dc.contributorGarzón Ospina, Carlos Mario
dc.contributorMicroscopía eléctrónica
dc.creatorVergara Lozano, Giovanny Andrés
dc.date.accessioned2020-07-02T20:32:20Z
dc.date.available2020-07-02T20:32:20Z
dc.date.created2020-07-02T20:32:20Z
dc.date.issued2019
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77731
dc.description.abstractPor medio de pulverización catódica en atmósfera reactiva se depositaron películas nanoestructuradas, cristalinas y sin nitruros de cromo, sobre sustratos de acero utilizando un blanco del acero austenítico UNS S31603. Estas presentaron estructura ferrítica, austenítica, dúplex (ferrita + austenita) o nitruro MN (M: metal), dependiendo de los parámetros de operación del reactor y del flujo de N2. La concentración de nitrógeno varió desde cero (Ar 1,2 sccm) hasta cerca de 50 %-at (Ar 1,2 sccm + N2 11,2 sccm). La dureza de las películas estuvo entre 8 – 13 GPa, mientras la dureza del blanco fue 2 – 3 GPa. El carácter dúctil – frágil de las películas varió, desde ductilidad muy elevada hasta comportamiento frágil ante cargas de indentación. De forma similar, se obtuvieron películas con elevada adherencia y baja cohesión al sustrato. Este trabajo propone un análisis para explicar la dependencia entre los parámetros de operación del reactor, la estructura, las propiedades mecánicas y las adherencias observadas.
dc.description.abstractStainless Steel (SS) crystalline films, with no chromium nitride formation, were deposited on SS substrates by reactive sputtering, using a UNS S31603 target. Films obtained showed different structures, namely ferrite, austenite, duplex (ferrite + austenite) and MN nitride, according to both operational reactor parameters and N2 flow rate. Nitrogen uptake in film varied between N-lean films (Ar 1,2 sccm) up to near 50 %-at N (Ar 1,2 sccm + N2 11,2 sccm). Films hardness varied 8-13 GPa, while target hardness was around 2 – 3 GPa. Film ductile vs fragile character varied from very high ductile films, up to films with fragile performance films under contact indentation loads. In a similar manner, film-substrate adherence varied from extremely high up to films with cohesive failure, in both micro-indentation and scratch test. In this research, a depth analysis of sputtering parameters, film structure, and film tribomechanical performance is presented.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationF. I. Alresheedi y J. E. Krzanowski, “The Effects of Ti Additions and Deposition Parameters on the Structural and Mechanical Properties of Stainless Steel-Nitride Thin Films”, Coatings, vol. 9, núm. 5, p. 329, 2019.
dc.relationF. I. Alresheedi y J. E. Krzanowski, “Structure and morphology of stainless steel coatings sputter-deposited in a nitrogen/argon atmosphere”, Surf. Coatings Technol., vol. 314, pp. 105–112, 2017.
dc.relationN. Merakeb, A. Messai, y A. I. Ayesh, “Investigation of phase transformation for ferrite-austenite structure in stainless steel thin films”, Thin Solid Films, vol. 606, pp. 120–126, may 2016.
dc.relationC. Pan, L. Liu, Y. Li, y F. Wang, “Pitting corrosion of 304ss nanocrystalline thin film”, Corros. Sci., vol. 73, pp. 32–43, ago. 2013.
dc.relationT. Li, L. Liu, B. Zhang, Y. Li, y F. Wang, “Crevice corrosion behavior of nanocrystalline stainless steel fabricated by magnetron sputtering in chloride containing solution”, J. Electrochem. Soc., vol. 162, núm. 7, pp. C354–C361, abr. 2015.
dc.relationK. L. Dahm y P. A. Dearnley, “On the nature, properties and wear response of s-phase (nitrogen-alloyed stainless steel) coatings on AISI 316L”, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 214, núm. 4, pp. 181–198, 2000.
dc.relationP. A. Dearnley y G. Aldrich-Smith, “Corrosion-wear mechanisms of hard coated austenitic 316L stainless steels”, Wear, vol. 256, núm. 5, pp. 491–499, 2004.
dc.relationG. Aldrich-Smith, D. G. Teer, y P. A. Dearnley, “Corrosion-wear response of sputtered CrN and S-phase coated austenitic stainless steel”, Surf. Coatings Technol., vol. 116–119, pp. 1161–1165, sep. 1999.
dc.relationT. Li, L. Liu, B. Zhang, Y. Li, y F. Wang, “An investigation on the continuous and uniform thin membrane passive film formed on sputtered nanocrystalline stainless steel”, Corros. Sci., vol. 104, pp. 71–83, mar. 2016.
dc.relationS. D. Dahlgren, “Equilibrium phases in 304L stainless steel obtained by sputter-deposition”, Metall. Trans., vol. 1, núm. 11, pp. 3095–3099, 1970.
dc.relationM. Varasteh, K. Parvin, C. Boekema, y K. Porush, “Mössbauer spectroscopy and magnetic properties of copper-304 stainless steel multilayer films”, J. Appl. Phys., vol. 87, núm. 9, pp. 6842–6844, may 2000.
dc.relationJ. P. Eymery, N. Merakeb, P. Goudeau, A. Fnidiki, y B. Bouzabata, “A Mössbauer comparative study of the local environment in metastable 304 stainless steel films depending on the preparation mode”, J. Magn. Magn. Mater., vol. 256, núm. 1–3, pp. 227–236, ene. 2003.
dc.relationX. Zhang, A. Misra, H. Wang, A. L. Lima, M. F. Hundley, y R. G. Hoagland, “Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films”, J. Appl. Phys., vol. 97, núm. 9, p. 094302, may 2005.
dc.relationE. Carretero, R. Alonso, y C. Pelayo, “Optical and electrical properties of stainless steel oxynitride thin films deposited in an in-line sputtering system”, Appl. Surf. Sci., vol. 379, pp. 249–258, ago. 2016.
dc.relationK. H. Lo, C. H. Shek, y J. K. L. Lai, “Recent developments in stainless steels”, Mater. Sci. Eng. R Reports, vol. 65, núm. 4–6, pp. 39–104, may 2009.
dc.relationC. G. Figueiredo Pina, K. L. Dahm, J. Fisher, y P. A. Dearnley, “The damage tolerance of S-phase coated biomedical grade stainless steel”, Wear, vol. 263, núm. 7-12 SPEC. ISS., pp. 1081–1086, sep. 2007.
dc.relationR. C. Juang, Y. C. Yeh, B. H. Chang, W. C. Chen, y T. W. Chung, “Preparation of solar selective absorbing coatings by magnetron sputtering from a single stainless steel target”, Thin Solid Films, vol. 518, núm. 19, pp. 5501–5504, jul. 2010.
dc.relationX. Ma, Q. Wei, N. Liu, y X. Wang, “Preparation and optical properties of Cu/SS-TiON(HMVF)/SS-TiON(LMVF)/Al2O3 novel solar selective absorbing film”, Mater. Sci. Eng. Powder Metall., vol. 22, núm. 1, pp. 86–93, 2017.
dc.relationX. H. Gao, Z. M. Guo, Q. F. Geng, P. J. Ma, y G. Liu, “Microstructure and Optical Properties of SS/Mo/Al2O3 Spectrally Selective Solar Absorber Coating”, J. Mater. Eng. Perform., vol. 26, núm. 1, pp. 161–167, ene. 2017.
dc.relationS. Fryska y J. Baranowska, “Microstructure of reactive magnetron sputtered S-phase coatings with a diffusion sub-layer”, Vacuum, vol. 142, pp. 72–80, ago. 2017.
dc.relationT. Suszko et al., “Amorphous FeCrNi/a-C:H coatings with self-organizednanotubular structure”, Scr. Mater., vol. 136, pp. 24–28, jul. 2017.
dc.relationU. M. R. Seelam y C. Suryanarayana, “Metallography of Sputter-Deposited SS304+Al Coatings”, Metallogr. Microstruct. Anal., vol. 2, núm. 5, pp. 287–298, 2013.
dc.relationJ. Baranowska, S. Fryska, y T. Suszko, “The influence of temperature and nitrogen pressure on S-phase coatings deposition by reactive magnetron sputtering”, Vacuum, vol. 90, núm. 1, pp. 160–164, 2013.
dc.relationAtlas Steels, The Atlas Steels Technical Handbook of Stainless Steels, núm. August. Atlas Steels Technical Department, 2013.
dc.relationM. Metikoš-Huković, R. Babić, Z. Grubač, Ž. Petrović, y N. Lajçi, “High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution”, Corros. Sci., vol. 53, núm. 6, pp. 2176–2183, jun. 2011.
dc.relationH. Li, Z. Jiang, Y. Yang, Y. Cao, y Z. Zhang, “Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels”, Int. J. Miner. Metall. Mater., vol. 16, núm. 5, pp. 517–524, oct. 2009.
dc.relationY. X. Qiao, Y. G. Zheng, W. Ke, y P. C. Okafor, “Electrochemical behaviour of high nitrogen stainless steel in acidic solutions”, Corros. Sci., vol. 51, núm. 5, pp. 979–986, may 2009.
dc.relationH. Wang y J. A. Turner, “Anodic behavior of high nitrogen-bearing steels in PEMFC environments”, J. Power Sources, vol. 180, núm. 2, pp. 791–796, jun. 2008.
dc.relationD. López, N. Alonso Falleiros, y A. Paulo Tschiptschin, “Effect of nitrogen on the corrosion-erosion synergism in an austenitic stainless steel”, Tribol. Int., vol. 44, núm. 5, pp. 610–616, 2011.
dc.relationA. P. Tschiptschin, C. M. Garzón, y D. M. Lopez, “Chapter 15 Scratch resistance of high nitrogen austenitic stainless steels”, en Tribology and Interface Engineering Series, vol. 51, núm. 3, Elsevier, 2006, pp. 280–293.
dc.relationNaveena, V. D. Vijayanand, V. Ganesan, K. Laha, y M. D. Mathew, “Evaluation of the effect of nitrogen on creep properties of 316LN stainless steel from impression creep tests”, Mater. Sci. Eng. A, vol. 552, pp. 112–118, 2012.
dc.relationM. Sumita, T. Hanawa, y S. H. Teoh, “Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials - Review”, Mater. Sci. Eng. C, vol. 24, núm. 6-8 SPEC. ISS., pp. 753–760, 2004.
dc.relationZ. Diao, H. Luo, R. Wang, y J. Xiang, “Constitutive Analysis of Stress-Strain Curves of a High-Nitrogen Austenitic Stainless Steel”, J. Iron Steel Res. Int., vol. 14, núm. 5 SUPPL. 1, pp. 335–338, sep. 2007.
dc.relationM. O. Speidel, “Properties and applications of high nitrogen steels”, en HNS 88 – High Nitrogen Steels, 1989, pp. 92–96.
dc.relationV. G. Gavriliuk y H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications. Springer-Verlag Berlin Heidelberg, 1999.
dc.relationH. K. Feichtinger y X. Zheng, “Powder metallurgy of high nitrogen steels”, Powder Metall. Int., vol. 22, núm. 6, pp. 7–10, 12, 1990.
dc.relationB. E. Paton, B. I. Medovar, y V. Y. Saenko, “The Place of Electroslag Technology in Production of Super-High-Nitrogen Steels”, Probl. Spetsialvoy Elektrometallurgii, vol. 3, núm. 3, pp. 4–13, 1990.
dc.relationK. U. Mudali y B. Raj, “Historical evolution of HNS alloys”, en High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications, K. U. Mudali y B. Raj, Eds. ASM International, 2004, pp. 1–9.
dc.relationASTM International, “A240/A240M-18 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications”. ASTM International, West Conshohocken, PA, p. 12, 2018.
dc.relationJ. W. Simmons, “Overview: High-nitrogen alloying of stainless steels”, Mater. Sci. Eng. A, vol. 207, núm. 2, pp. 159–169, mar. 1996.
dc.relationH. Li, Z. Jiang, M. Shen, y X. You, “High Nitrogen Austenitic Stainless Steels Manufactured by Nitrogen Gas Alloying and Adding Nitrided Ferroalloys”, J. Iron Steel Res. Int., vol. 14, núm. 3, pp. 64–69, may 2007.
dc.relationG. Balachandran, “Developments in the Manufacture of High Nitrogen Stainless Steels”, en High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications, K. U. Mudali y B. Raj, Eds. ASM International, 2004, pp. 40–93.
dc.relationD. L. Williamson, J. A. Davis, y P. J. Wilbur, “Effect of austenitic stainless steel composition on low-energy, high-flux, nitrogen ion beam processing”, Surf. Coatings Technol., vol. 103–104, pp. 178–184, 1998.
dc.relationM. R. Ridolfi y O. Tassa, “Formation of nitrogen bubbles during the solidification of 16-18% Cr high nitrogen austenitic stainless steels”, Intermetallics, vol. 11, núm. 11-12 SPEC. ISS, pp. 1335–1338, 2003.
dc.relationA. Toro y A. P. Tschiptschin, “Chemical characterization of a high nitrogen stainless steel by optimized electron probe microanalysis”, Scr. Mater., vol. 63, núm. 8, pp. 803–806, oct. 2010.
dc.relationZ. Yuan, Q. Dai, X. Cheng, K. Chen, y W. Xu, “Impact properties of high-nitrogen austenitic stainless steels”, Mater. Sci. Eng. A, vol. 475, núm. 1–2, pp. 202–206, feb. 2008.
dc.relationF. Shi, L. J. Wang, W. F. Cui, y C. M. Liu, “Precipitation behavior of M2N in a high-nitrogen austenitic stainless steel during isothermal aging”, Acta Metall. Sin. (English Lett., vol. 20, núm. 2, pp. 95–101, abr. 2007.
dc.relationZ. Z. Yuan, Q. X. Dai, X. N. Cheng, y K. M. Chen, “Microstructural thermostability of high nitrogen austenitic stainless steel”, Mater. Charact., vol. 58, núm. 1, pp. 87–91, ene. 2007.
dc.relationF. Shi, L. Wang, W. Cui, y C. Liu, “Precipitation Kinetics of Cr2N in High Nitrogen Austenitic Stainless Steel”, J. Iron Steel Res. Int., vol. 15, núm. 6, pp. 72–77, nov. 2008.
dc.relationV. G. Gavriljuk y H. Berns, “Structure”, en High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer, Berlin, Heidelberg, 1999, pp. 1–75.
dc.relationB. D. Shanina, V. G. Gavriljuk, H. Berns, y F. Schmalt, “Concept of a new high-strength austenitic stainless steel”, Steel Res., vol. 73, núm. 3, pp. 105–113, 2002.
dc.relationT. H. Lee, C. S. Oh, S. J. Kim, y S. Takaki, “Deformation twinning in high-nitrogen austenitic stainless steel”, Acta Mater., vol. 55, núm. 11, pp. 3649–3662, jun. 2007.
dc.relationZ. Z. Yuan, Q. X. Dai, X. N. Cheng, K. M. Chen, L. Pan, y a. D. Wang, “In situ SEM tensile test of high-nitrogen austenitic stainless steels”, Mater. Charact., vol. 56, núm. 1, pp. 79–83, ene. 2006.
dc.relationV. G. Gavriljuk y H. Berns, “Key properties”, en High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer, Berlin, Heidelberg, 1999, pp. 135–201.
dc.relationH. J. C. Speidel y M. O. Speidel, “Nickel and Chromium High Nitrogen Alloys”, en HNS 2003 - High nitrogen steels, M. Speidel, C. Kowanda, y M. Diener, Eds. Zürich: Vdf Hochschulverlag an der ETH Zürich, 2003, pp. 101–112.
dc.relationH. Li, Z. Jiang, Z. Zhang, B. Xu, y F. Liu, “Mechanical Properties of Nickel Free High Nitrogen Austenitic Stainless Steels”, J. Iron Steel Res. Int., vol. 14, núm. 5 SUPPL. 1, pp. 330–334, sep. 2007.
dc.relationW. Wang, S. Wang, K. Yang, y Y. Shan, “Temperature dependence of tensile behavior of a high nitrogen Fe-Cr-Mn-Mo stainless steel”, Mater. Des., vol. 30, núm. 5, pp. 1822–1824, may 2009.
dc.relationW. Hume-Rothery, “The Interstitial Elements and Boron”, en The Structures of Alloys of Iron: an Elementary Introduction, 1st Editio., H. M. Finniston, D. W. Hopkins, y W. S. Owen, Eds. Pergamon, 1966, pp. 135–166.
dc.relationJ. Feugeas et al., “Estabilidad y microdureza de la austenita expandida en acero DIN WNr 1.4882 nitrurado iónicamente”, en Libro de resúmenes, Jornadas S., Bariloche: Centro Atómico, 2003, pp. 589–591.
dc.relationC. Blawert et al., “Nitrogen and carbon expanded austenite produced by PI3”, Surf. Coatings Technol., vol. 136, núm. 1–3, pp. 181–187, 2001.
dc.relationH. O. Pierson, “Interstitial Carbides, Structure and Composition”, en Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, 1996, pp. 17–54.
dc.relationH. O. Pierson, “Interstitial Nitrides: Structure and Composition”, en Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, 1996, pp. 163–180.
dc.relationJ. G. Kim et al., “Superior Strength and Multiple Strengthening Mechanisms in Nanocrystalline TWIP Steel”, Sci. Rep., vol. 8, núm. 1, p. 11200, dic. 2018.
dc.relationH. O. Pierson, “Processing of Refractory Carbides and Nitrides (Powder, Bulk, and Fibers)”, en Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, 1996, pp. 248–275.
dc.relationR. R. Caetano, A. R. F. Jr, y C. E. Pinedo, “Formation of Expanded Austenite on Plasma Nitriding a Austenitic Stainless Steel Aisi 316 Grade Astm F138”, vol. 63, núm. 1, pp. 143–146, 2010.
dc.relationY. Ueda, N. Kanayama, K. Ichii, T. Oishi, y H. Miyake, “Effect of nitrogen on the plasma (ion)-carburized layer of high nitrogen austenitic stainless steel”, Surf. Coatings Technol., vol. 200, núm. 1–4, pp. 521–524, oct. 2005.
dc.relationK. Ichii, K. Fujimura, y T. Takase, “Structure of the Ion-Nitrided Layer of 18–8 Stainless Steel”, Technol. Reports Kansai Univ., vol. 27, pp. 135–144, 1986.
dc.relationM. . Fewell, D. R. . Mitchell, J. . Priest, K. . Short, y G. . Collins, “The nature of expanded austenite”, Surf. Coatings Technol., vol. 131, núm. 1–3, pp. 300–306, sep. 2000.
dc.relationS. Inoue, T. Saeki, H. Uchida, K. Koterazawa, y M. Iwasa, “Effects of ion flux on the properties of dc magnetron-sputtered stainless steel films”, Vacuum, vol. 66, núm. 3–4, pp. 257–261, ago. 2002.
dc.relationX. Zhang, A. Misra, R. K. Schulze, C. J. Wetteland, H. Wang, y M. Nastasi, “Critical factors that determine face-centered cubic to body-centered cubic phase transformation in sputter-deposited austenitic stainless steel films”, J. Mater. Res., vol. 19, núm. 6, pp. 1696–1702, jun. 2004.
dc.relationG. Terwagne, H. Hody, y J. Colaux, “Structural and quantitative analysis of stainless steel coatings deposited by DC-magnetron sputtering in a reactive atmosphere”, Surf. Coatings Technol., vol. 174–175, núm. 03, pp. 383–388, sep. 2003.
dc.relationS. R. Kappaganthu y Y. Sun, “Influence of sputter deposition conditions on phase evolution in nitrogen-doped stainless steel films”, Surf. Coatings Technol., vol. 198, núm. 1-3 SPEC. ISS., pp. 59–63, ago. 2005.
dc.relationA. Bourjot, M. Foos, y C. Frantz, “Basic properties of sputtered 310 stainless steel-nitrogen coatings”, Surf. Coatings Technol., vol. 43–44, núm. PART 1, pp. 533–542, dic. 1990.
dc.relationJ. von Stebut, A. Darbeïda, A. Saker, A. Billard, y R. Rezakhanlou, “Optimization of the contact mechanical strength of magnetron-sputtered nitrogen-doped AISI 316L physically vapour deposited coatings”, Surf. Coatings Technol., vol. 57, núm. 1, pp. 31–42, abr. 1993.
dc.relationK. L. Dahm, A. J. Betts, y P. A. Dearnley, “Chemical structure and corrosion behaviour of S phase coatings”, Surf. Eng., vol. 26, núm. 4, pp. 271–276, may 2010.
dc.relationY. Sun y S. R. Kappaganthu, “Effect of nitrogen doping on sliding wear behaviour of stainless steel coatings”, Tribol. Lett., vol. 17, núm. 4, pp. 845–850, nov. 2004.
dc.relationS. R. Kappaganthu y Y. Sun, “Formation of an MN-type cubic nitride phase in reactively sputtered stainless steel-nitrogen films”, J. Cryst. Growth, vol. 267, núm. 1–2, pp. 385–393, 2004.
dc.relationR. Rezakhanlou, A. Billard, M. Foos, C. Frantz, y J. Von Stebut, “Influence of the intrinsic coating properties on the contact mechanical strength of perfectly adhering carbon-doped AISI 310 PVD films”, Surf. Coatings Technol., vol. 43–44, núm. PART 2, pp. 907–919, dic. 1990.
dc.relationX. Zhang et al., “Nanoscale-twirming-induced strengthening in austenitic stainless steel thin films”, Appl. Phys. Lett., vol. 84, núm. 7, pp. 1096–1098, feb. 2004.
dc.relationM. Talea, B. Boubeker, F. Cleymand, C. Coupeau, J. Grilhe, y P. Goudeau, “Atomic force microscopy observations of debonding in 304 L stainless steel thin films”, Mater. Lett., vol. 41, núm. 4, pp. 181–185, nov. 1999.
dc.relationJ. Colin, F. Cleymand, C. Coupeau, y J. Grilhe, “Worm-like delamination patterns of thin stainless steel films on polycarbonate substrates”, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., vol. 80, núm. 11, pp. 2559–2565, nov. 2000.
dc.relationJ. P. Eymery y B. Boubeker, “Adhesion and debonding of bcc 304 L steel films”, Mater. Lett., vol. 19, núm. 3–4, pp. 137–142, abr. 1994.
dc.relationM. Ohring, “Thin-Film Evaporation Processes”, en Materials Science of Thin Films: deposition and structure, Academic Press, 2002, pp. 95–144.
dc.relationJ. M. Albella Martín, “Depósito mediante pulverización catódica ('Sputtering’)”, en Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones, J. M. Albella Martín, Ed. Madrid: Consejo Superior de Investigaciones Científicas, 2003, pp. 147–168.
dc.relationM. Ohring, “Discharges, Plasmas, and Ion–Surface Interactions”, en Materials Science of Thin Films: deposition and structure, Academic Press, 2002, pp. 145–202.
dc.relationD. M. Mattox, “Physical Sputtering and Sputter Deposition (Sputtering)”, en Handbook of Physical Vapor Deposition (PVD) Processing, William Andrew Publishing, 2010, pp. 237–286.
dc.relationM. Ohring, “Plasma and Ion Beam Processing of Thin Films”, en Materials Science of Thin Films: deposition and structure, Academic Press, 2002, pp. 203–275.
dc.relationJ. A. Thornton, “High Rate Thick Film Growth”, Annu. Rev. Mater. Sci., vol. 7, núm. 1, pp. 239–260, ago. 1977.
dc.relationM. Ohring, “Film Structure”, en Materials Science of Thin Films: deposition and structure, Academic Press, 2002, pp. 495–558.
dc.relationJ. M. Albella Martín, “Mecanismos de nucleación y crecimiento de capas delgadas”, en Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones, J. M. Albella Martín, Ed. Madrid: Consejo Superior de Investigaciones Científicas, 2003, pp. 101–124.
dc.relationJ. S. Scholtz, J. Stryhalski, J. C. Sagás, A. A. C. Recco, M. Mezaroba, y L. C. Fontana, “Pulsed bias effect on roughness of TiO2:Nb films deposited by grid assisted magnetron sputtering”, Appl. Adhes. Sci., vol. 3, núm. 1, pp. 1–6, 2015.
dc.relationM. Ohring, The Materials Science of Thin Films: deposition and structure, Second. San Diego, CA: Academic Press, 2002.
dc.relationJ. M. Albella Martín, Ed., Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones. Madrid: Consejo Superior de Investigaciones Científicas, 2003.
dc.relationJ. Goldstein et al., Scanning electron microscopy and x-ray microanalysis, 3rd ed. New York: Kluwer Academic/Plenum Publishers, 2003.
dc.relationA. C. Fischer-Cripps, “Contact Mechanics”, en Nanoindentation, Springer, New York, NY, 2011, pp. 1–19.
dc.relationY. Kim, E. D. Case, y S. Gaynor, “The effect of surface-limited microcracks on the effective Young’s modulus of ceramics - Part III Experiments”, J. Mater. Sci., vol. 28, núm. 7, pp. 1910–1918, 1993.
dc.relationF. Yang y J. C. M. Li, Micro and nano mechanical testing of materials and devices. New York: Springer, 2008.
dc.relationN. Vidakis, A. Antoniadis, y N. Bilalis, “The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds”, J. Mater. Process. Technol., vol. 143–144, núm. 1, pp. 481–485, dic. 2003.
dc.relationVDI - Fachbereich Produktionstechnik und Fertigungsverfahren, “VDI 3198 Coating (CVD, PVD) of cold forging tools”. Berlin, p. 8, 1992.
dc.relationASTM International, “C1624-05(2015) Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing”. ASTM International, West Conshohocken, PA, p. 29, 2015.
dc.relationS. R. Kappaganthu y Y. Sun, “Studies of structure and morphology of sputter-deposited stainless steel-nitrogen films”, Appl. Phys. A Mater. Sci. Process., vol. 81, núm. 4, pp. 737–744, feb. 2005.
dc.relationK. L. Dahm y P. A. Dearnley, “S-phase coatings produced by unbalanced magnetron sputtering”, Proc. 1995 9th Int. Conf. Surf. Modif. Technol., vol. 12, núm. 1, pp. 437–454, 1996.
dc.relationJ. I. Langford y A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size”, J. Appl. Crystallogr., vol. 11, núm. 2, pp. 102–113, 1978.
dc.relationR. Matsubara, M. Sakai, K. Kudo, N. Yoshimoto, I. Hirosawa, y M. Nakamura, “Crystal order in pentacene thin films grown on SiO 2 and its influence on electronic band structure”, Org. Electron. physics, Mater. Appl., vol. 12, núm. 1, pp. 195–201, ene. 2011.
dc.relationS. Y. Chun, “Bias voltage effect on the properties of TiN films by reactive magnetron sputtering”, J. Korean Phys. Soc., vol. 56, núm. 4, pp. 1134–1139, 2010.
dc.relationA. Bandopadhyay, A. Banerjee, y T. Debroy, “Nitrogen activity determination in plasmas”, Metall. Trans. B, vol. 23, núm. 2, pp. 207–214, 1992.
dc.relationK. L. Chopra, Thin Film Phenomena. New York: McGraw-Hill, 1969.
dc.relationD. Cavaleiro, S. Carvalho, A. Cavaleiro, y F. Fernandes, “TiSiN(Ag) films deposited by HiPIMS working in DOMS mode: Effect of Ag content on structure, mechanical properties and thermal stability”, Appl. Surf. Sci., vol. 478, núm. October 2018, pp. 426–434, 2019.
dc.relationG. P. Zhigal’skii y B. K. Jones, The physical properties of thin metal films. CRC Press/Taylor & Francis Group, 2003.
dc.relationC. Borri, S. Caporali, F. Borgioli, y E. Galvanetto, “Nitrogen Rich Stainless Steel Coatings Obtained by RF Sputtering Process”, 2019, núm. Ciwc, p. 6157.
dc.relationJ. M. Schneider, C. Rebholz, A. A. Voevodin, A. Leyland, y A. Matthews, “Deposition and characterization of nitrogen containing stainless steel coatings prepared by reactive magnetron sputtering”, Vacuum, vol. 47, núm. 9, pp. 1077–1080, sep. 1996.
dc.relationM. J. Godbole, A. J. Pedraza, J. W. Park, y G. Geesey, “The crystal structures of stainless steel films sputter-deposited on austenitic stainless steel substrates”, Scr. Metall. Mater., vol. 28, núm. 10, pp. 1201–1206, may 1993.
dc.relationC. M. Garzón y A. A. C. Recco, “Numerical simulation on phase stability between austenite and ferrite in steel films sputter-deposited from austenitic stainless steel targets”, Surf. Coatings Technol., vol. 353, núm. August, pp. 84–92, 2018.
dc.relationASM Handbook Committee, Properties and Selection: Irons, Steels, and High-Performance Alloys. ASM International, 1990.
dc.relationM. J. Godbole, A. J. Pedraza, L. F. Allard, y G. Geesey, “Characterization of sputter-deposited 316L stainless steel films”, J. Mater. Sci., vol. 27, núm. 20, pp. 5585–5590, oct. 1992.
dc.relationO. H. Kwon, S. H. Ahn, J. G. Kim, y J. G. Han, “An optimized condition for corrosion protection of type 316L films prepared by unbalanced magnetron sputtering in 3.5% NaCl solution”, J. Mater. Sci. Lett., vol. 21, núm. 1, pp. 41–44, 2002.
dc.relationM. P. Fewell y J. M. Priest, “High-order diffractometry of expanded austenite using synchrotron radiation”, Surf. Coatings Technol., vol. 202, núm. 9, pp. 1802–1815, 2008.
dc.relationB. Brink, K. Ståhl, T. L. Christiansen, y M. A. J. Somers, “Thermal expansion and phase transformations of nitrogen-expanded austenite studied with in situ synchrotron X-ray diffraction”, J. Appl. Crystallogr., vol. 47, núm. 3, pp. 819–826, 2014.
dc.relationD. D. Kumar, N. Kumar, S. Kalaiselvam, R. Thangappan, y R. Jayavel, “Film thickness effect and substrate dependent tribo-mechanical characteristics of titanium nitride films”, Surfaces and Interfaces, vol. 12, núm. May, pp. 78–85, 2018.
dc.relationA. Ruden-Muñoz, E. Restrepo-Parra, y F. Sequeda, “Recubrimientos de CrN depositados por pulverización catódica con magnetrón: Propiedades mecánicas y tribológicas”, DYNA, vol. 82, núm. 191, pp. 147–155, 2015.
dc.relationD. G. Morris, “Strengthening mechanisms in nanocrystalline metals”, en Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications, Woodhead Publishing, 2011, pp. 299–328.
dc.relationJ. M. Albella Martín, “Aplicaciones mecánicas de los recubrimientos”, en Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones, J. M. Albella Martín, Ed. Madrid: Consejo Superior de Investigaciones Científicas, 2003, pp. 543–569.
dc.relationM. Magnuson et al., “Bonding mechanism in the nitrides Ti2 AlN and TiN: An experimental and theoretical investigation”, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 76, núm. 19, p. 195127, nov. 2007.
dc.relationS. Yu, Q. Zeng, A. R. Oganov, G. Frapper, y L. Zhang, “Phase stability, chemical bonding and mechanical properties of titanium nitrides: A first-principles study”, Phys. Chem. Chem. Phys., vol. 17, núm. 17, pp. 11763–11769, 2015.
dc.relationH. Y. Chen, C. J. Tsai, y F. H. Lu, “The Young’s modulus of chromium nitride films”, Surf. Coatings Technol., vol. 184, núm. 1, pp. 69–73, jun. 2004.
dc.relationJ. M. Lackner, W. Waldhauser, L. Major, y M. Kot, “Tribology and micromechanics of chromium nitride based multilayer coatings on soft and hard substrates”, Coatings, vol. 4, núm. 1, pp. 121–138, feb. 2014.
dc.relationX. Chen, Y. Xi, J. Meng, X. Pang, y H. Yang, “Effects of substrate bias voltage on mechanical properties and tribological behaviors of RF sputtered multilayer TiN/CrAlN films”, J. Alloys Compd., vol. 665, pp. 210–217, 2016.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleObtención y caracterización de películas nanoestructuradas de austenita expandida depositadas sobre acero inoxidable empleando la técnica de pulverización catódica magnetrón cc en fase reactiva
dc.typeOtro


Este ítem pertenece a la siguiente institución