dc.contributorRomero Castro, Eduardo
dc.contributorCIM@LAB
dc.creatorAlfonso Niño, Sunny Catalina
dc.date.accessioned2020-02-27T15:14:26Z
dc.date.available2020-02-27T15:14:26Z
dc.date.created2020-02-27T15:14:26Z
dc.date.issued2019-11-26
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75770
dc.description.abstractAutomatic detection and quantification of glands in gastric cancer may contribute to objectively measure the lesion severity, to develop strategies for early diagnosis, and most importantly to improve the patient categorization; however, gland quantification is a highly subjective task, prone to error due to the high biopsy traffic and the experience of each expert. The present master’s dissertation is composed by three chapters that carry to an objective identification of glands. In the first chapter of this document we present a new approach for segmentation of glandular nuclei based on nuclear local and contextual (neighborhood) information “NLCI”. A Gradient-BoostedRegression-Tree classifier is trained to distinguish between glandular nuclei and non glandular nuclei. Validation was carried out using 45.702 annotated nuclei from 90 fields of view (patches) extracted from whole slide images of patients diagnosed with gastric cancer. NLCI achieved an accuracy of 0.977 and an F-measure of 0.955, while R-CNN yielded corresponding accuracy and F-measures of 0.923 and 0.719, respectively. In second chapter we presents an entire framework for automatic detection of glands in gastric cancer images. By selecting gland candidates from a binarized version of the hematoxylin channel. Next, the gland’s shape and nuclei are characterized using local features which feed a Random-Cross-validation method classifier trained previously with images manually annotated by an expert. Validation was carried out using a data-set with 1.330 from seven fields of view extracted from patients diagnosed with gastric cancer whole slide images. Results showed an accuracy of 93 % using a linear classifier. Finally, in the third chapter analyzing gland and their glandular nuclei most relevant features, since predict if a patient will survive more than a year after being diagnosed with gastric cancer. A feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy “mRMR” approach selects those features that correlated better with patient survival. A data set with 668 Fields of View (FoV), 2.076 glandular structures from 14 whole slide images were extracted from patient diagnosed with gastric cancer. Results showed an accuracy of 78.57 % using a QDA Linear & Quadratic Discriminant Analysis was training with Leave-one-out e.g training with thirteen cases and leaving a separate case to validate.
dc.description.abstractLa detección y cuantificación automática de las glándulas en el cáncer gástrico puede contribuir a medir objetivamente la gravedad de la lesión, desarrollar estrategias para el diagnóstico precoz y lo que es más importante, mejorar la categorización del paciente; sin embargo, su cuantificación es una tarea altamente subjetiva, propensa a errores debido al alto tráfico de biopsias y a la experiencia de cada experto. La presente disertación de maestría está compuesta por tres capítulos los cuales llevan a la cuantificación objetiva de glándulas. En el primer capítulo del documento se presenta un nuevo enfoque para la segmentación de los núcleos glandulares en base a la información nuclear local y contextual (vecindario). Se entrenó un Gradient-Boosted-Regression-Tree para distinguir entre núcleos glandulares y núcleos no glandulares. La validación se llevó con 45.702 núcleos anotados manualmente de 90 campos de visión (parches) extraídos de imágenes de biopsias completas de pacientes diagnosticados con cáncer gástrico. NLCI logró una precisión de 0.977% y un F-Score de 0.955%, mientras que fast R-CNN arrojó una precisión de 0.923% y un F-Score y 0.719%. En el segundo capítulo se presenta un marco completo para detección automática de glándulas en imágenes de cáncer gástrico. Las glándulas candidatas se seleccionan de una versión binarizada del canal de hematoxilina. A continuación, la forma y los núcleos de las glándulas se caracterizan y se alimenta un clasificador Random Cross Validation, entrenado previamente con imágenes anotadas manualmente por un experto. La validación se realizó en un conjunto de datos con 1.330 parches extraídos de siete biopsias de pacientes diagnosticados con cáncer gástrico. Los resultados mostraron una precisión del 93% utilizando un clasificador lineal. Finalmente, el tercer capítulo analiza las características más relevantes de las glándulas y sus núcleos glandulares, para predecir la sobrevida a un año de un paciente diagnosticado con cáncer gástrico. Una selección de características basada en información mutua: criterios de dependencia máxima, máxima relevancia y mínima redundancia (mRMR) escogen las características correlacionadas con la supervivencia del paciente. Se extrajo un conjunto de datos con 668 campos de visión (FoV), 2.076 estructuras glandulares de 14 imágenes completas de pacientes diagnosticados con cáncer gástrico. Los resultados mostraron una precisión del 76.3% usando un Análisis Discriminante Lineal y Cuadrático (QDA) y un esquema de evaluación entrenando con trece casos y dejando un caso aparte para validar.
dc.languageeng
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] ADACHI, Yosuke ; YASUDA, Kazuhiro ; INOMATA, Masafumi ; SATO, Koichi ; SHIRAISHI, Norio ; KITANO, Seigo: Pathology and prognosis of gastric carcinoma: well versus poorly differentiated type. En: Cancer: Interdisciplinary International Journal of the American Cancer Society 89 (2000), Nr. 7, p. 1418–1424
dc.relation[2] ALFONSO, Sunny ; CORREDOR, Germ´an ; MONCAYO, Ricardo ; BARRERA, Cristian R. ; SANCHEZ, Angel Y. ; TORO, Paula ; ROMERO, Eduardo: A method to detect glands in histological gastric cancer images. En: 14th International Symposium on Medical Information Processing and Analysis Vol. 10975 International Society for Optics and Photonics, 2018, p. 109750X
dc.relation[3] ALVAREZ-ARELLANO, Lourdes ; CAMORLINGA-PONCE, Margarita ; MALDONADO-BERNAL, Carmen ; TORRES, Javier: Activation of human neutrophils with Helicobacter pylori and the role of Toll-like receptors 2 and 4 in the response. En: FEMS Immunology & Medical Microbiology 51 (2007), Nr. 3, p. 473–479
dc.relation[4] ASSOCIATION, World M. [u. a.]: World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. En: Bulletin of the World Health Organization 79 (2001), Nr. 4, p. 373
dc.relation[5] BARRERA, Cristian ; CORREDOR, Germ´an ; ALFONSO, Sunny ; MOSQUERA, Andr´es ; ROMERO, Eduardo: An Automatic Segmentation of Gland Nuclei in Gastric Cancer Based on Local and Contextual Information. En: Sipaim–Miccai Biomedical Workshop Springer, 2018, p. 75–81
dc.relation[6] BECKER, Carlos ; RIGAMONTI, Roberto ; LEPETIT, Vincent ; FUA, Pascal: Supervised feature learning for curvilinear structure segmentation. En: International conference on medical image computing and computer-assisted intervention Springer, 2013
dc.relation[7] BERLTH, Felix ; BOLLSCHWEILER, Elfriede ; DREBBER, Uta ; HOELSCHER, Arnulf H. ; MOENIG, Stefan: Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value. En: World journal of gastroenterology: WJG 20 (2014), Nr. 19, p. 5679
dc.relation[8] BRAY, Freddie ; FERLAY, Jacques ; SOERJOMATARAM, Isabelle ; SIEGEL, Rebecca L. ; TORRE, Lindsey A. ; JEMAL, Ahmedin: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. En: CA: a cancer journal for clinicians 68 (2018), Nr. 6, p. 394–424
dc.relation[9] CAMPAGNOLA, Paul J. ; LOEW, Leslie M.: Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. En: Nature biotechnology 21 (2003), Nr. 11, p. 1356
dc.relation[10] CISŁO, Magdalena ; FILIP, Agata A. ; OFFERHAUS, George Johan A. ; CISEŁ, Bogumiła ; RAWICZPRUSZY ´N SKI, Karol ; SKIERUCHA, Małgorzata ; POLKOWSKI,Wojciech P.: Distinct molecular subtypes of gastric cancer: from Laur´en to molecular pathology. En: Oncotarget 9 (2018), Nr. 27, p. 19427
dc.relation[11] MINISTERIO DE SALUD Y PROTECCI´O N SOCIAL INSTITUTO NACIONAL DE CANCEROLOG´I A DE COLOMBIA, 2012-2021. Plan Decenal para el Control de Cancer en Colombia, 2012-2021. 2012
dc.relation[12] MINISTERIO DE SALUD Y PROTECCI´O N SOCIAL INSTITUTO NACIONAL DE CANCEROLOG´I A DE COLOMBIA, ESE]: Plan Decenal para el Control de CA˜¡ncer en Colombia, 2012-2021. 2012
dc.relation[13] CORREA, P: Helicobacter pylori and gastric carcinogenesis. En: The American journal of surgical pathology 19 (1995), p. S37–43
dc.relation[14] CORREA, Pelayo: Gastric cancer: overview. En: Gastroenterology Clinics of North America 42 (2013), Nr. 2, p. 211
dc.relation[15] CORREA, Pelayo ; CUELLO, Carlos ; DUQUE, Edgar ; BURBANO, Luis C. ; GARCIA, Fernando T. ; BOLANOS, Oscar ; BROWN, Charles ; HAENSZEL, William: Gastric cancer in Colombia. III. Natural history of precursor lesions. En: Journal of the National Cancer Institute 57 (1976), Nr. 5, p. 1027– 1035
dc.relation[16] CORREA, Pelayo ; HAENSZEL, William ; CUELLO, Carlos ; TANNENBAUM, Steven ; ARCHER, Michael: A model for gastric cancer epidemiology. En: The Lancet 306 (1975), Nr. 7924, p. 58–60
dc.relation[17] CORREA, Pelayo ; PIAZUELO, M B.: The gastric precancerous cascade. En: Journal of digestive diseases 13 (2012), Nr. 1, p. 2–9
dc.relation[18] CORREA, Pelayo ; SCHNEIDER, Barbara G.: Etiology of gastric cancer: what is new? En: Cancer Epidemiology and Prevention Biomarkers 14 (2005), Nr. 8, p. 1865–1868
dc.relation[19] COSATTO, Eric ; MILLER, Matt ; GRAF, Hans P. ; MEYER, John S.: Grading nuclear pleomorphism on histological micrographs. En: 2008 19th International Conference on Pattern Recognition IEEE, 2008, p. 1–4
dc.relation[20] CREW, Katherine D. ; NEUGUT, Alfred I.: Epidemiology of upper gastrointestinal malignancies. En: Seminars in oncology Vol. 31 Elsevier, 2004, p. 450–464
dc.relation[21] DE VRIES, Annemarie C. ; VAN GRIEKEN, Nicole C. ; LOOMAN, Caspar W. ; CASPARIE, Mari¨el K ; DE VRIES, Esther ; MEIJER, Gerrit A. ; KUIPERS, Ernst J.: Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. En: Gastroenterology 134 (2008), Nr. 4, p. 945–952
dc.relation[22] DOYLE, Scott ; HWANG, Mark ; SHAH, Kinsuk ; MADABHUSHI, Anant ; FELDMAN, Michael ; TOMASZEWESKI, John: Automated grading of prostate cancer using architectural and textural image features. En: 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro IEEE, 2007, p. 1284–1287
dc.relation[23] DUNN, Gavin P. ; OLD, Lloyd J. ; SCHREIBER, Robert D.: The immunobiology of cancer immunosurveillance and immunoediting. En: Immunity 21 (2004), Nr. 2, p. 137–148
dc.relation[24] DUNN, Gavin P. ; OLD, Lloyd J. ; SCHREIBER, Robert D.: The three Es of cancer immunoediting. En: Annu. Rev. Immunol. 22 (2004), p. 329–360
dc.relation[25] EKUNDINA, VO ; EZE, G: Common artifacts and remedies in histopathology (a review). En: African Journal of Cellular Pathology (2015), p. 1–7
dc.relation[26] ERNST, Peter B. ; PEURA, David A. ; CROWE, Sheila E.: The translation of Helicobacter pylori basic research to patient care. En: Gastroenterology 130 (2006), Nr. 1, p. 188–206
dc.relation[27] FAN, Xue-Gong ; YAKOOB, Javed ; FAN, XJ ; KEELING, PWN: Enhanced T-helper 2 lymphocyte responses: Immune mechanism ofHelicobacter pylori infection. En: Irish journal of medical science 165 (1996), Nr. 1, p. 37–39
dc.relation[28] FERLAY, J ; SOERJOMATARAM, I ; ERVIK, Morten ; DIKSHIT, Rajesh ; ESER, Sultan ; MATHERS, C ; REBELO, M ; PARKIN, DM ; FORMAN, David ; BRAY, Freddie: GLOBOCAN 2012 v1. 0. En: Cancer incidence and mortality worldwide: IARC CancerBase 11 (2013)
dc.relation[29] FICSOR, Levente ; VARGA, Viktor ; BERCZI, Lajos ; MIHELLER, Pal ; TAGSCHERER, Attila ; WU, Mark Li-cheng ; TULASSAY, Zsolt ; MOLNAR, Bela: Automated virtual microscopy of gastric biopsies. En: Cytometry Part B: Clinical Cytometry: The Journal of the International Society for Analytical Cytology 70 (2006), Nr. 6, p. 423–431
dc.relation[30] FRIEDMAN, Jerome H.: Greedy function approximation: a gradient boosting machine. En: Annals of statistics (2001), p. 1189–1232
dc.relation[31] GIRSHICK, Ross. Fast r-cnn. ICCV 2015. https://arxiv.org/abs/1504.080838. 2015
dc.relation[32] GOBERT, Alain P. ; WILSON, Keith T.: The immune battle against Helicobacter pylori infection: NO offense. En: Trends in microbiology 24 (2016), Nr. 5, p. 366–376
dc.relation[33] GOTINK, Annieke W. ; TEN KATE, Fiebo J. ; DOUKAS, Michael ; WIJNHOVEN, Bas P. ; BRUNO, Marco J. ; LOOIJENGA, Leendert H. ; KOCH, Arjun D. ; BIERMANN, Katharina: Do pathologists agree with each other on the histological assessment of pT1b oesophageal adenocarcinoma? En: United European gastroenterology journal 7 (2019), Nr. 2, p. 261–269
dc.relation[34] GUNDUZ-DEMIR, Cigdem ; KANDEMIR, Melih ; TOSUN, Akif B. ; SOKMENSUER, Cenk: Automatic segmentation of colon glands using object-graphs. En: Medical image analysis 14 (2010), Nr. 1, p. 1–12
dc.relation[35] HAMILTON., Booz A. Kaggle: 2018 data science bowl. https://www.kaggle.com/c/data-science-bowl-2018. 2018
dc.relation[36] HAMILTON, Stanley R. ; AALTONEN, Lauri A. [u. a.]: Pathology and genetics of tumours of the digestive system. Vol. 48. IARC press Lyon:, 2000
dc.relation[37] HAUB, Peter ; MECKEL, Tobias: A model based survey of colour deconvolution in diagnostic brightfield microscopy: Error estimation and spectral consideration. En: Scientific reports 5 (2015), p. 12096
dc.relation[38] HE, Kaiming ; GKIOXARI, Georgia ; DOLL´AR, Piotr ; GIRSHICK, Ross: Mask r-cnn. En: Proceedings of the IEEE international conference on computer vision, 2017
dc.relation[39] HOLMES, Rebecca S. ; VAUGHAN, Thomas L.: Epidemiology and pathogenesis of esophageal cancer. En: Seminars in radiation oncology Vol. 17 Elsevier, 2007, p. 2–9
dc.relation[40] HU, Bing ; EL HAJJ, Nassim ; SITTLER, Scott ; LAMMERT, Nancy ; BARNES, Robert ; MELONIEHRIG, Aurelia: Gastric cancer: Classification, histology and application of molecular pathology. En: Journal of gastrointestinal oncology 3 (2012), Nr. 3, p. 251
dc.relation[41] JEMAL, Ahmedin ; BRAY, Freddie ; CENTER, Melissa M. ; FERLAY, Jacques ; WARD, Elizabeth ; FORMAN, David: Global cancer statistics. En: CA: a cancer journal for clinicians 61 (2011), Nr. 2, p. 69–90
dc.relation[42] KAPADIA, Cyrus R.: Gastric atrophy, metaplasia, and dysplasia: a clinical perspective. En: Journal of clinical gastroenterology 36 (2003), Nr. 5, p. S29–S36
dc.relation[43] KARIMI, Parisa ; ISLAMI, Farhad ; ANANDASABAPATHY, Sharmila ; FREEDMAN, Neal D. ; KAMANGAR, Farin: Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. En: Cancer Epidemiology and Prevention Biomarkers 23 (2014), Nr. 5, p. 700–713
dc.relation[44] KUMAR, Vinay ; ABBAS, Abul K. ; FAUSTO, Nelson ; ASTER, Jon C.: Robbins and Cotran pathologic basis of disease, professional edition e-book. Elsevier health sciences, 2014
dc.relation[45] LAUREN, Pekka: The two histological main types of gastric carcinoma: diffuse and so-called intestinaltype carcinoma: an attempt at a histo-clinical classification. En: Acta Pathologica Microbiologica Scandinavica 64 (1965), Nr. 1, p. 31–49
dc.relation[46] MACENKO, Marc ; NIETHAMMER, Marc ; MARRON, James S. ; BORLAND, David ; WOOSLEY, John T. ; GUAN, Xiaojun ; SCHMITT, Charles ; THOMAS, Nancy E.: A method for normalizing histology slides for quantitative analysis. En: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro IEEE, 2009, p. 1107–1110
dc.relation[47] MAI, UE ; PEREZ-PEREZ, GI ; WAHL, LM ; WAHL, SM ; BLASER, MJ ; SMITH, PD: Soluble surface proteins from Helicobacter pylori activate monocytes/macrophages by lipopolysaccharideindependent mechanism. En: The Journal of clinical investigation 87 (1991), Nr. 3, p. 894–900
dc.relation[48] MARQU´E S-LESPIER, Juan M. ; GONZ´A LEZ-PONS, Mar´ıa ; CRUZ-CORREA, Marcia: Current perspectives on gastric cancer. En: Gastroenterology Clinics 45 (2016), Nr. 3, p. 413–428
dc.relation[49] MARTIN, IG ; DIXON, MF ; SUE-LING, H ; AXON, AT ; JOHNSTON, D: Goseki histological grading of gastric cancer is an important predictor of outcome. En: Gut 35 (1994), Nr. 6, p. 758–763
dc.relation[50] MORALES ´A LVAREZ, Anamar´ıa [u. a.]: Inmuno-monitoreo del componente de c´elulas presentadoras de ant´ıgeno (APC) y c´elulas T en distintos estadios del desarrollo de c´ancer g´astrico de tipo intestinal, Universidad Nacional de Colombia-Sede Bogot´a, Tesis de Grado
dc.relation[51] NAIK, Shivang ; DOYLE, Scott ; AGNER, Shannon ; MADABHUSHI, Anant ; FELDMAN, Michael ; TOMASZEWSKI, John: Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. En: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro IEEE, 2008, p. 284–287
dc.relation[52] OH, SE ; CHOI, MG ; SEO, SW ; SOHN, TS ; BAE, JM ; KIM, S: Prediction of overall survival and novel classification of patients with gastric cancer using the survival recurrent network. En: European Journal of Surgical Oncology 45 (2019), Nr. 2, p. e79–e80
dc.relation[53] PARKIN, D M.: Global cancer statistics in the year 2000. En: The lancet oncology 2 (2001), Nr. 9, p. 533–543
dc.relation[54] PARKIN, Donald M.: International variation. En: Oncogene 23 (2004), Nr. 38, p. 6329
dc.relation[55] PENG, Hanchuan ; LONG, Fuhui ; DING, Chris: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. En: IEEE Transactions on Pattern Analysis & Machine Intelligence (2005), Nr. 8, p. 1226–1238
dc.relation[56] RABINOVICH, Gabriel A. ; GABRILOVICH, Dmitry ; SOTOMAYOR, Eduardo M.: Immunosuppressive strategies that are mediated by tumor cells. En: Annu. Rev. Immunol. 25 (2007), p. 267–296
dc.relation[57] ROFFO, Giorgio ; MELZI, Simone ; CASTELLANI, Umberto ; VINCIARELLI, Alessandro: Infinite Latent Feature Selection: A Probabilistic Latent Graph-Based Ranking Approach. En: 2017 IEEE International Conference on Computer Vision (ICCV) IEEE, 2017, p. 1407–1415
dc.relation[58] SEMPER, Raphaela P. ; MEJ´IAS-LUQUE, Raquel ; GROSS, Christina ; ANDERL, Florian ; M¨ULLER, Anne ; VIETH, Michael ; BUSCH, Dirk H. ; DA COSTA, Clarissa P. ; RULAND, J¨urgen ; GROSS, Olaf [u. a.]: Helicobacter pylori–induced IL-1 secretion in innate immune cells is regulated by the NLRP3 Inflammasome and requires the cag Pathogenicity Island. En: The Journal of Immunology 193 (2014), Nr. 7, p. 3566–3576
dc.relation[59] SPARKS, Rachel ; MADABHUSHI, Anant: Explicit shape descriptors: Novel morphologic features for histopathology classification. En: Medical image analysis 17 (2013), Nr. 8, p. 997–1009
dc.relation[60] SUN, Gaofeng ; CHENG, Chao ; LI, Xiao ; WANG, Tao ; YANG, Jian ; LI, Danni: Metabolic tumor burden on postsurgical PET/CT predicts survival of patients with gastric cancer. En: Cancer Imaging 19 (2019), Nr. 1, p. 18
dc.relation[61] TEKESIN, Kemal ; GUNES, Mehmet E. ; TURAL, Deniz ; AKAR, Emre ; ZIRTILOGLU, Alisan ; KARACA, Mustafa ; SELCUKBIRICIK, Fatih ; BAYRAK, Savas ; OZET, Ahmet: Clinicopathological characteristics, prognosis and survival outcome of gastric cancer in young patients: A large cohort retrospective study. En: future 1 (2019), p. 3
dc.relation[62] TOMCZAK, Katarzyna ; CZERWI´N SKA, Patrycja ; WIZNEROWICZ, Maciej: The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. En: Contemporary oncology 19 (2015), Nr. 1A, p. A68
dc.relation[63] TORRE, Lindsey A. ; BRAY, Freddie ; SIEGEL, Rebecca L. ; FERLAY, Jacques ; LORTET-TIEULENT, Joannie ; JEMAL, Ahmedin: Global cancer statistics, 2012. En: CA: a cancer journal for clinicians 65 (2015), Nr. 2, p. 87–108
dc.relation[64] VAN CUTSEM, Eric ; SAGAERT, Xavier ; TOPAL, Baki ; HAUSTERMANS, Karin ; PRENEN, Hans: Gastric cancer. En: The Lancet 388 (2016), Nr. 10060, p. 2654–2664
dc.relation[65] VETA, Mitko ; VAN DIEST, Paul J. ; KORNEGOOR, Robert ; HUISMAN, Andr´e ; VIERGEVER, Max A. ; PLUIM, Josien P.: Automatic nuclei segmentation in H&E stained breast cancer histopathology images. En: PloS one 8 (2013), Nr. 7, p. e70221
dc.relation[66] WANG, Fei ; MENG, Wenbo ; WANG, Bingyuan ; QIAO, Liang: Helicobacter pylori-induced gastric inflammation and gastric cancer. En: Cancer letters 345 (2014), Nr. 2, p. 196–202
dc.relation[67] WARREN, JR: Marshall. 1983. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. En: Lancet , p. 1273–1275
dc.relation[68] WILLIAMS, C ; POLOM, K ; ADAMCZYK, B ; AFSHAR, M ; D’IGNAZIO, A ; KAMALIMOGHADDAM, M ; KARLSSON, NG ; GUERGOVA-KURAS, M ; LISACEK, F ; MARRELLI, D [u. a.]: Machine learning methodology applied to characterize subgroups of gastric cancer patients using an integrated large biomarker dataset. En: European Journal of Surgical Oncology 45 (2019), Nr. 2, p. e79
dc.relation[69] YOSHIDA, Hiroshi ; SHIMAZU, Taichi ; KIYUNA, Tomoharu ; MARUGAME, Atsushi ; YAMASHITA, Yoshiko ; COSATTO, Eric ; TANIGUCHI, Hirokazu ; SEKINE, Shigeki ; OCHIAI, Atsushi: Automated histological classification of whole-slide images of gastric biopsy specimens. En: Gastric Cancer 21 (2018), Nr. 2, p. 249–257
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleQuantification of glands in gastric cancer
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución