dc.contributorSarmiento Salazar, Felipe
dc.contributorIngeniería Genética de Plantas
dc.creatorVillamil Bolaños, Fabian
dc.date.accessioned2021-06-17T18:45:45Z
dc.date.available2021-06-17T18:45:45Z
dc.date.created2021-06-17T18:45:45Z
dc.date.issued2021-07-11
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79642
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLos polihidroxialcanoatos (PHAs) son poliésteres producidos y degradados naturalmente por bacterias, cuyas propiedades los hacen similares a los plásticos derivados del petróleo. La producción en masa de PHAs es costosa, por ello la transferencia genética de genes clave y su producción en plantas se ha considerado como alternativa, dado que estos organismos tienen un bajo costo de mantenimiento y por qué pueden generar mayor biomasa. Sin embargo, uno de los problemas principales que han limitado su obtención, es que generalmente las plantas presentan problemas de desarrollo y crecimiento asociados al secuestro de sustancias claves para el metabolismo y dirigidas hacia la síntesis de PHAs. Hallazgos recientes han identificado que su biosíntesis en peroxisomas reduce los efectos negativos debido a la presencia y abundancia de compuestos intermediarios en la ruta de biosíntesis de estos biopolímeros. Por esta razón, nuestros objetivos se centraron en obtener líneas genéticamente modificadas de Nicotiana tabacum var. Samsun 10, transformadas mediante la infección con Agrobacterium tumefaciens cepa LBA4404 y en evaluar la expresión del casete que dirige la síntesis del gen phaCAC de Aeromonas caviae hacia peroxisomas. Los resultados de la extracción del ADN indicaron una eficiencia de transformación del 2,6%, la síntesis de ADNc y la evaluación de la actividad de la β-glucuronidasa, detectaron dos líneas transgénicas que expresaron el gen phaCAC sin efectos negativos aparentes. (Texto tomado de la fuente)
dc.description.abstractPolyhydroxyalcanoates (PHAs) are polyesters naturally produced and degraded by bacteria, whose properties make them like plastics derived from petroleum. Mass production of PHAs by bacteria is expensive, so genetic transfer of key genes and production in plants has been considered as an alternative given the low maintenance cost and larger biomass than plants can generate. However, one of the main problems that have limited plant production is that plants generally present developmental and growth problems associated with capture of key substances for metabolism and directed towards PHA synthesis. Recent findings have identified that PHAs biosynthesis in peroxisomes reduces negative effects due to the presence and abundance of intermediate compounds in the biosynthesis path of these biopolymers. For this reason, our objectives focused on obtaining genetically modified lines of Nicotiana tabacum var. Samsun 10, transformed by infection with Agrobacterium tumefaciens strain LBA4404, and in to evaluate the expression of the construct that directs the synthesis of the phaCAC gene from Aeromonas caviae towards plant peroxisomes. DNA extraction results indicated 2.6% transformation efficiency and DNAc synthesis and evaluation of β-glucuronidase activity, detected two transgenic lines expressing the gene without apparent negative effects.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisherEscuela de posgrados
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAlmasi, M. A., Aghapour-ojaghkandi, M., Bagheri, K., Ghazvini, M., & Hosseyny-dehabadi, S. M. (2015). Comparison and Evaluation of Two Diagnostic Methods for Detection of npt II and GUS Genes in Nicotiana tabacum. Applied Biochemistry and Biotechnology, 175, 3599–3616. https://doi.org/10.1007/s12010-015-1529-y
dc.relationArai, Y., Nakashita, H., Yoshiharu, D., & Yamaguchi, I. (2001). Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. In Plant Biotechnology (Vol. 18, Issue 4, pp. 289–293). https://doi.org/10.5511/plantbiotechnology.18.289
dc.relationArai, Y., Shikanai, T., Doi, Y., Yoshida, S., Yamaguchi, I., & Nakashita, H. (2004). Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant and Cell Physiology, 45(9), 1176–1184. https://doi.org/10.1093/pcp/pch139
dc.relationBaeg, K., Iwakawa, H. O., & Tomari, Y. (2017). The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing. Nature Plants, 3(March). https://doi.org/10.1038/nplants.2017.36
dc.relationBakaher, N. (2020). Genetic Markers in Tobacco, Usage 3 for Map Development, Diversity Studies, and Quantitative Trait Loci Analysis. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 43–49). https://doi.org/10.1007/978-3-030-29493-9_2
dc.relationBakhsh, A., Anayol, E., & Ozcan, S. F. (2014). Comparison of transformation efficiency of five agrobacterium tumefaciens strains in nicotiana tabacum L. Emirates Journal of Food and Agriculture, 26(3), 259–264. https://doi.org/10.9755/ejfa.v26i3.16437
dc.relationBANREP. (2021). Banco de la República. Características Del Cultivo Del Tabaco En Santander. https://www.banrep.gov.co/es/caracteristicas-del-cultivo-del-tabaco-santander#:~:text=El cultivo de este producto,la producción de tabaco negro.
dc.relationBarrientos, J. C., Plaza, G. A., & Rojas, J. (2012). Comparative analysis of flue-cured tobacco production costs in Santander and Huila (Colombia). Agronomia Colombiana, 30(2), 289–296.
dc.relationBasso, M. F., Arraes, F. B. M., Grossi-de-Sa, M., Moreira, V. J. V., Alves-Ferreira, M., & Grossi-de-Sa, M. F. (2020). Insights Into Genetic and Molecular Elements for Transgenic Crop Development. Frontiers in Plant Science, 11(May), 1–24. https://doi.org/10.3389/fpls.2020.00509
dc.relationBohmert-Tatarev, K., McAvoy, S., Daughtry, S., Peoples, O. P., & Snell, K. D. (2011). High Levels of Bioplastic Are Produced in Fertile Transplastomic Tobacco Plants Engineered with a Synthetic Operon for the Production of Polyhydroxybutyrate. Plant Physiology, 155(4), 1690–1708. https://doi.org/10.1104/pp.110.169581
dc.relationBohmert, K., Balbo, I., Kopka, J., Mittendorf, V., Nawrath, C., Poirier, Y., Tischendorf, G., Trethewey, R. N., & Willmitzer, L. (2000). Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta, 211(6), 841–845. https://doi.org/10.1007/s004250000350
dc.relationBohmert, K., Balbo, I., Steinbüchel, A., Tischendorf, G., & Willmitzer, L. (2002). Constitutive Expression of the β-Ketothiolase Gene in Transgenic Plants. A Major Obstacle for Obtaining Polyhydroxybutyrate-Producing Plants. Plant Physiology, 128(4), 1282–1290. https://doi.org/10.1104/pp.010615.confirming
dc.relationBudar, F., Thia-Toong, L., Van Montagu, M., & Hernalsteens, J. P. (1986). Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics, 114, 303–313.
dc.relationCarlini, D. B., & Stephan, W. (2003). In vivo introduction of unpreferred synonymous codons into the drosophila Adh gene results in reduced levels of ADH protein. Genetics, 163(1), 239–243. https://doi.org/10.1093/genetics/163.1.239 Cascales, E., & Christie, P. J. (2004). Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate. Science, 136(1986), 1–5.
dc.relationCastellanos-Domínguez, Ó. F., Torres-Piñeros, L. M., & Rodríguez-Zárate, D. M. (2009). Desarrollo tecnológico e innovación de la cadena productiva del Tabaco (1st ed.).
dc.relationChandra, S., Bandopadhyay, R., Kumar, V., & Chandra, R. (2010). Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnology Letters, 32(9), 1199–1205. https://doi.org/10.1007/s10529-010-0290-0
dc.relationChandrika-Sabapathy, P., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., Zabed, H. M., & Qi, X. (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production in the past decade – A Review. Bioresource Technology, 123132. https://doi.org/10.1016/j.biortech.2020.123132
dc.relationChaverri, R. (1995). Origen e Historia del Tabaco. In El Cultivo del Tabaco (EUNED, pp. 1–163). Editorial Universidad Estatal a Distancia.
dc.relationChen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434–2446. https://doi.org/10.1039/b812677c
dc.relationChen, G. Q., & Jiang, X. R. (2018). Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 50, 94–100. https://doi.org/10.1016/j.copbio.2017.11.016
dc.relationDadami, E., Moser, M., Zwiebel, M., Krczal, G., Wassenegger, M., & Dalakouras, A. (2013). An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Letters, 587(6), 706–710. https://doi.org/10.1016/j.febslet.2013.01.045
dc.relationDeeba, F., Hyder, M. Z., Shah, S. H., & Naqvi, S. M. S. (2014). Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus, 3(1), 1–7. https://doi.org/10.1186/2193-1801-3-358
dc.relationDobrogojski, J., Spychalski, M., Luciński, R., & Borek, S. (2018). Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiologiae Plantarum, 40(9), 1–17. https://doi.org/10.1007/s11738-018-2742-4
dc.relationDodsworth, S., Kovarik, A., Marie-Angèle, G., Leitch, I. J., & Leitch, A. R. (2020). Repetitive DNA Dynamics 7 and Polyploidization in the Genus Nicotiana (Solanaceae). In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 85–100). https://doi.org/10.1007/978-3-030-29493-9_2
dc.relationDomínguez, A., Fagoaga, C., Navarro, L., Moreno, P., & Peña, L. (2002). Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Molecular Genetics and Genomics, 267(4), 544–556. https://doi.org/10.1007/s00438-002-0688-z
dc.relationDomínguez, Antonio, Cervera, M., Pérez, R. M., Romero, J., Fagoaga, C., Cubero, J., López, M. M., Juárez, J. A., Navarro, L., &
dc.relationPeña, L. (2004). Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Molecular Breeding, 14(2), 171–183. https://doi.org/10.1023/B:MOLB.0000038005.73265.61
dc.relationEscobar, M. A., & Dandekar, A. M. (2003). Agrobacterium tumefaciens as an agent of disease. Trends in Plant Science, 8(8), 380–386. https://doi.org/10.1016/S1360-1385(03)00162-6
dc.relationF. de Felippes, F., McHale, M., Doran, R. L., Roden, S., Eamens, A. L., Finnegan, E. J., & Waterhouse, P. M. (2020). The key role of terminators on the expression and post-transcriptional gene silencing of transgenes. Plant Journal, 104(1), 96–112. https://doi.org/10.1111/tpj.14907
dc.relationFagard, M., & Vaucheret, H. (2000). (Trans)Gene Silencing in Plants: How Many Mechanisms? Annual Review of Plant Physiology and Plant Molecular Biology, 51, 167–194.
dc.relationFinagro. (2018). Ficha de inteligencia-Tabaco. In Finagro. http://www.aguadas-caldas.gov.co/
dc.relationFrancis, K. E., & Spiker, S. (2005). Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant Journal, 41(3), 464–477. https://doi.org/10.1111/j.1365-313X.2004.02312.x
dc.relationGanapathi, T. R., Suprasanna, P., Rao, P. S., & Bapat, V. A. (2004). Tobacco (Nicotiana tabacum L.) - A model system for tissue culture interventions and genetic engineering. Indian Journal of Biotechnology, 3(2), 171–184.
dc.relationGelvin, S. B. (2017). Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics, 51(August), 195–217. https://doi.org/10.1146/annurev-genet-120215-035320
dc.relationGumel, A. M., Annuar, M. S. M., & Chisti, Y. (2012). Recent Advances in the Production, Recovery and Applications of Polyhydroxyalkanoates. Journal of Polymers and the Environment, 21(2), 580–605. https://doi.org/10.1007/s10924-012-0527-1
dc.relationHahn, J. J., Eschenlauer, A. C., Narrol, M. H., Somers, D. A., & Srienc, F. (1997). Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(β-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures. Biotechnology Progress, 13(4), 347–354. https://doi.org/10.1021/bp970033r
dc.relationHunt, A. G. (2008). Messenger RNA 3′ end formation in plants. Current Topics in Microbiology and Immunology, 326, 151–177. https://doi.org/10.1007/978-3-540-76776-3_9
dc.relationJapelaghi, R. H., Haddad, R., Valizadeh, M., Uliaie, E. D., & Javaran, M. J. (2019). High-Efficiency Agrobacterium -Mediated Transformation of Tobacco ( Nicotiana tabacum ). Plant Molecular Breeding, 6(August 2018), 38–50. https://doi.org/10.22058/JPMB.2019.92266.1170
dc.relationKamo, K., & Blowers, A. (1999). Tissue specificity and expression level of gusA under rolD , mannopine synthase and translation elongation factor 1 subunit α promoters in transgenic Gladiolus plants. Plant Cell Reports, 18, 809–815.
dc.relationKim, S. I., Veena, & Gelvin, S. B. (2007). Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant Journal, 51(5), 779–791. https://doi.org/10.1111/j.1365-313X.2007.03183.x
dc.relationKonwar, B. K. (1994). Agrobacterium tumefaciens-Mediated Genetic Transformation of Sugar Beet (Beta vulgaris L.). Journal of Plant Biochemistry and Biotechnology, 3(1), 37–41. https://doi.org/10.1007/BF03321946
dc.relationKumar, R., Mamrutha, H. M., Kaur, A., & Grewal, A. (2017). Synergistic effect of cefotaxime and timentin to suppress the Agrobacterium over growth in wheat (Triticum aestivum L.) transformation. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(4), 961–967.
dc.relationKutty, P. C., Parveez, G. K. A., & Huyop, F. (2011). Agrobacterium tumefaciens-infection Strategies for Greater Transgenic Recovery in Nicotiana tabacum cv. TAPM26. International Journal of Agricultural Research, 6(2), 119–133. https://doi.org/10.1097/mrm.0b013e3283642449
dc.relationLacorte, C. (1998). β-Glucuronidase (GUS). In A. Brasileiro & V. Carneiro (Eds.), Manual de Transformação Genética de Plantas. (pp. 128–129). EMBRAPASPI/EMBRAPA-Cenagen.
dc.relationLacroix, B., & Citovsky, V. (2019). Pathways of DNA transfer to plants from agrobacterium tumefaciens and related bacterial species. Annual Review of Phytopathology, 57, 231–251. https://doi.org/10.1146/annurev-phyto-082718-100101
dc.relationLi, B., Xie, C., & Qiu, H. (2009). Production of selectable marker-free transgenic tobacco plants using a non-selection approach: Chimerism or escape, transgene inheritance, and efficiency. Plant Cell Reports, 28(3), 373–386. https://doi.org/10.1007/s00299-008-0640-8
dc.relationLi, M., & Wilkins, M. R. (2020). Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. International Journal of Biological Macromolecules, 156, 691–703. https://doi.org/10.1016/j.ijbiomac.2020.04.082
dc.relationLi, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., Gai, J., & Li, Y. (2017). Optimization of agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8(February), 1–15. https://doi.org/10.3389/fpls.2017.00246
dc.relationLi, X., & Pan, S. Q. (2017). Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Science Advances, 3, 1–12.
dc.relationLin, J. J., Assad-Garcia, N., & Kuo, J. (1995). Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Science, 109(2), 171–177. https://doi.org/10.1016/0168-9452(95)04168-T
dc.relationLu, H., Yuan, G., Strauss, S. H., Tschaplinski, T. J., Tuskan, G. A., Chen, J.-G., & Yang, X. (2020). Reconfiguring Plant Metabolism for Biodegradable Plastic Production. BioDesign Research, 2020, 1–13. https://doi.org/10.34133/2020/9078303
dc.relationMADR. (2020). Cadena de Tabaco-Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Tabaco/Documentos/2019-12-30 Cifras Sectoriales.pdf
dc.relationManickavasagam, M., Ganapathi, A., Anbazhagan, V. R., Sudhakar, B., Selvaraj, N., Vasudevan, A., & Kasthurirengan, S. (2004). Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids ) using axillary buds. Genetic Transformation and Hybridization, 23, 134–143. https://doi.org/10.1007/s00299-004-0794-y
dc.relationMatsumoto, K., Morimoto, K., Gohda, A., Shimada, H., & Taguchi, S. (2011). Improved polyhydroxybutyrate (PHB) production in transgenic tobacco by enhancing translation efficiency of bacterial PHB biosynthetic genes. Journal of Bioscience and Bioengineering, 111(4), 485–488. https://doi.org/10.1016/j.jbiosc.2010.11.020
dc.relationMatzke, M., Matzke, A. J. M., & Kooter, J. M. (2001). RNA: Guiding gene silencing. Science, 293(5532), 1080–1083. https://doi.org/10.1126/science.1063051
dc.relationMatzke, Marjori, & Matzke, A. J. M. (1993). Genomic imprinting in plants: Parental effects and trans-inactivation phenomena. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 53–76. https://doi.org/10.1146/annurev.pp.44.060193.000413
dc.relationMcqualter, R. B., Petrasovits, L. A., Gebbie, L. K., Schweitzer, D., Blackman, D. M., Chrysanthopoulos, P., Hodson, M. P., Plan, M. R., Riches, J. D., Snell, K. D., Brumbley, S. M., & Nielsen, L. K. (2015). The use of an acetoacetyl-CoA synthase in place of a β-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnology Journal, 13(5), 700–707. https://doi.org/10.1111/pbi.12298
dc.relationMette, M. F., Aufsatz, W., Van der Winden, J., Matzke, M. A., & Matzke, A. J. M. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO Journal, 19(19), 5194–5201. https://doi.org/10.1093/emboj/19.19.5194
dc.relationMinAgricultura. (2015). Bullets Cadena de Tabaco-Marzo de 2015.
dc.relationMittendorf, V., Bongcam, V., Allenbach, L., Coullerez, G., Martini, N., & Poirier, Y. (1999). Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through β-oxidation. Plant Journal, 20(1), 45–55. https://doi.org/10.1046/j.1365-313X.1999.00572.x
dc.relationMittendorf, V., Robertson, E. J., Leech, R. M., Kruger, N., Steinbuchel, A., & Poirier, Y. (1998). Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proceedings of the National Academy of Sciences, 95(23), 13397–13402. https://doi.org/10.1073/pnas.95.23.13397
dc.relationMoazed, D., & Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121), 389–394. https://doi.org/10.1038/327389a0
dc.relationMoire, L., Rezzonico, E., & Poirier, Y. (2003b). Synthesis of novel biomaterials in plants. Journal of Plant Physiology, 160(7), 831–839. https://doi.org/10.1078/0176-1617-01030
dc.relationMooney, B. P. (2009). The second green revolution? Production of plant-based biodegradable plastics. Biochemical Journal, 418(2), 219–232. https://doi.org/10.1042/bj20081769
dc.relationMurashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 474–497.
dc.relationNagaya, S., Kawamura, K., Shinmyo, A., & Kato, K. (2010). The HSP terminator of arabidopsis thaliana increases gene expression in plant cells. In Plant and Cell Physiology (Vol. 51, Issue 2, pp. 328–332). https://doi.org/10.1093/pcp/pcp188
dc.relationNakashita, H., Arai, Y., Shikanai, T., Doi, Y., & Yamaguchi, I. (2001). Introduction of Bacterial Metabolism into Higher Plants by Polycistronic Transgene Expression. Bioscience, Biotechnology, and Biochemistry, 65(7), 1688–1691. https://doi.org/10.1271/bbb.65.1688
dc.relationNakashita, H., Arai, Y., Yoshioka, K., Fukui, T., Doi, Y., Usami, R., Horikoshi, K., & Yamaguchi, I. (1999). Production of Biodegradable Polyester By Tobbaco. Bioscience, Biotechnology, and Biochemistry, 63(5), 870–874. https://doi.org/10.1271/bbb.63.870
dc.relationNauerby, B., Billing, K., & Wyndaele, R. (1997). Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacteriurn tumefaciens. Plant Science, 123(1–2), 169–177. https://doi.org/10.1016/S0168-9452(96)04569-4
dc.relationNawrath, C., Poirier, Y., & Somerville, C. (1994). Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proceedings of the National Academy of Sciences, 91(26), 12760–12764. https://doi.org/10.1073/pnas.91.26.12760
dc.relationNawrath, Christiane, Poirier, Y., & Somerville, C. (1995). Plant polymers for biodegradable plastics: Cellulose, starch and polyhydroxyalkanoates. In Molecular Breeding. https://doi.org/10.1007/BF01249696
dc.relationOkamura, E., Tomita, T., Sawa, R., Nishiyama, M., & Kuzuyama, T. (2010). Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11265–11270. https://doi.org/10.1073/pnas.1000532107
dc.relationPachchigar, K., Khunt, A., & Hetal, B. (2016). Dna quantification. In ICAR Sponsored summer school on Allele mining in crops: Methods and Utility (pp. 5–9).
dc.relationPatton, D. A., & Meinke, D. W. (1988). High-frequency plant regeneration from cultured cotyledons of Arabidopsis thaliana. Plant Cell Reports, 7(4), 233–237. https://doi.org/10.1007/BF00272531
dc.relationPaz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206–213. https://doi.org/10.1007/s00299-005-0048-7
dc.relationPaz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., & Wang, K. (2004). Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Transformation, 136, 167–179.
dc.relationPérez-González, A., & Caro, E. (2018). Effect of transcription terminator usage on the establishment of transgene transcriptional gene silencing. BMC Research Notes, 11(1), 1–8. https://doi.org/10.1186/s13104-018-3649-2
dc.relationPetrasovits, L. A., Purnell, M. P., Nielsen, L. K., & Brumbley, S. M. (2007). Production of polyhydroxybutyrate in sugarcane. Plant Biotechnology Journal, 5(1), 162–172. https://doi.org/10.1111/j.1467-7652.2006.00229.x
dc.relationPetrasovits, L. A., Zhao, L., McQualter, R. B., Snell, K. D., Somleva, M. N., Patterson, N. A., Nielsen, L. K., & Brumbley, S. M. (2012). Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnology Journal, 10(5), 569–578. https://doi.org/10.1111/j.1467-7652.2012.00686.x
dc.relationPoirier, Y., E. Dennis, D., Klomparens, K., & Somerville, C. (1992). PHB, a biodegradable thermoplastic, produced in transgenic plants. Science, 256(April).
dc.relationPoltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70
dc.relationRaza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(January 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001
dc.relationRoberts, R. J. (1985). Restriction and modification enzymes and their recognition sequences. Nucleic Acids Research, 5, 1–49.
dc.relationRodríguez-García, C., Vilaine, F., & Robaglia, C. (2002). Transfer of the yeast gene SKI2 to Tobacco. Agrociencia, 36(6), 675–681.
dc.relationRomano, A. (2002). Production of Polyhydroxyalkanoates (PHAs) in Transgenic Potato [Wageningen Universiteit]. In Biopolymers Online. https://doi.org/10.1002/3527600035.bpol3a15
dc.relationRossi, L., Hohn, B., & Tinland, B. (1996). Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci, 93(January), 126–130.
dc.relationSaruul, P., Srienc, F., Somers, D. A., & Samac, D. A. (2002). Production of a Biodegradable Plastic Polymer, Poly-β-Hydroxybutyrate, in Transgenic Alfalfa. Crop Science, 42(3), 919–927.
dc.relationSchmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283(3), 233–241. https://doi.org/10.1007/s00438-010-0511-1
dc.relationSharma, V., Sehgal, R., & Gupta, R. (2021). Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer, 212, 123161. https://doi.org/10.1016/j.polymer.2020.123161
dc.relationSierro, N., Battey, J. N. D., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goepfert, S., Peitsch, M. C., & Ivanov, N. V. (2014). The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 5(May), 1–9. https://doi.org/10.1038/ncomms4833
dc.relationSierro, N., & Ivanov, N. (2020). Background and History of Tobacco Genome Resources. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 21–41). https://doi.org/10.1007/978-3-030-29493-9_2
dc.relationSijen, T., Vijn, I., Rebocho, A., Van Blokland, R., Roelofs, D., Mol, J. N. M., & Kooter, J. M. (2001). Transcriptional and posttranscriptional gene silencing are mechanistically related. Current Biology, 11(6), 436–440. https://doi.org/10.1016/S0960-9822(01)00116-6 SIOC. (2021). Tabaco-Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas. Boletín de Precios de Insumos Agropecuarios No. 1 de 2021. https://sioc.minagricultura.gov.co/Tabaco/Pages/default.aspx
dc.relationSnell, K. D., Singh, V., & Brumbley, S. M. (2015). Production of novel biopolymers in plants: Recent technological advances and future prospects. Current Opinion in Biotechnology, 32, 68–75. https://doi.org/10.1016/j.copbio.2014.11.005
dc.relationSomleva, M. N., Peoples, O. P., & Snell, K. D. (2013). PHA Bioplastics, Biochemicals, and Energy from Crops. Plant Biotechnology Journal, 11, 233–252. https://doi.org/10.1111/pbi.12039
dc.relationSong, Z. yue, Tian, J. luan, Fu, W. zhe, Li, L., Lu, L. hong, Zhou, L., Shan, Z. hui, Tang, G. xiang, & Shou, H. xia. (2013). Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Journal of Zhejiang University. Science. B, 14(4), 289–298. https://doi.org/10.1631/jzus.B1200278
dc.relationStefanov, I., Fekete, S., Bögre, L., Pauk, J., Fehér, A., & Dudits, D. (1994). Differential activity of the mannopine synthase and the CaMV 35S promoters during development of transgenic rapeseed plants. Plant Science, 95, 175–186. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnology Advances, 25(2), 148–175. https://doi.org/10.1016/j.biotechadv.2006.11.007
dc.relationTan, D., Wang, Y., Tong, Y., & Chen, G. Q. (2021). Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends in Biotechnology, 1–11. https://doi.org/10.1016/j.tibtech.2020.11.010
dc.relationTeixeira, J. A. (2005). Simple multiplication and effective genetic transformation ( four methods ) of in vitro-grown tobacco by stem thin cell layers. Plant Science, 169, 1046–1058. https://doi.org/10.1016/j.plantsci.2005.07.012
dc.relationTilbrook, K., Gebbie, L., Schenk, P. M., Poirier, Y., & Brumbley, S. M. (2011). Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnology Journal, 9, 958–969. https://doi.org/10.1111/j.1467-7652.2011.00600.x
dc.relationTrick, H., & Finer, J. (1997). SAAT : sonication-assisted Agrobacterium -mediated transformation. Transgenic Research, 6, 329–336.
dc.relationValderrama-Fonseca, A. M., Arango-Isaza, R., & Afanador-Kafuri, L. (2005). Transformación de plantas mediada por Agrobacterium: “Ingeniería Genética natural aplicada.” Rev.Fac.Nal.Agr.Medellín, 58(1), 2569–2585. http://www.scielo.org.co/pdf/rfnam/v58n1/a01v58n1.pdf
dc.relationValentin, H. E., Broyles, D. L., Casagrande, L. A., Colburn, S. M., Creely, W. L., Delaquil, P. A., Felton, H. M., Gonzalez, K. A., Houmiel, K. L., Lutke, K., Mahadeo, D. A., Mitsky, T. A., Padgette, S. R., Reiser, S. E., Slater, S., Stark, D. M., Stock, R. T., Stone, D. A., Taylor, N. B., … Gruys, K. J. (1999). PHA production, from bacteria to plants. International Journal of Biological Macromolecules, 25(1–3), 303–306. https://doi.org/10.1016/S0141-8130(99)00045-8
dc.relationWeselake, R. J. (2005). Storage lipids. In D. J. Murphy (Ed.), Plant lipids — biology, utilization and manipulation (pp. 162–225). Blackwell Publishing.
dc.relationYu, L. P., Wu, F. Q., & Chen, G. Q. (2019). Next-Generation Industrial Biotechnology-Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnology Journal, 14(9). https://doi.org/10.1002/biot.201800437
dc.relationZambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., & Schell, J. (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. The EMBO Journal, 2(12), 2143–2150. https://doi.org/10.1002/j.1460-2075.1983.tb01715.x
dc.relationZhang, B., Carlson, R., & Srienc, F. (2006). Engineering the Monomer Composition of Polyhydroxyalkanoates Synthesized in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72(1), 536–543. https://doi.org/10.1128/AEM.72.1.536
dc.relationZhao, H., Jia, Y., Cao, Y., & Wang, Y. (2020). Improving T-DNA Transfer to Tamarix hispida by Adding Chemical Compounds During Agrobacterium tumefaciens Culture. Frontiers in Plant Science, 11(September), 1–8. https://doi.org/10.3389/fpls.2020.501358
dc.relationZhu, L., Zhang, J., Yang, J., Jiang, Y., & Yang, S. (2021). Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends in Biotechnology, 1–17. https://doi.org/10.1016/j.tibtech.2021.04.004
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución