dc.contributor | Beltrán, Gloria Inés | |
dc.contributor | GRUPO DE INVESTIGACIÓN EN GEOTECNIA - GIGUN | |
dc.creator | Hernández-Carrillo, Rodrigo | |
dc.date.accessioned | 2020-08-22T06:41:03Z | |
dc.date.available | 2020-08-22T06:41:03Z | |
dc.date.created | 2020-08-22T06:41:03Z | |
dc.date.issued | 2020-08-20 | |
dc.identifier | Hernandez-Carrillo, R. (2020). Reliability Assessment of Rock Slopes by Evidence Theory (Tesis de doctorado). Universidad Nacional de Colombia, Bogotá, Colombia. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78171 | |
dc.description.abstract | El objetivo de este proyecto de investigación es desarrollar una metodología para efectuar análisis de confiabilidad de la estabilidad de taludes rocosos, teniendo en cuenta la incertidumbre cuando la información sobre los parámetros geomecánicos de entrada es limitada. En mecánica de rocas, los métodos determinísticos y probabilísticos son ampliamente utilizados en el proceso de toma decisiones. No obstante, el primero no considera la incertidumbre y el segundo tiene limitaciones para representar la incertidumbre epistémica y tiene que asumir la distribución de probabilidad de las variables de entrada. Por lo tanto, se recurre a la Teoría de la Evidencia como una herramienta para describir la incertidumbre aleatoria y epistémica de los parámetros geomecánicos y propagarla a través de modelos de equilibrio límite, en los que la geometría es controlada por la orientación de las discontinuidades. Para llevar a cabo una mejor descripción de la variabilidad en el macizo, el proyecto utilizó fotogrametría de corto alcance, lo que permitió obtener series de datos robustas y confiables de la geometría de las discontinuidades, que fue modelada como una variable aleatoria con distribución Kent. Además, se desarrolló un procedimiento para actualizar los análisis de confiabilidad teniendo en cuenta la distribución de probabilidad de la orientación de las discontinuidades. La aplicación de la metodología en un talud rocoso de una mina de arenisca mostró su aplicabilidad a proyectos reales. Consecuentemente, la principal contribución de este trabajo es la generación de un marco de referencia para efectuar la evolución de confiabilidad de taludes rocoso basado en la teoría de la evidencia que permite combinar las series robustas de la orientación de los planos de discontinuidad, con información limitada de sus parámetros de resistencia, que puede ser actualizada a medida que se genera nueva información. | |
dc.description.abstract | This research project aims to develop a methodology to perform rock slope stability analysis considering the aleatory and epistemic uncertainty when the information on geomechanical parameters is limited. In rock mechanics, deterministic and probabilistic approaches are widely used in the decision-making process. However, the earlier does not consider the uncertainty, and the latter has limitations to account for the epistemic uncertainty and requires assumptions on probability distributions when robust data sets are not available. Therefore, we resorted to the Evidence Theory as a tool to describe the epistemic and aleatory uncertainty of input geomechanical variables and propagate them trough limit equilibrium models, in which the geometry is controlled by the joints orientation. To perform a better description of the variability of the rock mas properties, the project utilized a short-range photogrammetry system, which allowed us to have robust and reliable data sets on joints geometry to be modeled as Kent distributed variables. Besides, we suggested a procedure to update the reliability analysis acknowledging that orientations follow a Kent distribution. The application of the methodology to a rock slope in a sandstone mine showed its suitability to be applied in actual engineering projects. Consequently, the main contribution of this project is an rock slope evidence theory reliability-based framework for combining robust data sets on joints orientation, with limited information on geomechanical parameters, that can be updated as new information is available. | |
dc.language | eng | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civil | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Oberkampf, W. L., Tucker, W. T., Zhang, J., Ginzburg, L., Berleant, D. J., Ferson, S., Hajagos, J., and Nelsen, R. B. (2004b). Dependence in probabi- listic modeling, Dempster-Shafer theory, and probability bounds analysis. | |
dc.relation | Huadong Wu, Siegel, M., Stiefelhagen, R., and Jie Yang (2003). Sensor fusion using Dempster-Shafer theory [for context-aware HCI]. In Proceedings of | |
dc.relation | 3GSM GmbH (2011). ShapeMetrix3D. Measurement and assessment of rock and terrain surfaces by metric 3D images. Technical report, Graz, Austria. | |
dc.relation | Dempster-Shafer Theory. In Classic Works of the Dempster-Shafer Theory | |
dc.relation | Technical report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA. | |
dc.relation | of Belief Functions, pages 737–760. Springer Berlin Heidelberg, Berlin, Heidelberg. | |
dc.relation | Agencia Nacional de Mineria (2019). Estadisticas de accidentalidad 2005- 2019. Technical report, Agencia Nacional de Mineria, Bogota. | |
dc.relation | the 19th IEEE Instrumentation and Measurement Technology Conference, pages 7–12. | |
dc.relation | Ahmadabadi, M. and Poisel, R. (2016). Probabilistic Analysis of Rock Slopes Involving Correlated Non-normal Variables Using Point Estimate Methods. Rock Mechanics and Rock Engineering, 49(3):909–925. | |
dc.relation | Ahmed, R., Edwards, M., Lamite, S., and Mayur, P. (2014). Control- volume distributed multi-point flux approximation coupled with a lower- dimensional fracture model. Journal of Computational Physics. | |
dc.relation | Al Machot, F., Mayr, H. C., and Ranasinghe, S. (2018). A Hybrid Reasoning Approach for Activity Recognition Based on Answer Set Programming and Dempster–Shafer Theory. pages 303–318. Springer, Cham. | |
dc.relation | Altieri, M. G., Dell’Orco, M., Marinelli, M., and Sinesi, S. (2017). Evidence (Dempster – Shafer) Theory-Based evaluation of different Transport Modes under Uncertainty.: Theoretical basis and first findings. Transportation Research Procedia, 27:508–515. | |
dc.relation | Andersson, J., Shapiro, A. M., and Bear, J. (1984). A Stochastic Model of a Fractured Rock Conditioned by Measured Information. Water Resources Research, 20(1):79–88. | |
dc.relation | Arango Velez, I. F. (2014). Desprendimiento de rocas en laderas: una gu´ıa para la evaluaci´on del riesgo en v´ıas. PhD thesis, EAFIT. | |
dc.relation | Aven, T. (2010). On the need for restricting the probabilistic analysis in risk assessments to variability. Risk analysis : an official publication of the Society for Risk Analysis, 30(3):354–60; author reply 381–4. | |
dc.relation | Baecher, G. B. (1983). Statistical analysis of rock mass fracturing. Journal of the International Association for Mathematical Geology, 15(2):329–348. | |
dc.relation | Baecher, G. B. and Christian, J. T. (2003). Reliability and Statistics in Geotechnical Engineering. John Wiley & Sons, Chichester, England. | |
dc.relation | Baecher, G. B., Lanney, N. A., and Einstein, H. H. (1977). Statistical des- cription of rock properties and sampling. In The 18th US Symposium on Rock Mechanics (USRMS), volume 1, Golden, Colorado. American Rock Mechanics Association. | |
dc.relation | Baghbanan, A. and Jing, L. (2007). Hydraulic properties of fractured rock masses with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences, 44(5):704–719. | |
dc.relation | Baghbanan, A. and Jing, L. (2008). Stress effects on permeability in a fractu- red rock mass with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences, 45(8):1320–1334. | |
dc.relation | Balberg, I. and Binenbaum, N. (1983). Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks. Physical Review B, 28(7):3799–3812. | |
dc.relation | Ballent, W., Corotis, R. B., and Torres-Machi, C. (2019a). Dempster–Shafer Theory applications in post-seismic structural damage and social vulnera- bility assessment. Sustainable and Resilient Infrastructure, pages 1–13. | |
dc.relation | Banfield, J. and Raftery, A. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 49(3):803–821. | |
dc.relation | Bangert, M., Hennig, P., and Oelfke, U. (2010). Using an infinite von Mises- Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy. In Ninth International Conference on Machine Lear- ning and Applications. | |
dc.relation | Belayneh, M. W., Matthai, S. K., Blunt, M. J., and Rogers, S. F. (2009). Com- parison of deterministic with stochastic fracture models in water-flooding numerical simulations. AAPG Bulletin, 93(11):1633–1648. | |
dc.relation | Ben-Haim, Y. (1994). A non-probabilistic concept of reliability. Structural Safety, 14(4):227–245. | |
dc.relation | Berkowitz, B. and Adler, P. M. (1998). Stereological analysis of fracture net- work structure in geological formations. Journal of Geophysical Research: Solid Earth, 103(B7):15339–15360. | |
dc.relation | Bernardini, A. and Tonon, F. (2010). Bounding Uncertainty in Civil Engi- neering - Theoretical Background. Springer Science & Business Media. | |
dc.relation | Berrone, S., Canuto, C., Pieraccini, S., and Scial`o, S. (2018). Uncertainty Quantification in Discrete Fracture Network Models: Stochastic Geometry. Water Resources Research, 54(2):1338–1352. | |
dc.relation | Beynon, M., Curry, B., and Morgan, P. (2000a). The Dempster–Shafer theory of evidence: an alternative approach to multicriteria decision modelling. Omega, 28(1):37–50. | |
dc.relation | Beynon, M., Curry, B., and Morgan, P. (2000b). The Dempster–Shafer theory of evidence: an alternative approach to multicriteria decision modelling. Omega, 28(1):37–50. | |
dc.relation | Bhreasail, A´. N., Pritchard, O., Carluccio, S., Manning, J., Daly, T., Merritt, A., and Codd, J. (2018). Remote Sensing for Proactive Geotechnical Asset Management on England’s Strategic Road Network. Infrastructure Asset Management, pages 1–40. | |
dc.relation | Billaux, D., Chiles, J., Hestir, K., and Long, J. (1989). Three-dimensional statistical modelling of a fractured rock mass—an example from the Fanay- Aug`eres mine. International Journal of Rock Mechanics and Mining Scien- ces & Geomechanics Abstracts, 26(3-4):281–299. | |
dc.relation | Birch, J. (2006). Using 3DM analyst mine mapping suite for rock face cha- racterization. In Tonon, F. and Kottenstette, J., editors, Laser and Photo- grammetric Methods for Rock Face Characterization. Proc. 41 st U.S. Rock Mechanics Symp, Golden, USA. | |
dc.relation | Bonilla-Sierra, V., Scholt`es, L., Donz´e, F. V., and Elmouttie, M. K. (2015). Rock slope stability analysis using photogrammetric data and DFN–DEM modelling. Acta Geotechnica, 10(4):497–511. | |
dc.relation | Boomsma, W., Kent, J. T., Mardia, K. V., Taylor, C. C., and Hamelryck, T. (2006). Graphical models and directional statistics capture protein struc- ture. Interdisciplinary models and Satistics and Bioinformatics, 25:91–94. | |
dc.relation | Booth, P. and Meyer, G. (2013). Quarry wall stability and design optimi- sation using photogrammetric mapping and analysis techniques. In 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, pages 935–948, Brisbane. Australian Centre for Geomecha- nics. | |
dc.relation | Bour, O. and Davy, P. (1997). Connectivity of random fault networks fo- llowing a power law fault length distribution. Water Resources Research, 33(7):1567–1583. | |
dc.relation | Bour, O. and Davy, P. (1998). On the connectivity of three-dimensional fault networks. Water Resources Research, 34(10):2611–2622. | |
dc.relation | Campbell, J. B. and Wynne, R. H. (2011). Introduction to remote sensing.
Guilford Press. | |
dc.relation | Casagrande, A. (1965). Role of the Calculated Risk in Earthwork and Founda- tion Engineering. Journal of the Soil Mechanics and Foundations Division, 91(4):1–40. | |
dc.relation | Chen, J., Li, K., Chang, K.-J., Sofia, G., and Tarolli, P. (2015). Open-pit mi- ning geomorphic feature characterisation. International Journal of Applied Earth Observation and Geoinformation, 42:76–86. | |
dc.relation | Chen, X.-Y., Fan, J.-P., and Bian, X.-Y. (2017). Theoretical analysis of non- probabilistic reliability based on interval model. Acta Mechanica Solida Sinica, 30(6):638–646. | |
dc.relation | Cigna, F., Bianchini, S., and Casagli, N. (2013). How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides, 10(3):267–283. | |
dc.relation | Couso, I., Dubois, D., and S´anchez, L. (2014). Random Sets as Ill-Perceived Random Variables. Springer International Publishing. | |
dc.relation | de Dreuzy, J.-R., Davy, P., and Bour, O. (2001a). Hydraulic properties of two- dimensional random fracture networks following a power law length distri- bution: 1. Effective connectivity. Water Resources Research, 37(8):2065– 2078. | |
dc.relation | de Dreuzy, J.-R., Davy, P., and Bour, O. (2001b). Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures. Water Resources Research, 37(8):2079–2095. | |
dc.relation | Dempster, A. P. (1967). Upper and Lower Probabilities Induced by a Multi- valued Mapping. The Annals of Mathematical Statistics, 38(2):325–339. | |
dc.relation | Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22. | |
dc.relation | Denoeux, T. (1995). A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE transactions on systems, man, and cy- bernetics, 25(5):804–813. | |
dc.relation | Dershowitz, W. S. and Einstein, H. H. (1988). Characterizing rock joint geometry with joint system models. Rock Mechanics and Rock Engineering, 21(1):21–51. | |
dc.relation | Dershowitz, W. S. and Fidelibus, C. (1999). Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method. Water Resources Research, 35(9):2685–2691. | |
dc.relation | Ding, Y., Yao, X., Wang, S., and Zhao, X. (2019). Structural damage assess- ment using improved Dempster-Shafer data fusion algorithm. Earthquake Engineering and Engineering Vibration, 18(2):395–408. | |
dc.relation | Dong, L., Sun, D., Li, X., and Zhou, Z. (2017). Interval Non-Probabilistic Re- liability of a Surrounding Jointed Rockmass in Underground Engineering: A Case Study. IEEE Access, 5:18804–18817. | |
dc.relation | DPN, D. N. d. P. (2013). Proyectos Viales bajo el esquema de Asociasiones Publico - Privadas: Cuarta Generacion de Concesiones Viales. Technical report, Bogota, Colombia. | |
dc.relation | Dubois, D. and Prade, H. (1992). On the Combination of Evidence in Various Mathematical Frameworks. pages 213–241. Springer, Dordrecht. | |
dc.relation | Dutta, P. (2018). An uncertainty measure and fusion rule for conflict evi- dences of big data via Dempster–Shafer theory. International Journal of Image and Data Fusion, 9(2):152–169. | |
dc.relation | Ebigbo, A., Lang, P. S., Paluszny, A., and Zimmerman, R. W. (2016). Inclusion-Based Effective Medium Models for the Permeability of a 3D Fractured Rock Mass. Transport in Porous Media, 113(1):137–158. | |
dc.relation | Einstein, H., Baecher, G., and Veneziano, D. (1978). Risk Analysisof Rock Slopes in Open Pit Mines. Technical report, U.S. Bureau of Mines. | |
dc.relation | Einstein, H. H. and Baecher, G. B. (1982). Probabilistic and Statistical Methods in Engineering Geology I. Problem Statement and Introduction to Solution. In Ingenieurgeologie und Geomechanik als Grundlagen des Felsbaues / Engineering Geology and Geomechanics as Fundamentals of Rock Engineering, pages 47–61. Springer Vienna, Vienna. | |
dc.relation | Elmo, D., Rogers, S., Stead, D., and Eberhardt, E. (2014). Discrete Fracture Network approach to characterise rock mass fragmentation and implica- tions for geomechanical upscaling. Mining Technology, 123(3):149–161. | |
dc.relation | Elmouttie, M., Kr¨ahenbu¨hl, G., and Poropat, G. (2013). Robust algorithms for polyhedral modelling of fractured rock mass structure. Computers and Geotechnics, 53:83–94. | |
dc.relation | Elmouttie, M., Poropat, G., and Kra¨henbu¨hl, G. (2010). Polyhedral mode- lling of rock mass structure. International Journal of Rock Mechanics and Mining Sciences, 47(4):544–552. | |
dc.relation | Endo, H. (1984). Mechanical transport in two-dimensional networks of frac- tures. PhD thesis, University of California, Berkley. | |
dc.relation | EPA, U. E. P. A. (2002). Total Risk Integrated Methodology (TRIM)
TRIM.FaTE. Technical report, EPA-453/R-02-011a September 2002 TRIM Total Risk Integrated Methodology TRIM.FaTE Technical Support Document Volume I: Description of Module U.S. Environmental Protection Agency, Research Triangle Park, Nort Carolina, US. | |
dc.relation | Fadakar, Y. (2014). Stochastic Modelling of Fractures in Rock Masses. PhD thesis, The University of Adelaide. | |
dc.relation | Faille, I., Fumagalli, A., Jaffr´e, J., and Roberts, J. E. (2016). Model reduction and discretization using hybrid finite volumes for flow in porous media containing faults. Computational Geosciences, 20(2):317–339. | |
dc.relation | Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D. S., and Sentz, K. (2002). Constructing probability boxes and Dempster-Shafer structures, volume 835. Sandia National Laboratories. | |
dc.relation | Fisher, R. (1953). Dispersion on a Sphere. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 217(1130). | |
dc.relation | Francioni, M., Salvini, R., Stead, D., and Litrico, S. (2014). A case study integrating remote sensing and distinct element analysis to quarry slope stability assessment in the Monte Altissimo area, Italy. Eng. Geology, 183:290–302. | |
dc.relation | Franke, J., Redenbach, C., and Zhang, N. (2016). On a Mixture Model for Directional Data on the Sphere. Scandinavian Journal of Statistics, 43(1):139–155. | |
dc.relation | Freudenthal, A. M. (1956). Safety and the probability of structural failure.
Technical report. | |
dc.relation | Gaich, A., Fasching, A., and Schubert, W. (2003). Improved site investigation Acquisition of geotechnical rock mass parameters based on 3D computer vision. In Numerical Simulation in Tunnelling, pages 13–46. Springer Vien- na, Vienna. | |
dc.relation | Gaich, A., Po¨tsch, M., Fasching, A., and Schubert, W. (2004). Contact-free measurement of rock mass structures using the JointMetriX3D system. International Journal of Rock Mechanics and Mining Sciences, 41:304–309. | |
dc.relation | Ganeiber, A. M. (2012). Estimation and simulation in directional and statis- tical shape models. University of Leeds. | |
dc.relation | Geologia y Geotecnia (2011). Informe GYG-INF-095. Informe de Actuali- zacio´n de Modelo Geol´ogico-Geot´ecnico y Ajuste del Disen˜o Minero de Holcim S.A. Technical report, Holcim Colombia S.A., Bogot´a, Colombia. | |
dc.relation | Gheibie, S., Duzgun, S., and Akgun, A. (2013). Probabilistic-Numerical Mo- deling of Stability of a Rock Slope in Amasya-Turkey. In 47th U.S. Rock Mechanics/Geomechanics Symposium, volume 1, pages 341–346. American Rock Mechanics Association. | |
dc.relation | Glynn, E. F. (1979). A probabilistic approach to the stability of rock slopes. | |
dc.relation | GmbH, G. (2010). ShapeMetrix3D Manual. Technical report, Graz, Austria. | |
dc.relation | Goodman, R. E. and Shi, G. (1985). Block Theory and its Application to Rock Engineering. Prentice Hall, New Jersey, 1 edition. | |
dc.relation | Goodman, R. E. and Taylor, R. L. (1966). Methods Of Analysis For Rock Slopes And Abutments: A Review Of Recent Developments. | |
dc.relation | Hagan, T. (1980). A case for terrestrial photogrammetry in deep-mine rock structure studies. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17(4):191–198. | |
dc.relation | Hamelryck, T. (2009). Probabilistic models and machine learning in structu- ral bioinformatics. Statistical Methods in Medical Research, 18(5):505–526. | |
dc.relation | Hamelryck, T., Kent, J. T., and Krogh, A. (2006). Sampling Realistic Protein Conformations Using Local Structural Bias. PLoS Computational Biology, 2(9):e131. | |
dc.relation | Hammah, R. (2009). Numerical modelling of slope uncertainty due to rock mass jointing. In Proceedings of the international conference on rock joints and jointed rock masses. | |
dc.relation | Haztor, Y. (1992). Validation of block theory using field case histories. PhD thesis, University of Berkeley. | |
dc.relation | Hoek, E., Bray, J. W., and Boyd, J. M. (1973). The stability of a rock slope containing a wedge resting on two intersecting discontinuities. Quarterly Journal of Engineering Geology and Hydrogeology, 6(1):1–55. | |
dc.relation | Huadong Wu, Siegel, M., and Ablay, S. (2007). Sensor fusion using Dempster- Shafer theory II: static weighting and Kalman filter-like dynamic weighting. In Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412), volume 2, pages 907–912. IEEE. | |
dc.relation | Jimenez-Rodriguez, R. and Sitar, N. (2006). A spectral method for clustering of rock discontinuity sets. International Journal of Rock Mechanics and Mining Sciences, 43(7):1052–1061. | |
dc.relation | Jimenez-Rodriguez, R., Sitar, N., and Chac´on, J. (2006). System reliability approach to rock slope stability. International Journal of Rock Mechanics and Mining Sciences, 43(6):847–859. | |
dc.relation | Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3):283–353. | |
dc.relation | Jing, L. and Stephansson, O. (1994). Topological identification of block as- semblages for jointed rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(2):163–172. | |
dc.relation | Jing, L. and Stephansson, O. (2007). Case Studies of Discrete Element Met- hod Applications in Geology, Geophysics and Rock Engineering. In Engi- neering, L. J. and in Geotechnical, O. S. B. T. D., editors, Fundamentals of Discrete Element Methods for Rock Engineering Theory and Applications, volume Volume 85, pages 447–538. Elsevier. | |
dc.relation | Johnson, J. D., Helton, J. C., Oberkampf, W. L., Sallaberry, C. J., Johnson,
J. D., Oberkampf, W. L., Sallaberry, C. J., Helton, J. C., Johnson, J. D., Oberkampf, W. L., and Sallaberry, C. J. (2008). Representation of analy- sis results involving aleatory and epistemic uncertainty. Technical report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA. | |
dc.relation | Kari, T., Gao, W., Zhao, D., Zhang, Z., Mo, W., Wang, Y., and Luan, L. (2018). An integrated method of ANFIS and Dempster-Shafer theory for fault diagnosis of power transformer. IEEE Transactions on Dielectrics and Electrical Insulation, 25(1):360–371. | |
dc.relation | Karimi-Fard, M., Durlofsky, L., and Aziz, K. (2004). An Efficient Discrete- Fracture Model Applicable for General-Purpose Reservoir Simulators. SPE Journal, 9(02):227–236. | |
dc.relation | Kasarapu, P. (2015). Modelling of directional data using Kent distributions.
arXiv preprint arXiv:1506.08105. | |
dc.relation | Kasarapu, P. and Allison, L. (2015). Minimum message length estimation of mixtures of multivariate Gaussian and von Mises-Fisher distributions. Machine Learning, 100(2-3):333–378. | |
dc.relation | Kent, J. T. (1980). The Fisher-Bingham Distribution on the Sphere. Tech- nical report, Department of Statistics, Princeton University, New Jersey. | |
dc.relation | Kent, J. T. (1982). The Fisher-Bingham Distribution on the Sphere. | |
dc.relation | Kent, J. T. (2012). Statistical Modelling and Simulation Using the Fisher- Bingham Distribution. pages 179–188. Springer, Berlin, Heidelberg. | |
dc.relation | Kent, J. T., Constable, P. D., and Er, F. (2004). Simulation for the complex Bingham distribution. Statistics and Computing, 14(1):53–57. | |
dc.relation | Kent, J. T., Ganeiber, A. M., and Mardia, K. V. (2017). A new unified approach for the simulation of a wide class of directional distributions. Journal of Computational and Graphical Statistics | |
dc.relation | Kent, J. T. and Hamelryck, T. (2005). Using the Fisher-Bingham distribution in stochastic models for protein structure. Quantitative Biology, Shape Analysis, and Wavelets, 24(1):57–60. | |
dc.relation | Khairina, D. M., Hatta, H. R., Rustam, R., and Maharani, S. (2018). Automa- tion Diagnosis of Skin Disease in Humans using Dempster-Shafer Method. E3S Web of Conferences, 31:11006. | |
dc.relation | Khan, M. S. (2010). Investigation of Discontinuous Deformation Analysis for Application in Jointed Rock Masses. PhD thesis, University of Toronto. | |
dc.relation | Kim, D. H., Gratchev, I., and Balasubramaniam, A. (2015). Back analysis of a natural jointed rock slope based on the photogrammetry method. Landslides, 12(1):147–154. | |
dc.relation | Kim, J. K., Choi, M. J., Lee, J. S., Hong, J. H., Kim, C.-S., Seo, S. I., Jeong,
C. W., Byun, S.-S., Koo, K. C., Chung, B. H., Park, Y. H., Lee, J. Y., and
Choi, I. Y. (2018). A Deep Belief Network and Dempster-Shafer-Based Multiclassifier for the Pathology Stage of Prostate Cancer. Journal of Healthcare Engineering, 2018:1–8. | |
dc.relation | Klapperich, H., Rafig, A., and Wu, W. (2012). Non-Deterministic Analysis of Slope Stability based on Numerical Simulation. | |
dc.relation | Lai, X.-P., Shan, P.-F., Cai, M.-F., Ren, F.-H., and Tan, W.-H. (2015). Com-
prehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling. International Journal of Minerals, Metallurgy, and Materials, 22(1):1–11. | |
dc.relation | Lei, Q., Latham, J.-P., and Tsang, C.-F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85:151–176. | |
dc.relation | Lei, Q., Latham, J.-P., Xiang, J., Tsang, C.-F., Lang, P., and Guo, L. (2014). Effects of geomechanical changes on the validity of a discrete fracture net- work representation of a realistic two-dimensional fractured rock. Interna- tional Journal of Rock Mechanics and Mining Sciences, 70:507–523. | |
dc.relation | Lin, D., Fairhurst, C., and Starfield, A. (1987). Geometrical identification of three-dimensional rock block systems using topological techniques. Inter- national Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 24(3):331–338. | |
dc.relation | Lin, J., Tao, H., Wang, Y., and Huang, Z. (2010). Practical application of unmanned aerial vehicles for mountain hazards survey. In IEEE 18 th Geoinformatics Int. Conf. | |
dc.relation | Liu, F., Zhao, Q., and Yang, Y. (2018). An approach to assess the value of industrial heritage based on Dempster–Shafer theory. Journal of Cultural Heritage. | |
dc.relation | Long, J. C. S. and Billaux, D. M. (1987). From field data to fracture network modeling: An example incorporating spatial structure. Water Resources Research, 23(7):1201–1216. | |
dc.relation | Long, J. C. S., Remer, J. S., Wilson, C. R., and Witherspoon, P. A. (1982). Porous media equivalents for networks of discontinuous fractures. Water Resources Research, 18(3):645–658. | |
dc.relation | Low, B. (2007). Reliability analysis of rock slopes involving correlated non- normals. International Journal of Rock Mechanics and Mining Sciences, 44(6):922–935. | |
dc.relation | Low, B. and Einstein, H. (1991). Simplified Reliability Analysis for Wedge Mechanisms in Rodk Slopes. In Sixth International Symposium on Lands- lides, pages 199–507, Christchurch, New Zealnd. A. A. Balkema. | |
dc.relation | Low, B. K. (1979). Reliability of rock slopes with wedge mechanisms. PhD thesis, Massachusetts Institute of Technology. | |
dc.relation | Low, B. K. (1997). Reliability Analysis of Rock Wedges. Journal of Geotech- nical and Geoenvironmental Engineering, 123(6):498–505. | |
dc.relation | Low, B. K. and Einstein, H. H. (1992). Simplified reliability analysis for wedge mechanisms in rock slopes. In Proc., 6th Int. Symp. on Landslides, pages 499–507. Balkema, Rotterdam The Netherlands. | |
dc.relation | Lucieer, A., de Jong, S. M., and Turner, D. (2014). Mapping landslide displa- cements using Structure from Motion (SfM) and image correlation of multi- temporal UAV photography. Progress in Physical Geography, 38(1):97–116. | |
dc.relation | Lunga, D. and Ersoy, O. (2011). Kent Mixture Model for Hyperspectral Clustering via Cosine Pixel Coordinates on Spherical Manifolds. Technical report, Purdue University, West Lafayette, IN. | |
dc.relation | Ma, G. and Fu, G. (2014). A rational and realistic rock mass modelling strategy for the stability analysis of blocky rock mass. Geomechanics and Geoengineering, 9(2):113–123. | |
dc.relation | Ma, G. W. and Fu, G. Y. (2013). Stochastic key block analysis of under- ground excavations. In Frontiers of Discontinuous Numerical Methods and Practical Simulations in Engineering and Disaster Prevention - Proceedings of the 11th Int. Conf. on Analysis of Discontinuous Deformation, ICADD 2013, pages 51–60. | |
dc.relation | Mardia, K. V. (1975). Statistics of Directional Data, volume 37. Academic Press. | |
dc.relation | Marek, L., Miˇrijovsky´, J., and Tuˇcek, P. (2015). Monitoring of the Shallow Landslide Using UAV Photogrammetry and Geodetic Measurements. In Engineering Geology for Society and Territory - Volume 2, pages 113–116. Springer International Publishing, Cham. | |
dc.relation | Martinez, J., Buill, F., and Bartoll, J. (2005). Utilizacio´n de t´ecnicas l´aser esca´ner y de fotogrametr´ıa terrestre para el estudio de desprendimientos de rocas: el caso de la zona de m´as riesgo del tren cremallera. Mapping, 103:26–33. | |
dc.relation | McLachlan, G. J. and Peel, D. (1999). The EMMIX Algorithm for the Fitting of Normal and t -Components. Journal of Statistical Software, 4(2):1–14. | |
dc.relation | McMahon, B. (1971). Statistical methods for the design of rock slopes. In First, Australian-New Zealand Conference on Geomechanics, pages 314– 321. | |
dc.relation | Min, K.-B. and Jing, L. (2004). Stress dependent mechanical properties and bounds of poisson’s ratio for fractured rock masses investigated by a DFN- DEM technique. International Journal of Rock Mechanics and Mining Sciences, 41:390–395. | |
dc.relation | Mintransporte (2011). Transporte en cifras. Version 2011. Technical report, Ministerio del Transporte, Bogota | |
dc.relation | Moradi, M., Chaibakhsh, A., and Ramezani, A. (2018). An intelligent hybrid technique for fault detection and condition monitoring of a thermal power plant. Applied Mathematical Modelling, 60:34–47. | |
dc.relation | Mosaad Allam, M. (1978). The estimation of fractures and slope stability of rock faces using analytical photogrammetry. Photogrammetria, 34(3):89– 99. | |
dc.relation | Nasekhian, A. and Schweiger, H. F. (2010). Random Set Finite Element Method Application to Tunnelling. | |
dc.relation | Nasekhian, A. and Schweiger, H. F. (2011). Random set finite element method application to tunnelling. International Journal of Reliability and Safety, 5(3/4):299. | |
dc.relation | Nguyen, H. T. (2006). An Introduction to Random Sets. Taylor & Francis Group, Las Crices, NM. | |
dc.relation | Norrish, N. and Willey, D. (1996). Rock Slope Stability Analysis. In Trans- portation Research Board, editor, Lanslides: Investigation and Mitigation
Special Report 247, chapter 15, pages 391–424. National Academy Press. | |
dc.relation | Oberguggenberger, M. (2012). Combined methods in nondeterministic me- chanics. In Isaac Elishakoff, C. S., editor, Nondeterministic Mechanics, pages 263–356. Springer, Vienna. | |
dc.relation | Oberkampf, W. L., Helton, J. C., Joslyn, C. A., Wojtkiewicz, S. F., and Fer- son, S. (2004a). Challenge problems: uncertainty in system response given uncertain parameters. Reliability Engineering & System Safety, 85(1):11– 19. | |
dc.relation | Ortega, I., Booth, P., and Darras, J. (2013). Stability analysis and remedial design of two road cuttings in North Queensland based on remote geo- technical mapping using digital photogrammetry. In Proc. Slope Stability, Perth, Australia. | |
dc.relation | Pahl, P. (1981). Estimating the mean length of discontinuity traces. Inter- national Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(3):221–228. | |
dc.relation | Paine, P. J., Preston, S. P., Tsagris, M., and Wood, A. T. A. (2017). An ellip- tically symmetric angular Gaussian distribution. Statistics and Computing, pages 1–9. | |
dc.relation | Park, H. (1999). Risk analysis of rock slope stability and stochastic proper- ties of discontinuity parameters in western North Carolina. Theses and Dissertations Available from ProQuest. | |
dc.relation | Park, H. (2000). Probabilistic Approach of Stability Analysis for Rock Wedge Failure. Economic and Environmental Geology, 33(4):295–307. | |
dc.relation | Park, H. and West, T. R. (2001). Development of a probabilistic approach for rock wedge failure. Engineering Geology, 59(3-4):233–251. | |
dc.relation | Park, H.-J., West, T. R., and Woo, I. (2005). Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Inters- tate Highway 40, Western North Carolina, USA. Engineering Geology, 79(3-4):230–250. | |
dc.relation | Park, J., Bates, M., Jeong, Y. S., Kim, K. M., and Kemeny, J. (2016). Crea- ting a Digital Outcrop Model by Using Hyper-Spectrometry and Terrestrial LiDAR. In 50th U.S. Rock Mechanics/Geomechanics Symposium, pages 26–29. American Rock Mechanics Association. | |
dc.relation | Peck, R. B. (1969). Advantages and Limitations of the Observational Method in Applied Soil Mechanics. G´eotechnique, 19(2):171–187. | |
dc.relation | Peel, D. and Mclachlan, G. J. (2000). Robust mixture modelling using the t distribution. Statistics and Computing, 10:339–348. | |
dc.relation | Peel, D., Whiten, W. J., and McLachlan, G. J. (2001). Fitting Mixtures of Kent Distributions to Aid in Joint Set Identification. Journal of the American Statistical Association, 96(453):56–63. | |
dc.relation | Peschl, G. M. (2004). Reliability Analyses in Geotechnics with Random Set Finite Element Method. PhD thesis, Technische Universitat Graz. | |
dc.relation | Priest, S. D. S. D. (1993). Discontinuity analysis for rock engineering. Chap- man & Hall. | |
dc.relation | Qiu, Z., Yang, D., and Elishakoff, I. (2008). Probabilistic interval reliabi- lity of structural systems. International Journal of Solids and Structures, 45(10):2850–2860. | |
dc.relation | Rathman, J. F., Yang, C., and Zhou, H. (2018). Dempster-Shafer theory for combining in silico evidence and estimating uncertainty in chemical risk assessment. Computational Toxicology. | |
dc.relation | Riquelme, A., Cano, M., Tom´as, R., and Abell´an, A. (2017). Identification of rock slope discontinuity sets from laser scanner and photogrammetric point clouds: A comparative analysis. In Symposium of the International Society for Rock Mechanics, EUROCK 2017., pages 838–845, Ostrava- Poruba, Czech Republic. | |
dc.relation | Robinson, P. C. (1983). Connectivity of fracture systems-a percolation theory approach. Journal of Physics A: Mathematical and General, 16(3):605–614. | |
dc.relation | Ruan, Z., Li, C., Wu, A., and Wang, Y. (2019). A New Risk Assessment Model for Underground Mine Water Inrush Based on AHP and D–S Evidence Theory. Mine Water and the Environment. | |
dc.relation | Ruzic, I., Marovic, I., Benac, C., and Ilic, S. (2014). Coastal cliff geometry derived from structure-from-motion photogrammetry at Stara Baˇska, Krk Island, Croatia. Geo-Marine Letters, 34(6):555–565. | |
dc.relation | Salvini, R., Francioni, M., Riccucci, S., Bonciani, F., and Callegari, I. (2013). Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola–Iselle railway, the Italian Alps. Geo- morphology, 185:110–122. | |
dc.relation | Sandve, T., Berre, I., Physics, J. N. J. o. C., and 2012, U. (2012). An effi- cient multi-point flux approximation method for discrete fracture–matrix simulations. Journal of Computational Physics, 231(9). | |
dc.relation | Schweiger, H. F. and Peschl, G. M. (2004). Numerical analysis of deep excava- tions utilizing random set theory. Proc. Geotechnical Innovations, Essen: VGE, pages 277–294. | |
dc.relation | Schweiger, H. F. and Peschl, G. M. (2005a). Application of the random set finite element method (RS-FEM) in geotechnics. Plaxis Bulletin (17). | |
dc.relation | Schweiger, H. F. and Peschl, G. M. (2005b). Reliability analysis in geotechnics with the random set finite element method. Computers and Geotechnics, 32(6):422–435. | |
dc.relation | SCIRO (2015). Siromodel OPS. Technical report, Commonwealth Scientific and Research Organisation, Australia. | |
dc.relation | Seidel, W., Mosler, K., and Alker, M. (2000). A Cautionary Note on Like- lihood Ratio Tests in Mixture Models. Annals of the Institute of Statistical Mathematics, 52(3):481–487. | |
dc.relation | Sentz, K. and Ferson, S. (2002). Combination of Evidence in Dempster- Shafer Theory. Technical Report April, Sandia National Laboratories, Al- buquerque, NM. | |
dc.relation | Seraj, S., Delavar, M., and R, R. (2019). A hybrid GIS-assisted framework to integrate Dempster-Shafer theory of evidence and fuzzy sets in risk analyis: An application in hydrocarbon exploration. Geocarto International, pages 1–19. | |
dc.relation | SGC, S. G. C. (2015). Gu´ıa metodolog´ogica para estudios de amenaza, vul- netabilidad y riesgo por movimientos en masa. Technical report, SGC y Minminas, Bogot´a, Colombia. | |
dc.relation | Shafer, G. (1976). A Mathematical Thoery of Evidence. Princeton Uiversity Press, New Jersey, NJ, US. | |
dc.relation | Shen, H. and Abbas, S. M. (2013). Rock slope reliability analysis based on distinct element method and random set theory. International Journal of Rock Mechanics and Mining Sciences, 61:15–22. | |
dc.relation | Shi, G. (1988). Discontinuous deformation analysis: A new numerical model for the statics and dynamics of block systems. PhD thesis, University of California, Berkeley. | |
dc.relation | Shi, G.-H., Goodman, R. E., and Tinucci, J. P. (1985). The Kinematics Of Block Inter-Penetrations. In The 26th U.S. Symposium on Rock Mechanics (USRMS), volume 1, pages 121–130. American Rock Mechanics Association. | |
dc.relation | Sra, S. and Karp, D. (2013). The multivariate Watson distribution: Maximum-likelihood estimation and other aspects. Journal of Multivariate Analysis, 114:256–269. | |
dc.relation | Stumpf, A., Malet, J., Allemand, P., Pierrot, M., Deseilligny, and Skupinnski,
G. (2015). Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology, 231:130–145. | |
dc.relation | Sturzenegger, M. and Stead, D. (2009). Close-range terrestrial digital photo- grammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106(3-4):163–182. | |
dc.relation | Talavera, A., Aguasca, R., Galva´n, B., and Caceren˜o, A. (2013). Applica- tion of Dempster–Shafer theory for the quantification and propagation of the uncertainty caused by the use of AIS data. Reliability Engineering & System Safety, 111:95–105. | |
dc.relation | Tannant, D. (2015). Review of Photogrammetry-Based Techniques for Cha- racterization and Hazard Assessment of Rock Faces. International journal of geohazards and environment, 1(2):76–87. | |
dc.relation | Tonon, F. and Bernardini, A. (1999). Multiobjective Optimization of Uncer- tain Structures Through Fuzzy Set and Random Set Theory. Computer- Aided Civil and Infrastructure Engineering, 14(2):119–140. | |
dc.relation | Tonon, F., Bernardini, A., and Mammino, A. (2000a). Determination of parameters range in rock engineering by means of Random Set Theory. Reliability Engineering & System Safety, 70(3):241–261. | |
dc.relation | Tonon, F., Bernardini, A., and Mammino, A. (2000b). Reliability analysis of rock mass response by means of Random Set Theory. Reliability Enginee- ring & System Safety, 70(3):263–282. | |
dc.relation | Tonon, F., Mammino, A., and Bernardini, A. (1996). A Random Set Ap- proach to the Uncertainties In Rock Engineering And Tunnel Lining Design. In ISRM International Symposium - EUROCK 96, Turin, Italy. In ternational Society for Rock Mechanics. | |
dc.relation | Taheri,
K. (2018). Expert finding by the Dempster-Shafer theory for evidence combination. Expert Systems, 35(1):13. | |
dc.relation | Torrero, L., Seoli, L., Molino, A., Giordan, D., Manconi, A., Allasia, P., and Baldo, M. (2015). The Use of Micro-UAV to Monitor Active Landslide Scenarios. In Engineering Geology for Society and Territory - Volume 5, pages 701–704. Springer International Publishing, Cham. | |
dc.relation | Tucker, W. T. and Ferson, S. (2006). Sensitivity in risk analyses with un- certain numbers. Technical report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA. | |
dc.relation | UPME (2015). Sistema de informacion minero Colombiano. | |
dc.relation | Vasuki, Y., Holden, E., Kovesi, P., and Micklethwaite, S. (2014). Semi- automatic mapping of geological Structures using UAV-based photogram- metric data: An image analysis approach. Computers & Geosciences, 69:22–32. | |
dc.relation | Vollmer, F. W. (2015). Orient 3: a new integrated software program for orientation data analysis, kinematic analysis, spherical projections, and Schmidt plots. In Geological Society of America, Abstracts with Programs, volume 47, pages 185–187. | |
dc.relation | Wang, C., Zhang, H., and Beer, M. (2019). Tightening the bound estimate of structural reliability under imprecise probability information. In 13th International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP13), Seoul, South Korea, pages 1–8. | |
dc.relation | Wang, P., Puterman, M., Cockburn, I., and Le, N. (1996). Mixed Poisson regression models with covariate dependent rates. Biometrics, pages 381– 400. | |
dc.relation | Wang, Y. (2010). Imprecise probabilities based on generalised intervals for system reliability assessment. International Journal of Reliability and Sa- fety, 4(4):319. | |
dc.relation | Wang, Y.-m. and Jing, L. T. (2012). Application of Dempster-Shafer theory for network selection in heterogeneous wireless networks. The Journal of China Universities of Posts and Telecommunications, 19:86–91. | |
dc.relation | Warburton, P. (1980). Stereological interpretation of joint trace data: In- fluence of joint shape and implications for geological surveys. Interna- tional Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17(6):305–316. | |
dc.relation | Warburton, P. (1983). Application of a new computer model for reconstruc- ting blocky block geometry analysis single block stability and identifying keystones. In Proceedings of the 5th International Congress on Rock Me- chanics, pages 225–230, Melbopurne, Australia. Balkema. | |
dc.relation | Whitman, R. V. (1984). Evaluating Calculated Risk in Geotechnical Engi- neering. Journal of Geotechnical Engineering, 110(2):143–188. | |
dc.relation | Wickens, E. H. and Barton, N. (1971). The application of photogrammetry to the stability of excavated rock slopes. The Photogrammetric Record, 7(37):16–54. | |
dc.relation | Wood, A. T. A. (1987). The simulation of spherical distributions in the Fisher-Bingham family. Communications in Statistics - Simulation and Computation, 16(3):885–898. | |
dc.relation | Xu, C. and Dowd, P. (2010). A new computer code for discrete fracture network modelling. Computers & Geosciences, 36(3):292–301. | |
dc.relation | Yager, R. R. (1987). On the dempster-shafer framework and new combination rules. Information Sciences, 41(2):93–137. | |
dc.relation | Yamaji, A. (2016). Genetic algorithm for fitting a mixed Bingham distribu- tion to 3D orientations: a tool for the statistical and paleostress analyses of fracture orientations. Island Arc, 25:72–83. | |
dc.relation | Yamaji, A. and Sato, K. (2011). Clustering of fracture orientations using a mixed Bingham distribution and its application to paleostress analysis from dike or vein orientations. Journal of Structural Geology, 33(7):1148–1157. | |
dc.relation | Yang, Q., Lu, P., Cui, T., Ma, M., Liu, Y., Zhou, C., and Zhao, L. (2012). Application of low-altitude remote sensing image by unmanned airship in geological hazards investigation. In Proc. Image and Signal Processing 5 th Int. Cong, Chongqing, China. | |
dc.relation | Zadeh, L. (1986). A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Magazine, 7(2):85–90. | |
dc.relation | Zargar, A., Sadiq, R., Naser, G., Khan, F. I., and Neumann, N. N. (2012). Dempster-Shafer Theory for Handling Conflict in Hydrological Data: Case of Snow Water Equivalent. Journal of Computing in Civil Engineering, 26(3):434–447. | |
dc.relation | Zhang, Y., Xiao, M., and Chen, J. (2010). A new methodology for block iden- tification and its application in a large scale underground cavern complex. Tunnelling and Underground Space Technology, 25(2):168–180. | |
dc.relation | Zhang, Y., Xiao, M., Ding, X., and Wu, A. (2012). Improvement of metho- dology for block identification using mesh gridding technique. Tunnelling and Underground Space Technology, 30:217–229. | |
dc.relation | Zhang, Z. X. and Lei, Q. H. (2013). Object-oriented modeling for three- dimensional multi-block systems. Computers and Geotechnics, 48:208–227. | |
dc.relation | Zhang, Z. X. and Lei, Q. H. (2014). A Morphological Visualization Method for Removability Analysis of Blocks in Discontinuous Rock Masses. Rock Mechanics and Rock Engineering, 47(4):1237–1254. | |
dc.relation | Zhao, Z., Rutqvist, J., Leung, C., Hokr, M., Liu, Q., Neretnieks, I., Hoch,
A., Havl´ıˇcek, J., Wang, Y., Wang, Z., Wu, Y., and Zimmerman, R. (2013). Impact of stress on solute transport in a fracture network: A comparison study. Journal of Rock Mechanics and Geotechnical Engineering, 5(2):110– 123. | |
dc.relation | Zheng, Y., Xia, L., Yu, Q., Yinhe, Z., Lu, X., Qingchun, Y., Zheng, Y.,
Xia, L., Yu, Q., Yinhe, Z., Lu, X., and Qingchun, Y. (2015). A method for identifying three-dimensional rock blocks formed by curved fractures. Computers and Geotechnics, 65:1–11. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Reliability assessment of rock slopes by evidence theory | |
dc.type | Otro | |