dc.creatorArruda, Ayda Ignez
dc.date.accessioned2019-06-28T11:17:02Z
dc.date.accessioned2022-09-21T19:48:14Z
dc.date.available2019-06-28T11:17:02Z
dc.date.available2022-09-21T19:48:14Z
dc.date.created2019-06-28T11:17:02Z
dc.date.issued1985
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/42874
dc.identifierhttp://bdigital.unal.edu.co/32971/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3418709
dc.description.abstractIn this paper we analyse da Costa's paraconsistent set theories, i.e., the set theories constructed over da Costa's paraconsistent logics C=n, 1 ≤ n ≤ ω. The main results presented here are the following. In any da Costa paraconsistent set theory of type NF the axiom schema of abstraction must be formulated exactly as in NF; for, in the contrary, some paradoxes are derivable that invalidate the theory. In any da Costa paraconsistent set theory with Russell's set [Formula Matemática] UUR is the universal set. In any da Costa paraconsistent set theory the existence of Russell's set is incompatible with a general (for all sets) formulation of the axiom schemata of separation and replacement.
dc.languagespa
dc.publisherUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
dc.relationUniversidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
dc.relationRevista Colombiana de Matemáticas
dc.relationRevista Colombiana de Matemáticas; Vol. 19, núm. 1-2 (1985); 9-24 0034-7426
dc.relationArruda, Ayda Ignez (1985) Remarks on da costa's paraconsistent set theories. Revista Colombiana de Matemáticas; Vol. 19, núm. 1-2 (1985); 9-24 0034-7426 .
dc.relationhttp://revistas.unal.edu.co/index.php/recolma/article/view/32576
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleRemarks on da costa's paraconsistent set theories
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución