dc.contributorCastañeda Sánchez, Darío Antonio
dc.creatorVélez Bedoya, Santiago
dc.date.accessioned2020-07-23T20:25:57Z
dc.date.accessioned2022-09-21T19:51:42Z
dc.date.available2020-07-23T20:25:57Z
dc.date.available2022-09-21T19:51:42Z
dc.date.created2020-07-23T20:25:57Z
dc.date.issued2020-05-12
dc.identifierVélez, S, 2020, Evaluación de suelos intervenidos por sepulturas, en un contexto bio geo arqueológico: Medellín, Universidad Nacional de Colombia Facultad de Minas, Departamento de Geociencias y Medio Ambiente, Tesis de Maestría, 82 pp.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77832
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3419141
dc.description.abstractLos Necrosoles son suelos relacionados con entierros, formados por los cambios que produce la inhumación de cuerpos humanos. Este estudio mostró las aproximaciones interdisciplinarias que integran conocimientos respecto a los suelos de cementerios contemporáneos y antiguos e inhumaciones clandestinas que producen interés científico, bio-geo-arqueológico y forense reciente, además de la compilación acerca de los estudios enfocados en los Necrosoles. También plantea la utilidad de la micromorfología de suelos como herramienta potente en el análisis y confirmación de la presencia de Necrosoles o su formación en pedoturbaciones detectadas por los métodos usados en la arqueología y geociencias. Esta investigación surgió a partir de las exhumaciones en tres cementerios rurales, por el cambio de uso de la tierra que denota el Proyecto Hidroeléctrico Ituango, en el cañón del río Cauca en Colombia. El objetivo de este trabajo fue analizar, desde la pedología, las características diagnósticas asociadas a condiciones de enterramiento. Identificamos que los suelos de estos cementerios, respecto a sus referentes naturales, manifiestan variaciones considerables en micromorfología como presencia de microfragmentos de madera de ataúd y de hueso, minerales con orientaciones paralelas, concentración alta de raíces finas al nivel del entierro y mezclas de agregados pedogénicos entre de matrices no pedogénicas. Además identificamos diferencias geoquímicas como concentraciones más altas de S, Fe móvil, P y valores superiores de capacidad de intercambio catiónico efectiva asociados con procesos pedo-antropogénicos. Palabras clave: entierros, suelos de cementerio, micromorfología de suelos, geología forense, cambio de uso del suelo. (Texto tomado de la fuente)
dc.description.abstractNecrosols are soils related to burials, formed by the changes produced by the burial of human bodies. This study shows the interdisciplinary approaches that integrate knowledge regarding the soils of contemporary and ancient cemeteries and clandestine burials that produce recent bio-geo-archaeological and forensic scientific interest, in addition to the compilation about studies focused on Necrosols. It also describes the usefulness of soil micromorphology as a powerful tool in the analysis and confirmation of the presence of Necrosols or its formation in pedoturbations detected by the methods used in archeology and geosciences. This investigation arose from the exhumation of three rural cemeteries, due to the change in land use denoted by the Ituango hydroelectric project, in the Cauca river canyon in Colombia. The objective of this work was to analyze the diagnostic characteristics associated with burial conditions from pedology. We identified that the soils of these cemeteries, with respect to their natural reference soils, show considerable variations in micromorphology such as presence of coffin wood and bone fragments, minerals with parallel orientations, high concentration of fine roots at the burial level and pedogenic aggregates mixtures incorporated into a non-pedogenic matrix. In addition we identify geochemical differences such as higher concentrations of S, mobile Fe, P and higher values of effective cation exchange capacity associated with pedo-anthropogenic processes.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Medio Ambiente y Desarrollo
dc.publisherDepartamento de Geociencias y Medo Ambiente
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationSmolik, L., Pedologie: celostátní vysokoskolská ucebnice, Praha, Statni nakladetelstvi technicke literatury, 1957, 400 P.
dc.relationSvec, F. and Hlina, J., Hygiena obecna a komunalni, Praha, Avicentrum, 1978, 445 P.
dc.relationBurghardt, W., Soils in urban and industrial environments, Zeitschrift für Pflanzenernährung und Bodenkunde, 157(3), pp. 205-214, 1994. DOI: 10.1002/jpln.19941570308
dc.relationStroganova, M., Myagkova, A., Рrокоf’еуа, T. and Skvortsova, I. Soils of Moscow and urban environment, Moscow, 1998. pp. 27-28.
dc.relationProkof’eva, T.V., Martynenko, I.A. and Ivannikov, F.A., Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils, Eurasian Soil Science, 44(5), pp.561-71, 2011. DOI: 10.1134/S1064229311050127
dc.relationCharzyński, P. Bednarek, R., Świtoniak, M. and Żołnowska, B., Ekranic technosols and urbic technosols of Toruń necropolis. Geologija, [online]. 53(4), pp. 179-185, 2011. Available at: https://s3.amazonaws.com/academia.edu.documents/31078476/1905-867-1-PB.pdf?response-content-disposition=inline%3B%20filename %3DEkranic_Technosols_and_Urbic_Technosols.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20190616%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190616T220105Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=796462c1d038ec0d0754033fb34060de52e0ed2190a0d38911bef09d8f39c01f
dc.relationCharzyński, P., Bednarek, R., Greinert, A., Hulisz, P. and Uzarowicz, Ł., Classification of technogenic soils according to WRB system in the light of Polish experiences, Soil Science Annual, 64(4), pp. 145-150, 2013. DOI: 10.2478/ssa-2013-0023
dc.relationCharzyński, P., Bednarek, R. and Śołnowska, B., Characteristics of the soils of Toruń cemeteries, in: Proceedings of the World Congress of Soil Science: soil solutions for a changing world, 2010, Brisbane, Australia, Working Group 3.3 Soils in urban and industrial areas, 1-6 August, [online]. 2010, pp. 1-6. Available at: https://www.iuss.org/19th WCSS/Symposium/pdf/0874.pdf
dc.relationSobocká, J., Necrosol as a new anthropogenic soil type, in: Soil Anthropization, VIII, 2004, Bratislava, Soil Science and Conservation Research Institute Bratislava, [online]. 2004, pp. 107-113. Available at: http://www.vupop.sk/dokumenty/ine_soil_anthropization8.pdf
dc.relationGerasimova, M.I., Stroganova, M.N., Mozharova, N. and Prokofyeva, T.V., Антропогенные почвы: генезис, география, рекультивация, Москва, Смоленск: Ойкумена, 2003, pp. 223-260.
dc.relationMajgier, L., Rahmonov, O. and Bednarek, R., Features of abandoned cemetery soils on sandy substrates in Northern Poland, Eurasian Soil Science, 47(6), pp. 621-629, 2014. DOI: 10.1134/S1064229314060064
dc.relationMordhorst, A., Zimmermann, I., Fleige, H. and Horn, R., Changes in soil aeration and soil respiration of simulated grave soils after quicklime application, Journal of Plant Nutrition and Soil Science, 180(2), pp. 153-164, 2017. DOI: 10.1002/jpln.201600351
dc.relationMordhorst, A., Zimmermann, I., Fleige, H. and Horn, R., Improvement of oxygen transport functions in grave soils due to quicklime application depending on soil texture, Geoderma, 331, pp.18-28, 2018. DOI: 10.1016/j.geoderma.2018.06.013
dc.relationZimmermann, I., Fleige, H. and Horn, R. Soil structure amelioration with quicklime and irrigation experiments in earth graves, Journal of Soils and Sediments, 16(11), pp. 2514-2522, 2016. DOI: 10.1007/s11368-016-1509-z
dc.relationMajgier, L. and Rahmonov, O., Selected chemical properties of Necrosols from the abandoned cemeteries Słabowo and Szymonka (Great Mazurian Lakes District), Bulletin of Geography-Physical Geography Series, 5(1), pp. 43-55, 2012. DOI: 10.2478/v10250-012-0003-8
dc.relationCharzyński, P., Markiewicz, M., Majorek, M. and Bednarek, R., Geochemical assessment of soils in the German Nazi concentration camp in Stutthof (Northern Poland), Soil Science and Plant Nutrition, 61(sup1), pp. 47-54, 2015. DOI: 10.1080/00380768.2014.1000232
dc.relationClarke, F.W. and Washington, H.S., The composition of the earth’s crust (Vol. 127). Washington, US Government Printing Office, 1924.
dc.relationTan, L. and Chi-lung, Y., Abundance of chemical elements in the earth’s crust and its major tectonic units, International Geology Review, 12(7), pp. 778-786, 1970. DOI: 10.1080/00206817009475289
dc.relationAmuno, S.A. and Amuno, M.M., Spatio-temporal variation of trace element contents in Rwanda necrosols, Environmental Earth Sciences, 71(2), pp. 659-674, 2014. DOI: 10.1007/s12665-013-2467-z
dc.relationAmuno, S.A. and Amuno, M.M., Geochemical assessment of two excavated mass graves in Rwanda: a pilot study, Soil and Sediment Contamination: An International Journal, 23(2), pp. 144-165, 2014. DOI: 10.1080/15320383.2013.786021
dc.relationPrangnell, J. and McGowan, G., Soil temperature calculation for burial site analysis, Forensic Science International, 191(1-3), pp. 104-109, 2009, DOI: 10.1016/j.forsciint.2009.07.002
dc.relationAbia, A., Ubomba-Jaswa, E., Schmidt, C. and Dippenaar, M., Where did they come from—Multi-Drug resistant pathogenic escherichia coli in a cemetery environment?, Antibiotics, 7(3), pp.73, 2018. DOI: 10.3390/antibiotics7030073
dc.relationAbia, A.L.K., Alisoltani, A., Ubomba-Jaswa, E. and Dippenaar, M.A., Microbial life beyond the grave: 16S rRNA gene-based metagenomic analysis of bacteria diversity and their functional profiles in cemetery environments, Science of The Total Environment, 655, pp. 831-841, 2019. DOI: 10.1016/j.scitotenv.2018.11.302
dc.relationCałkosiński, I., Płoneczka-Janeczko, K., Ostapska, M., Dudek, K., Gamian, A. and Rypuła, K., Microbiological analysis of necrosols collected from urban cemeteries in Poland, BioMed Research International, 2015, pp. 1-7, 2015. DOI: 10.1155/2015/169573
dc.relationMassas, I., Kefalogianni, I. and Chatzipavlidis, I., Is the ground of an old cemetery suitable for the establishment of an urban park?. A critical assessment based on soil and microbiological data, Journal of Soils and Sediments, 18(1), pp. 94-108, 2018. DOI: 10.1007/s11368-017-1726-0
dc.relationTerrazas, A., Bases teóricas para el estudio bio-social de las prácticas mortuorias, en: Serrano-Sánchez, C. y Terrazas, A., Eds., Tafonomía, medio ambiente y cultura, Instituto de Investigaciones Antropológicas -UNAM, México, 2007, pp. 13-39.
dc.relationFiedler, S., Breuer, J., Pusch, C.M., Holley, S., Wahl, J., Ingwersen, J. and Graw, M., Graveyards — Special landfills, Science of The Total Environment, 419, pp. 90-97, 2012. DOI: 10.1016/j.scitotenv.2011.12.007
dc.relationBasmajian, C. and Coutts, C., Planning for the disposal of the dead, Journal of the American Planning Association, 76(3), pp. 305-317, 2010. DOI: 10.1080/01944361003791913
dc.relationda Cruz, N.J.T., Lezana, Á.G.R., Freire dos Santos, P. da C., Santana Pinto, I.M.B., Zancan, C. and Silva de Souza, G.H., Environmental impacts caused by cemeteries and crematoria, new funeral technologies, and preferences of the Northeastern and Southern Brazilian population as for the funeral process, Environmental Science and Pollution Research, 24(31), pp. 24121-24134, 2017. DOI: 10.1007/s11356-017-0005-3
dc.relationFiedler, S., Dame, T. and Graw, M., Do cemeteries emit drugs?. A case study from southern Germany, Environmental Science and Pollution Research, 25(6), pp. 5393-5400, 2018. DOI: 10.1007/s11356-017-0757-9
dc.relationKim, K., Hall, M.L., Hart, A. and Pollard, S.J.T., A survey of green burial sites in England and Wales and an assessment of the feasibility of a groundwater vulnerability tool, Environmental Technology, 29(1), pp. 1-12, 2008. DOI: 10.1080/09593330802008404
dc.relationOliveira, B., Quinteiro, P., Caetano, C., Nadais, H., Arroja, L., Ferreira da Silva, E. and Senos Matias, M., Burial grounds’ impact on groundwater and public health: an overview, Water and Environment Journal, 27(1), pp. 99-106, 2013. DOI: 10.1111/j.1747-6593.2012.00330.x
dc.relationVan Allemann, S., Olivier, J. and Dippenaar, M.A., A laboratory study of the pollution of formaldehyde in cemeteries (South Africa), Environmental Earth Sciences, 77(1), pp. 20, 2018. DOI: 10.1007/s12665-017-7219-z
dc.relationNero, B.F. and Anning, A.K., Variations in soil characteristics among urban green spaces in Kumasi, Ghana, Environmental Earth Sciences, 77(8), pp. 317, 2018. DOI: 10.1007/s12665-018-7441-3
dc.relationGhosh, S., Deb, S., Ow, L.F., Deb, D. and Yusof, M.L., Soil characteristics in an exhumed cemetery land in Central Singapore, Environmental Monitoring and Assessment, 191(3), pp. 174, 2019. DOI: 10.1007/s10661-019-7291-9
dc.relationFitzpatrick, R.W., Nature, distribution and origin of soil materials in the forensic comparison of soils. In: Tibbett, M. and Carter, D.O., Eds., Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains, 1st Ed., Boca Raton, Taylor & Francis Group, 2008, pp. 1-28.
dc.relationAnderson, B., Meyer, J. and Carter, D.O., Dynamics of ninhydrin-reactive nitrogen and pH in gravesoil during the extended postmortem interval, Journal of Forensic Sciences, 58(5), pp. 1348-1352, 2013. DOI: 10.1111/1556-4029.12230
dc.relationVan Belle, L.E., Carter, D.O. and Forbes, S.L., Measurement of ninhydrin reactive nitrogen influx into gravesoil during aboveground and belowground carcass (Sus domesticus) decomposition, Forensic Science International, 193(1-3), pp. 37-41, 2009. DOI: 10.1016/j.forsciint.2009.08.016
dc.relationCarter, D.O., Yellowlees, D. and Tibbett, M., Moisture can be the dominant environmental parameter governing cadaver decomposition in soil, Forensic Science International, 200(1-3), pp. 60-66, 2010. DOI: 10.1016/j.forsciint.2010.03.031
dc.relationWilson, A.S., Janaway, R.C., Holland, A.D., Dodson, H.I., Baran, E., Pollard, A.M. and Tobin, D.J., Modelling the buried human body environment in upland climes using three contrasting field sites, Forensic Science International, 169(1), pp. 6-18, 2007. DOI: 10.1016/j.forsciint.2006.07.023
dc.relationBreton, H., Kirkwood, A.E., Carter, D.O. and Forbes, S.L., The impact of carrion decomposition on the fatty acid methyl ester (FAME) profiles of soil microbial communities in southern Canada, Canadian Society of Forensic Science Journal, 49(1), pp. 1-18, 2016. DOI: 10.1080/00085030.2015.1108036
dc.relationProcopio, N., Ghignone, S., Williams, A., Chamberlain, A., Mello, A. and Buckley, M., Metabarcoding to investigate changes in soil microbial communities within forensic burial contexts, Forensic Science International: Genetics, 39, pp. 73-85, 2019. DOI: 10.1016/j.fsigen.2018.12.002
dc.relationDalva, M., Moore, T.R., Kalacska, M. and Leblanc, G., Nitrous oxide, methane and carbon dioxide patterns and dynamics from an experimental pig mass grave, Forensic Science International, 277, pp. 229-240, 2017. DOI: 10.1016/j.forsciint.2017.05.013
dc.relationDunphy, M.A., Weisensee, K.E., Mikhailova, E.A. and Harman, M.K., Design and evaluation of a bioreactor with application to forensic burial environments, Forensic Science International, 257, pp. 242-251, 2015. DOI: 10.1016/j.forsciint.2015.08.014
dc.relationUsai, M.R., Pickering, M.D., Wilson, C.A., Keely, B.J. and Brothwell, D.R., Interred with their bones: soil micromorphology and chemistry in the study of human remains, Antiquity Project Gallery, [onlne]. 88, 339, 2014. [Acecced: 14 March 14th of 2019]. Available at: http://www.antiquity.ac.uk/projgall/usai339/
dc.relationAspöck, E. and Banerjea, R.Y., Formation processes of a reopened early Bronze Age inhumation grave in Austria: the soil thin section analyses, Journal of Archaeological Science: Reports, 10, pp. 791-809, 2016. DOI: 10.1016/j.jasrep.2016.07.003
dc.relationBurns, A., Pickering, M.D., Green, K.A., Pinder, A.P., Gestsdóttir, H., Usai, M.-R., Brothwell, Don R. and Keely, B.J., Micromorphological and chemical investigation of late-Viking age grave fills at Hofstaðir, Iceland, Geoderma, 306, pp. 183-194, 2017. DOI: 10.1016/j.geoderma.2017.06.021
dc.relationAlt, K.W., Held, P. and Nicklisch, N., Forensische feldmethoden: prospektion, bergung und dokumentation, Rechtsmedizin, 23(2), pp. 85-91, 2013. DOI: 10.1007/s00194-013-0875-8
dc.relationde Leeuwe, R. and Groen, W.J.M., Forensic archaeology in the Netherlands: uncovering buried and scattered evidence, in: Mike-Groen, W.J., Márquez-Grant, N. and Janaway, R., Eds., Forensic archaeology: a global perspective. John Wiley & Sons, Ltd, The Netherlands, 2015, pp.109-120.
dc.relationSagripanti, G.L., Villalba, D., Aguilera, D. y Giaccardi, A., Avances de la geología forense en Argentina: búsqueda con métodos no invasivos de personas víctimas de desaparición forzada, Boletín de Geología, 39(3), pp. 55-69, 2017. DOI: 10.18273/revbol.v39n3-2017004
dc.relationBarone, P.M., Di Maggio, R.M. and Ferrara, C., Forensic geo-archaeology in Italy: materials for a standardisation, International Journal of Archaeology, 3(1), pp. 45-46, 2015. DOI: 10.11648/j.ija.s.2015030101.16
dc.relationJones, G., Geophysical mapping of historic cemeteries, in: Conference on Historical and Underwater Archaeology, 2008, Technical Briefs in Historical Archaeology, Albuquerque, NM, January 9-13, 2008, pp. 27.
dc.relationLuong, S., Forbes, S.L., Wallman, J.F. and Roberts, R.G., Monitoring the extent of vertical and lateral movement of human decomposition products through sediment using cholesterol as a biomarker, Forensic Science International, 285, pp. 93-104, 2018. DOI: 10.1016/j.forsciint.2018.01.026
dc.relationBullock, P., Fedoroff, N., Jongerius, A., Stoops, G., Tursina, T., Babel, U., 1985, Handbook for Soil Thin Section Description: Wolverhampton, Waine Research Publications, 152 pp.
dc.relationBurns, A., Pickering, M. D., Green, K. A., Pinder, A. P., Gestsdóttir, H., Usai, M.-R., Keely, B. J., 2017, Micromorphological and chemical investigation of late-Viking age grave fills at Hofstaðir, Iceland: Geoderma, 306, 183-194, https://doi.org/10.1016/j.geoderma.2017.06.021
dc.relationCaballero, J. H., Rendón, A., Gallego, J. J., Uasapud, N. V., 2016, Inter-Andean Cauca River Canyon, in: M. Hermelin (eds.), in Landscapes and Landforms of Colombia. World Geomorphological Landscapes: Cham, Springer, 155-166.
dc.relationCharzyński, P., Bednarek, R., Śołnowska, B., 2010, Characteristics of the soils of Toruń cemeteries, en 19th World Congress of Soil Science: Soil solutions for a changing world, U. für B. International Union of Soil Sciences (IUSS), Institut für Bodenforschung (ed.), 1–6, https://www.iuss.org/19thWCSS/Symposium/pdf/0874.pdf
dc.relationCharzyński, P., Bednarek, R., Świtoniak, M., Żołnowska, B., 2011, Ekranic Technosols and Urbic Technosols of Toruń Necropolis: Geologija, 53(4(76)), 179–185.
dc.relationCharzyński, P., Bednarek, R., Greinert, A., Hulisz, P., Uzarowicz, \Lukasz, 2013, Classification of technogenic soils according to WRB system in the light of Polish experiences: Soil Sci. Annu, 64, 145–150, https://doi.org/10.2478/ssa-2013-0023
dc.relationCharzyński, P., Markiewicz, M., Majorek, M., Bednarek, R., 2015, Geochemical assessment of soils in the German Nazi concentration camp in Stutthof (Northern Poland): Soil Science and Plant Nutrition, 61(sup1), 47–54, https://doi.org/10.1080/00380768.2014.1000232
dc.relationCourty, M.A., Goldberg, P., Macphail, R., 1989, Soils and Micromorphology in Archaeology. Cambridge University Press, Cambridge. https://www.thebritishacademy.ac.uk/pubs/proc/files/77p039.pdf
dc.relationDi Maggio, R. M., 2017, Pedology Applied to Forensics, in Di Maggio, R. M., Barone, P. M (eds.), Geoscientists at Crime Scenes: Switzerland, Springer, pp. 31-51, https://doi.org/10.1007/978-3-319-58048-7_3
dc.relationEspinal T, L. S., 1985, Geografía ecológica del Departamento de Antioquia: zonas de vida y formaciones vegetales del Departamento de Antioquia: Revista Facultad Nacional de Agronomía Medellín, 38(1), 5-106.
dc.relationFAO (Food and Agriculture Organization), 2009, Guía para la descripción de suelos. FAO, Roma, 99 pp.
dc.relationFitzpatrick, E.A., 1984, Principles of thin section preparation, in Fitzpatrick, E.A. (ed.), Micromorphology of Soils: Netherlands, Springer, 1-5, https://doi.org/10.1007/978-94-009-5544-8_1
dc.relationFitzpatrick, Rob W., Raven, M. D., Forrester, S. T., 2009, A Systematic Approach to Soil Forensics: Criminal Case Studies Involving Transference from Crime Scene to Forensic Evidence, in Ritz, K., Dawson, L., Miller, D. (eds.), Criminal and Environmental Soil Forensics: Switzerland, Springer, 105-127, https://doi.org/10.1007/978-1-4020-9204-6_8
dc.relationFitzpatrick, Robert W., 2004, Soil: Forensic Analysis, in Jamieson, A., Moenssens, A. (eds.), Wiley Encyclopedia of Forensic Science: Glasgow, John Wiley & Sons, Ltd., 1-14. https://doi.org/10.1002/9780470061589.fsa096.pub2
dc.relationGerasimova, M.I., Stroganova, M.N., Mozharova, N., Prokofyeva, T.V., 2003, Anthropogenic soils (genesis, geography, recovery): Moscow, Oikumena, Smolensk.
dc.relationGhosh, S., Deb, S., Ow, L. F., Deb, D., Yusof, M. L., 2019, Soil characteristics in an exhumed cemetery land in Central Singapore: environmental monitoring and assessment, 191(3), 174. https://doi.org/10.1007/s10661-019-7291-9
dc.relationInstituto Geográfico Agustín Codazzi (IGAC), 2006, Métodos analíticos del laboratorio de Suelos, 6th ed: Bogotá, Imprenta nacional de Colombia, 648 pp.
dc.relationIUSS Working Group WRB, 2015, World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps: World Soil Resources Reports No. 106, FAO, Rome, 192 pp.
dc.relationMajgier, L., Rahmonov, O., 2012, Selected chemical properties of Necrosols from the abandoned cemeteries Słabowo and Szymonka (Great Mazurian Lakes District): Bulletin of Geography-Physical Geography Series, 5(1), 43–55, https://doi.org/10.2478/v10250-012-0003-8
dc.relationMassas, I., Kefalogianni, I., Chatzipavlidis, I., 2018, Is the ground of an old cemetery suitable for the establishment of an urban park? A critical assessment based on soil and microbiological data: Journal of Soils and Sediments, 18(1), 94–108, https://doi.org/10.1007/s11368-017-1726-0
dc.relationMolina, C. M., Pringle, J. K., Saumett, M., Hernández, O., 2015, Preliminary results of sequential monitoring of simulated clandestine graves in Colombia, South America, using ground penetrating radar and botany: Forensic Science International, 248, 61-70, https://doi.org/10.1016/j.forsciint.2014.12.011
dc.relationMordhorst, A., Zimmermann, I., Fleige, H., Horn, R., 2017, Changes in soil aeration and soil respiration of simulated grave soils after quicklime application: Journal of Plant Nutrition and Soil Science, 180(2), 153-164, https://doi.org/10.1002/jpln.201600351
dc.relationMurray, R.C., 2004, Forensic geology: yesterday, today and tomorrow, in Croft, D. J. & Pye, K. (eds.), Forensic Geoscience: Principles, Techniques and Applications: London, Geological Society Special Publications, 232, 7-9, https://doi.org/10.1144/GSL.SP.2004.232.01.01
dc.relationNero, B.F., Anning, A.K., 2018, Variations in soil characteristics among urban green spaces in Kumasi, Ghana: Environmental Earth Sciences, 77(8), 317, https://doi.org/10.1007/s12665-018-7441-3
dc.relationPizano, C., Cabrera, M., García, H., 2014, Bosque seco tropical en Colombia; generalidades y contexto, en Pizano, C., García, H. (eds), El bosque seco tropical en Colombia: Bogotá, D.C, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 36-47.
dc.relationPringle, J. K., Ruffell, A., Jervis, J. R., Donnelly, L., McKinley, J., Hansen, J., Harrison, M, 2012, The use of geoscience methods for terrestrial forensic searches: Earth-Science Reviews, 114(1-2), 108-123, https://doi.org/10.1016/j.earscirev.2012.05.006
dc.relationProkof’eva, T. V., Varava, O. A., Sedov, S. N., Kuznetsova, A. M., 2010, Morphological diagnostics of pedogenesis on the anthropogenically transformed floodplains in Moscow: Eurasian Soil Science, 43(4), 368–379, https://doi.org/10.1134/S1064229310040022
dc.relationPye, K., Croft, D. J., 2004, Forensic geoscience: principles, techniques and application:, London, Geological Society, 318 pp.
dc.relationRuffell, A., 2010, Forensic pedology, forensic geology, forensic geoscience, geoforensics and soil forensics: Forensic Science International, 202, 9-12, https://doi.org/10.1016/j.forsciint.2010.03.044
dc.relationRuffell, A., 2013, Forensic Geoscience, in: Siegel, J. A, Saukko, P. J, Houck, M. M. (eds.), Encyclopedia of Forensic Sciences: Second Edition: Amsterdam, Elsevier, 213–216, https://doi.org/10.1016/B978-0-12-382165-2.00114-8
dc.relationSagara, N., Yamanaka, T., Tibbett, M, 2008, Soil fungi associated with graves and latrines: toward a forensic mycology. in Soil analysis in forensic taphonomy : Tibbett, M. Carter, D. O. (eds), chemical and biological effects of buried human remains , Boca Raton: Taylor & Francis Group, 67-108.
dc.relationSagripanti, G. L., Villalba, D., Aguilera, D., Giaccardi, A, 2017, Avances de la geología forense en argentina: búsqueda con métodos no invasivos de personas víctimas de desaparición forzada: Boletín de Geología, 39(3), 55-69, https://doi.org/10.18273/revbol.v39n3-2017004
dc.relationSedov, S. N., Aleksandrovskii, A. L., Benz, M., Balabina, V. I., Mishina, T. N., Shishkov, V. A., Özkaya, V., 2017, Anthropogenic sediments and soils of tells of the Balkans and Anatolia: Composition, genesis, and relationships with the history of landscape and human occupation: Eurasian Soil Science, 50(4), 373-386, https://doi.org/10.1134/S1064229317040093
dc.relationSobocká, J, 2004, Necrosol as a new anthropogenic soil type, in International Conference: SOIL ANTHROPIZATION VIII, Bratislava: Gagarinova, Jaroslava Sobocká, 107–113, http://www.vupop.sk/dokumenty/ine_soil_anthropization8.pdf
dc.relationSoil Survey Staff (SSS), 2014, Keysto to Soil Taxonomy: Twelfth Edition United States Department of Agriculture, Natural Resources Conservation Service, 360 pp.
dc.relationStroganova, M., Myagkova, A., РгокоГеуа, T., Skvortsova, I., 1998, Soils of Moscow and urban environment: Moscow
dc.relationSuter, F., Martínez, J. I., Vélez, M. I., 2011, Holocene soft-sediment deformation of the Santa Fe–Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity?: Sedimentary Geology, 235(3-4), 188-199, https://doi.org/10.1016/j.sedgeo.2010.09.018
dc.relationTriana-Vega, A. V., Sedov, S., Salinas-Acero, J., Carvajal-Contreras, D., Moreano, C., Tovar–Reyes, M., Díaz-Ortega, J, 2018, Environmental reconstruction spanning the transition from hunter/gatherers to early farmers in Colombia: Paleopedological and archaeological indicators from the pre-ceramic sites Tequendama and Aguazuque: Quaternary International, S1040618218302787, https://doi.org/10.1016/j.quaint.2018.09.048
dc.relationUsai, M. R., Pickering, M. D., Wilson, C. A., Keely, B. J., Brothwell, D. R., 2014, «Interred with their bones»: soil micromorphology and chemistry in the study of human remains: Antiquity Project Gallery 88, 339. website: http://www.antiquity.ac.uk/projgall/usai339/
dc.relationZimmermann, I., Fleige, H., Horn, R., 2016, Soil structure amelioration with quicklime and irrigation experiments in earth graves: Journal of Soils and Sediments, 16(11), 2514-2522, https://doi.org/10.1007/s11368-016-1509-z
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEvaluación de suelos intervenidos por sepulturas, en un contexto bio geo arqueológico
dc.typeTesis


Este ítem pertenece a la siguiente institución