_random_forest_gr adient_boosting_c50#Idea_intuitiva
dc.relationÁvila, G. E., Cubillos, C. E., Granados, A. E., Medina, E., Rodríguez, E. A., Rodríguez, C. E., & Ruiz, G. L. (2015). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa (Imprenta Nacional de Colombia, Ed.). Servicio Geológico Colombiano
dc.relationÁvila, G., & Rojas, J. (2019). Historical review of catastrophic events caused by landslides and debris flows in Colombia from 1987 to 2017. In K. Sassa & K. Dang (Eds.), 2019 IPL Symposium on Landslides. The International Consortium on Landslides
dc.relationBaratoux, D., Mangold, N., Delacourt, C., & Allemand, P. (2002). Evidence of liquid water in recent debris avalanche on Mars. Geophysical Research Letters, 29(7), 60-1-60– 64. https://doi.org/10.1029/2001GL014155
dc.relationBasharat, M., Kashif, M., & Sarfraz, Y. (2018). Effects of volume and topographic parameters on rockfall travel distance: A case study from NW Himalayas, Pakistan. Quarterly Journal of Engineering Geology and Hydrogeology, 51(3), 387–398. https://doi.org/10.1144/qjegh2017-027
dc.relationBasharat, M., & Rohn, J. (2015). Effects of volume on travel distance of mass movements triggered by the 2005 Kashmir earthquake, in the Northeast Himalayas of Pakistan. Natural Hazards, 77(1), 273–292. https://doi.org/10.1007/s11069-015-1590-4
dc.relationBerti, M., & Simoni, A. (2007). Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology, 90, 144–161. https://doi.org/10.1016/j.geomorph.2007.01.014
dc.relationBerti, M., & Simoni, A. (2014). DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow. Computers and Geosciences, 67, 14–23. https://doi.org/10.1016/j.cageo.2014.02.002
dc.relationBudetta, P., & de Riso, R. (2004). The mobility of some debris flows in pyroclastic deposits of the northwestern Campanian region (southern Italy). Bulletin of Engineering Geology and the Environment, 63(4), 293–302. https://doi.org/10.1007/s10064-004- 0244-7
dc.relationCalvachi, A. F. (2019). Estimación de la Probabilidad de Ocurrencia de Movimientos en Masa en Colombia a Partir de Relaciones Magnitud-Frecuencia [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia
dc.relationCampos, A., Holm-Nielsen, N., Díaz, C., Rubiano, D. M., Costa, C. R., Ramírez, F., & Dickson, E. (2012). Análisis de la gestión del riesgo de desastres en Colombia; un aporte para la construcción de políticas públicas (Primera Edición)
dc.relationCapra, L., Macías, J. L., Scott, K. M., Abrams, M., & Garduño-Monroy, V. H. (2002). Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico-behavior, and implications for hazard assessment. Journal of Volcanology and Geothermal Research, 113, 81–110
dc.relationChen, C. W., Chen, H., Wei, L. W., Lin, G. W., Iida, T., & Yamada, R. (2017). Evaluating the susceptibility of landslide landforms in Japan using slope stability analysis: a case study of the 2016 Kumamoto earthquake. Landslides, 14(5), 1793–1801. https://doi.org/10.1007/s10346-017-0872-1
dc.relationChen, H. X., Zhang, L., Gao, L., Zhu, H., & Zhang, S. (2015). Presenting regional shallow landslide movement on three-dimensional digital terrain. Engineering Geology, 195, 122–134. https://doi.org/10.1016/j.enggeo.2015.05.027
dc.relationCNAIGRD. (2021). Investigaciones en gestión del riesgo de desastres para Colombia: Avances, perspectivas y casos de estudio (CNAIGRD, Ed.). UNGRD
dc.relationCorominas, J. (1996). The angle of reach as a mobility index for small and larger landslides. Canadian Geotechnical Journal, 33, 260–271. https://doi.org/10.1139/t96-005
dc.relationCorominas, J., Einstein, H., Davis, T., Strom, A., Zuccaro, G., Nadim, F., & Verdel, T. (2015). Glossary of terms on landslide hazard and risk. In G. Lollino (Ed.), Engineering Geology for Society and Territory - Volume 2: Landslide Processes (pp. 1775–1779). Springer International Publishing. https://doi.org/10.1007/978-3-319-09057-3_314
dc.relationCorominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., Catani, F., van den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., & Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263. https://doi.org/10.1007/s10064-013-0538-8
dc.relationCrosta, G. B., Cucchiaro, S., & Frattini, P. (2003). Validation of semi-empirical relationships for the definition of debris-flow behaviour in granular materials. In D. Rickenmann & C. Chen (Eds.), Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment (pp. 821–832)
dc.relationCrosta, G. B., Frattini, P., Valbuzzi, E., & de Blasio, F. v. (2018). Introducing a New Inventory of Large Martian Landslides. Earth and Space Science, 5(4), 89–119. https://doi.org/10.1002/2017EA000324
dc.relationCruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. In A. K. Turner & R. L. Schuster (Eds.), Landslides—Investigation and mitigation: Transportation Research Board, Special report no. 247 (pp. 36–75)
dc.relationDade, W., & Huppert, H. (1998). Long-runout rockfalls. Geology, 26(9), 803–806
dc.relationDahl, M.-P. J., Mortensen, L. E., Veihe, A., & Jensen, N. H. (2010). A simple qualitative approach for mapping regional landslide susceptibility in the Faroe Islands. Natural Hazards and Earth System Sciences, 10, 159–170. www.nat-hazards-earth-systsci.net/10/159/2010/
dc.relationDai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42, 213–228. www.elsevier.com/locate/geomorph
dc.relationDai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64, 65–87. www.elsevier.com/locate/enggeo
dc.relationDai, F. C., Lee, C. F., & Wang, S. J. (2003). Characterization of rainfall-induced landslides. International Journal of Remote Sensing, 24(23), 4817–4834. https://doi.org/10.1080/014311601131000082424
dc.relationDammeier, F., Moore, J. R., Haslinger, F., & Loew, S. (2011). Characterization of alpine rockslides using statistical analysis of seismic signals. Journal of Geophysical Research, 116(4). https://doi.org/10.1029/2011JF002037
dc.relationDavies, T. R. H. (1982). Spreading of Rock Avalanche Debris by Mechanical Fluidization. Rock Mechanics, 15, 9–24
dc.relationDe Leon, R. D. (2018). Impactos de los eventos recurrentes y sus causas en Colombia (J. Betancourt, Ed.). UNGRD
dc.relationDelaney, K. B., & Evans, S. G. (2014). The 1997 Mount Munday landslide (British Columbia) and the behaviour of rock avalanches on glacier surfaces. Landslides, 11(6), 1019–1036. https://doi.org/10.1007/s10346-013-0456-7
dc.relationDepartamento Nacional de Planeación. (2015). 3.181 muertos y 12,3 millones de afectados: las cifras de desastres naturales entre 2006 y 2014. Https://Www.Dnp.Gov.Co/Paginas/3-181-Muertos,-21-594-Emergencias-y-12,3- Millones-de-Afectados-Las-Cifras-de-Los-Desastres-Naturales-Entre-2006-y-2014- .Aspx
dc.relationDevoli, G., de Blasio, F., Elverhøi, A., & Høeg, K. (2009). Statistical analysis of landslide events in Central America and their run-out distance. Geotechnical and Geological Engineering, 27(1), 23–42. https://doi.org/10.1007/s10706-008-9209-0
dc.relationDiez, D., Cetinkaya-Rundel, M., & Barr, Ch. (2019). openintro-statistics (4th ed.)
dc.relationDuque-Escobar, G. (2009). Aspectos Geofísicos y Amenazas Naturales en los Andes de Colombia. http://www.todacolombia.com
dc.relationEdgers, L., & Karlsrud, K. (1982). Soil Flows Generated by Submarine Slides: Case Studies and Consequences. https://www.researchgate.net/publication/244501589
dc.relationFan, X., Rossiter, D. G., van Westen, C. J., Xu, Q., & Görüm, T. (2014). Empirical prediction of coseismic landslide dam formation. Earth Surface Processes and Landforms, 39(14), 1913–1926. https://doi.org/10.1002/esp.3585
dc.relationFannin, R. J., & Wise, M. P. (2001). An empirical-statistical model for debris flow travel distance. Canadian Geotechnical Journal, 38(5), 982–994. https://doi.org/10.1139/cgj- 38-5-982
dc.relationFaraway, J. (2005). Linear Models with R. Chapman & Hall/CRC
dc.relationFederico, F., & Cesali, C. (2015). An energy-based approach to predict debris flow mobility and analyze empirical relationships. Canadian Geotechnical Journal, 52(12), 2113– 2133. https://doi.org/10.1139/cgj-2015-0107
dc.relationFell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102, 85–98. https://doi.org/10.1016/j.enggeo.2008.03.022
dc.relationFinlay, P. J., Mostyn, G. R., Fell, R., & Sullivan Meynink, P. (1999). Landslides: Prediction of Travel Distance and Guidelines for Vulnerability of Persons. 8th Australia - New Zealand Conference on Geomechanics, 45–54
dc.relationFOPAE. (2013). Estudio de estabilidad geotécnica, de evaluación de amenaza, vulnerabilidad y riesgo por fenómenos de remoción en masa para la evaluación de alternativas de mitigación del riesgo para la urbanización Buenavista Sur Oriental II, Etapas I y II, en la localidad de San Cristóbal, en Bogotá, D.C.
dc.relationGarcía, A. (1966). Contribución para la clasificación de los movimientos del terreno. Revista de Obras Públicas, 320, 995–1003
dc.relationGriswold, J. (2004). Mobility Statistics and Hazard Mapping for Nonvolcanic Debris-flows and Rock Avalanches [Master Thesis, Portland State University]. Institutional Repository – Portland State University
dc.relationGrupo de Estándares para Movimientos en Masa. (2007). Movimientos en Masa en la Región Andina: Una guía para la evaluación de amenazas. Servicio Nacional de Geología y Minería, Publicación Geológica Multinacional. 432 p.
dc.relationGuo, D., Hamada, M., He, C., Wang, Y., & Zou, Y. (2014). An empirical model for landslide travel distance prediction in Wenchuan earthquake area. Landslides, 11(2), 281–291. https://doi.org/10.1007/s10346-013-0444-y
dc.relationGutiérrez, Eduardo., & Vladimirovna, Olga. (2016). Estadística inferencial 1 para ingeniería y ciencias. Grupo Editorial Patria
dc.relationHattanji, T., & Moriwaki, H. (2009). Morphometric analysis of relic landslides using detailed landslide distribution maps: Implications for forecasting travel distance of future landslides. Geomorphology, 103(3), 447–454. https://doi.org/10.1016/j.geomorph.2008.07.009
dc.relationHayashi, J. N., & Self, S. (1992). A comparison of pyroclastic flow and debris avalanche mobility. Journal of Geophysical Research, 97(B6), 9063–9071. https://doi.org/10.1029/92JB00173
dc.relationHeim, A. (1932). Bergsturz und Menschenleben, Fretz und Wasmuth, Zurich, (pp. 1–218)
dc.relationHernández, A. O. (2013). Selección de alternativas de mitigación del riesgo por procesos de remoción en masa [Tesis de Maestría, Pontificia Universidad Javeriana]. Repositorio Institucional – Pontificia Universidad Javeriana
dc.relationHighland, L. M., & Bobrowsky, P. (2008). The Landslide Handbook-A Guide to Understanding Landslides. U.S. Geological Survey
dc.relationHoblitt, R., Walder, J., Driedger, C., Scotf, K., Pringle, P., & Vallance, J. (1998). Volcano Hazards from Mount Rainier
dc.relationHsü. K.J. (1975). Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86, 129–140
dc.relationHühnerbach, V., & Masson, D. G. (2004). Landslides in the North Atlantic and its adjacent seas: An analysis of their morphology, setting and behaviour. Marine Geology, 213, 343–362. https://doi.org/10.1016/j.margeo.2004.10.013
dc.relationHungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4), 610–623. https://doi.org/10.1139/t95-063
dc.relationHunter, G., & Fell, R. (2003). Travel distance angle for “rapid” landslides in constructed and natural soil slopes. Canadian Geotechnical Journal, 40(6), 1123–1141. https://doi.org/10.1139/t03-061
dc.relationHürlimann, M., McArdell, B. W., & Rickli, C. (2015). Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology, 232, 20–32. https://doi.org/10.1016/j.geomorph.2014.11.030
dc.relationHürlimann, M., Rickenmann, D., Medina, V., & Bateman, A. (2008). Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology, 102, 152–163. https://doi.org/10.1016/j.enggeo.2008.03.012
dc.relationHutchinson, J. N. (1988). General report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. Fifth International Symposium on Landslides, 3–35
dc.relationIAEG. (1990). Suggested nomenclature for landslides. Bulletin of the International Association of Engineering Geology, 41(1). https://doi.org/10.1007/BF02590202
dc.relationIDEAM. (2000). Unidades geomorfológicas del territorio colombiano
dc.relationIDEAM. (2005). Atlas Climatológico de Colombia
dc.relationIshikawa, Y., Kawakami, S., Morimoto, C., & Mizuhara, K. (2003). Suppression of debris movement by forests and damage to forests by debris deposition. J For Res, 8, 37– 47
dc.relationIverson, R. M., George, D. L., Allstadt, K., Reid, M. E., Collins, B. D., Vallance, J. W., Schilling, S. P., Godt, J. W., Cannon, C. M., Magirl, C. S., Baum, R. L., Coe, J. A., Schulz, W. H., & Bower, J. B. (2015). Landslide mobility and hazards: Implications of the 2014 Oso disaster. Earth and Planetary Science Letters, 412, 197–208. https://doi.org/10.1016/j.epsl.2014.12.020
dc.relationIverson, R., Schilling, S., & Vallance, J. (1998). Objective delineation of lahar-inundation hazard zones. GSA Bulletin, 110(8), 972–984
dc.relationJohnson, A. C., Swanston, D. N., & Mcgee, K. E. (2000). Landslide initiation, runout, and deposition within clearcuts and old-growth forests of Alaska. Journal of the American Water Resourcers Association, 36(1), 17–30
dc.relationKilburn, C. R. J., & Sørensen, S. A. (1998). Runout lengths of sturzstroms: The control of initial conditions and of fragment dynamics. Journal of Geophysical Research: Solid Earth, 103(8), 17877–17884. https://doi.org/10.1029/98jb01074
dc.relationKorup, O., Schneider, D., Huggel, C., & Dufresne, A. (2013). Long-Runout Landslides. In Treatise on Geomorphology (Vol. 7, pp. 183–199). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374739-6.00164-0
dc.relationLegros, F. (2002). The mobility of long-runout landslides. Engineering Geology, 63, 301– 331
dc.relationLi, X., Kong, J., & Li, S. (2011). Travel distance prediction of landslides triggered by the M8.0 Wenchuan earthquake. Applied Mechanics and Materials, 71–78, 1736–1740. https://doi.org/10.4028/www.scientific.net/AMM.71-78.1736
dc.relationMalamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687–711. https://doi.org/10.1002/esp.1064
dc.relationMarulanda, M. (2018). Atlas de Riesgo de Colombia: revelando los desastres latentes. UNGRD
dc.relationMcDougall, S. (2017). 2014 Canadian Geotechnical Colloquium: Landslide runout analysis — current practice and challenges. Canadian Geotechnical Journal, 54(5), 605–620. https://doi.org/10.1139/cgj-2016-0104
dc.relationMcDougall, S. D., & Hungr, O. (2003). Objectives for the development of an integrated three dimensional continuum model for the analysis of landslide runout. 3rd. International Conference on Debris Flows Hazard Mitigation, Mechanics, Prediction and Assessment, 481–490
dc.relationMejía, L. C. (2012). Formulación de una propuesta de desarrollo institucional para atender la emergencia invernal generada por el fenómeno de la niña 2010-2011 [Tesis de Maestría, Universidad Autónoma de Manizales]. Repositorio Institucional – Universidad Autónoma de Manizales
dc.relationMoernaut, J., & de Batist, M. (2011). Frontal emplacement and mobility of sublacustrine landslides: Results from morphometric and seismostratigraphic analysis. Marine Geology, 285, 29–45. https://doi.org/10.1016/j.margeo.2011.05.001
dc.relationMousavi, S. M., Omidvar, B., Ghazban, F., & Feyzi, R. (2011). Quantitative risk analysis for earthquake-induced landslides-Emamzadeh Ali, Iran. Engineering Geology, 122, 191– 203. https://doi.org/10.1016/j.enggeo.2011.05.010
dc.relationNicoletti, P., & Sorriso-Valvo, M. (1991). Geomorphic controls of the shape and mobility of rock avalanches. Geological Society of America Bulletin, 103, 1365–1373
dc.relationNilsen, M. W. (2008). Modelling of rockfall runout range: Employing empirical and dynamical methods [Master Thesis, University of Oslo]. Institutional Repository – University of Oslo
dc.relationOkura, Y., Kitahara, H., Kawanami, A., & Kurokawa, U. (2003). Topography and volume effects on travel distance of surface failure. Engineering Geology, 67, 243–254
dc.relationOkura, Y., Kitahara, H., Sammori, T., & Kawanami, A. (2000). The effects of rockfall volume on runout distance. Engineering Geology, 58, 109–124
dc.relationProchaska, A. B., Santi, P. M., Higgins, J. D., & Cannon, S. H. (2008). Debris-flow runout predictions based on the average channel slope (ACS). Engineering Geology, 98, 29– 40. https://doi.org/10.1016/j.enggeo.2008.01.011
dc.relationQi, S., Xu, Q., Zhang, B., Zhou, Y., Lan, H., & Li, L. (2011). Source characteristics of long runout rock avalanches triggered by the 2008 Wenchuan earthquake, China. Journal of Asian Earth Sciences, 40(4), 896–906. https://doi.org/10.1016/j.jseaes.2010.05.010
dc.relationQiu, H., Cui, P., Hu, S., Regmi, A. D., Wang, X., & Yang, D. (2018). Developing empirical relationships to predict loess slide travel distances: a case study on the Loess Plateau in China. Bulletin of Engineering Geology and the Environment, 77(4), 1299–1309. https://doi.org/10.1007/s10064-018-1328-0
dc.relationQiu, H., Cui, P., Regmi, A. D., Hu, S., Wang, X., Zhang, Y., & He, Y. (2017). Influence of topography and volume on mobility of loess slides within different slip surfaces. Catena, 157, 180–188. https://doi.org/10.1016/j.catena.2017.05.026
dc.relationRickenmann, D. (1999). Empirical Relationships for Debris Flows. In Natural Hazards (Vol. 19, pp. 47–77)
dc.relationRoback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., Chamlagain, D., & Godt, J. W. (2018). The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology, 301, 121–138. https://doi.org/10.1016/j.geomorph.2017.01.030
dc.relationRobertson, K., Jaramillo, O., & Castiblanco, M. (2013). Guía metdológica para la elaboración de mapas geomorfológicos a escala 1:100.000. IDEAM
dc.relationRodríguez, E. A., Sandoval, J. H., Chaparro, J. L., Trejos, G. A., Bello, E. M., Ramírez, K. C., Marín, E. C., Castro, J. A., & Ruiza, G. L. (2017). Guía metodológica para la zonificación de amenaza por movimientos en masa escala 1:25.000 (Imprenta Nacional de Colombia, Ed.). Servicio Geológico Colombiano
dc.relationScheidegger, A. E. (1973). On the Prediction of the Reach and Velocity of Catastrophic Landslides. In Rock Mechanics (Vol. 5, pp. 231–236)
dc.relationScheidl, C., & Rickenmann, D. (2010). Empirical prediction of debris-flow mobility and deposition on fans. Earth Surface Processes and Landforms, 35(2), 157–173. https://doi.org/10.1002/esp.1897
dc.relationSchneider, D., Huggel, C., Haeberli, W., & Kaitna, R. (2011). Unraveling driving factors for large rock-ice avalanche mobility. Earth Surface Processes and Landforms, 36(14), 1948–1966. https://doi.org/10.1002/esp.2218
dc.relationSGC. (2015). Memoria explicativa mapa geomorfológico aplicado a movimientos en masa, escala 1:100.000, plancha 24-Pichimá
dc.relationSGC. (2018). Conocimiento del territorio para el desarrollo del país
dc.relationShreve, R. L. (1968). The Blackhawk landslide. Geological Society of America, 108, 1–47
dc.relationSiebert, L. (1984). Large volcanic debris avalanches: Characteristics of sources areas, deposits, and associated eruptions. Journal of Volcanology and Geothermal Research, 22, 163–197
dc.relationSkermer, N. A. (1985). Discussion of paper “Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980.” Géotechnique, 35, 357–362
dc.relationStaron, L. (2008). Mobility of long-runout rock flows: A discrete numerical investigation. Geophysical Journal International, 172(1), 455–463. https://doi.org/10.1111/j.1365- 246X.2007.03631.x
dc.relationStaron, L., & Lajeunesse, E. (2009). Understanding how volume affects the mobility of dry debris flows. Geophysical Research Letters, 36(12). https://doi.org/10.1029/2009GL038229
dc.relationStrîmbu, B. (2011). Modeling the travel distances of debris flows and debris slides: quantifying hillside morphology. Ann. For. Res, 54(1), 119–134
dc.relationStrom, A., Li, L., & Lan, H. (2019). Rock avalanche mobility: optimal characterization and the effects of confinement. Landslides, 16(8), 1437–1452. https://doi.org/10.1007/s10346-019-01181-z
dc.relationTaylor, F. E., Malamud, B. D., Witt, A., & Guzzetti, F. (2018). Landslide shape, ellipticity and length-to-width ratios. Earth Surface Processes and Landforms, 43(15), 3164– 3189. https://doi.org/10.1002/esp.4479
dc.relationThakur, V., Degago, S. A., Oset, F., Aabøe, R., Dolva, B. K., Aunaas, K., Nyheim, T., Lyche, E., Jensen, O. A., Sæter, M. B., Robsrud, A., Viklund, M., Nigussie, D., & L’Heureux, J. S. (2014). Characterization of post-failure movements of landslides in soft sensitive clays. In Advances in Natural and Technological Hazards Research (Vol. 36, pp. 91– 103). Springer Netherlands. https://doi.org/10.1007/978-94-007-7079-9_8
dc.relationTian, Y., Xu, C., Chen, J., Zhou, Q., & Shen, L. (2017). Geometrical characteristics of earthquake-induced landslides and correlations with control factors: a case study of the 2013 Minxian, Gansu, China, Mw 5.9 event. Landslides, 14(6), 1915–1927. https://doi.org/10.1007/s10346-017-0835-6
dc.relationToussaint, J.-F. (1993). Evolución geológica de Colombia: Precámbrico, Paleozoico, Volumen1 (Universidad Nacional de Colombia, Ed.)
dc.relationToyos, G., Gunasekera, R., Zanchetta, G., Oppenheimer, C., Sulpizio, R., Favalli, M., & Pareschi, M. (2008). GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure. Earth Surf. Process. Landforms, 33, 1693–1708. https://doi.org/10.1002/esp1640
dc.relationUi, T. (1983). Volcanic dry avalanche deposits-identification and comparison with nonvolcanic debris stream deposits. Journal of Volcanology and Geothermal Research, 18, 135–150
dc.relationVarnes, D. (1978). Slope movement types and processes. In Landslides—Investigation and mitigation: Transportation Research Board, Special report no. 176
dc.relationVaunat, J., & Leroueil, S. (2002). Analysis of Post-Failure Slope Movements within the Framework of Hazard and Risk Analysis. Natural Hazards, 26, 83–109
dc.relationVoight, B., Janda, R. J., Glicken, H., & Douglass, P. M. (1983). Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Géotechnique, 33, 243– 273
dc.relationWalpole, R., Myers, R., Myers, S., & Ye, K. (2012). Probabilidad y estadística para ingeniería y ciencias (9th ed.). Pearson Education, Inc
dc.relationWaythomas, C., Miller, T., & Begér, J. (2000). Record of late holocene debris avalanches and lahars at Iliamna volcano, Alaska. Journal of Volcanology and Geothermal Research, 106, 97–130
dc.relationWhittall, J., Eberhardt, E., & McDougall, S. (2017). Runout analysis and mobility observations for large open pit slope failures. Canadian Geotechnical Journal, 54(3), 373–391. https://doi.org/10.1139/cgj-2016-0255
dc.relationWhittall, J. R. (2015). Runout exceedance prediction for open pit slope failures [Master Thesis, The University of British Columbia]. Institutional Repository – The University of British Columbia
dc.relationWhittall, J. R., McDougall, S., & Eberhardt, E. (2017). A risk-based methodology for establishing landslide exclusion zones in operating open pit mines. International Journal of Rock Mechanics and Mining Sciences, 100, 100–107. https://doi.org/10.1016/j.ijrmms.2017.10.012
dc.relationWong, H. N., Lam, K. C., & Ho, K. K. S. (1998). Diagnostic Report on the November 1993 Natural Terrain Landslides on Lantau Island. GEO Report No. 69
dc.relationXu, C., Shyu, J. B. H., & Xu, X. (2014). Landslides triggered by the 12 January 2010 Portau-Prince, Haiti, Mw = 7.0 earthquake: Visual interpretation, inventory compiling, and spatial distribution statistical analysis. Natural Hazards and Earth System Sciences, 14(7), 1789–1818. https://doi.org/10.5194/nhess-14-1789-2014
dc.relationXu, Q., Li, H., He, Y., Liu, F., & Peng, D. (2019). Comparison of data-driven models of loess landslide runout distance estimation. Bulletin of Engineering Geology and the Environment, 78(2), 1281–1294. https://doi.org/10.1007/s10064-017-1176-3
dc.relationYoshida, H., Sugai, T., & Ohmori, H. (2012). Size-distance relationships for hummocks on volcanic rockslide-debris avalanche deposits in Japan. Geomorphology, 136(1), 76– 87. https://doi.org/10.1016/j.geomorph.2011.04.044
dc.relationYu, F. C., Chen, C. Y., Chen, T. C., Hung, F. Y., & Lin, S. C. (2006). A GIS process for delimitating areas potentially endangered by debris flow. Natural Hazards, 37, 169– 189. https://doi.org/10.1007/s11069-005-4666-8
dc.relationZhan, W., Fan, X., Huang, R., Pei, X., Xu, Q., & Li, W. (2017). Empirical prediction for travel distance of channelized rock avalanches in the Wenchuan earthquake area. Natural Hazards and Earth System Sciences, 17(6), 833–844. https://doi.org/10.5194/nhess- 17-833-2017
dc.relationZhang, M., & Yin, Y. (2013). Dynamics, mobility-controlling factors and transport mechanisms of rapid long-runout rock avalanches in China. Engineering Geology, 167, 37–58. https://doi.org/10.1016/j.enggeo.2013.10.010
dc.relationZhang, S., Zhang, L. M., Chen, H. X., Yuan, Q., & Pan, H. (2013). Changes in runout distances of debris flows over time in the Wenchuan earthquake zone. Journal of Mountain Science, 10(2), 281–292. https://doi.org/10.1007/s11629-012-2506-y
dc.relationZhang, S., Zhang, L. M., Xiang, B., & Yuan, Q. (2013). Travel Distances of Earthquakeinduced Landslides. Geo-Congress 2013: Stability and Performance of Slopes and Embankments III, 991–1001. https://doi.org/10.1061/9780784412787.101
dc.relationZhuang, J., Peng, J., Xu, C., Li, Z., Densmore, A., Milledge, D., Iqbal, J., & Cui, Y. (2018). Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake, Northwest of China. Geomorphology, 314, 1–12. https://doi.org/10.1016/j.geomorph.2018.04.012
dc.relationZou, Z., Xiong, C., Tang, H., Criss, R. E., Su, A., & Liu, X. (2017). Prediction of landslide runout based on influencing factor analysis. Environmental Earth Sciences, 76(21). https://doi.org/10.1007/s12665-017-7075-x
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de la distancia de viaje de movimientos en masa en Colombia a partir de registros históricos
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución