dc.contributor | Mosquera Vasquez, Teresa | |
dc.contributor | Melgarejo Luz Marina | |
dc.contributor | Genética de Rasgos de Interés Agronómico | |
dc.creator | Diaz Valencia, Paula Andrea | |
dc.date.accessioned | 2022-06-14T16:09:25Z | |
dc.date.accessioned | 2022-09-21T19:46:56Z | |
dc.date.available | 2022-06-14T16:09:25Z | |
dc.date.available | 2022-09-21T19:46:56Z | |
dc.date.created | 2022-06-14T16:09:25Z | |
dc.date.issued | 2022-06-08 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81580 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3418543 | |
dc.description.abstract | Genetic improvement of diploid potato (Solanum tuberosum Group Phureja) for water deficit tolerance and tuber yield is challenging because of the complex nature of these traits. In order to develop a research that cconsiders the complexity of the trait and simultaneously to make the experiments more tractable, we conducted two studies. The first was conducted to investigate the genetic architecture of the water deficit tolerance by employing the Working Collection of the Potato Breeding Program at the Universidad Nacional de Colombia. A diversity panel of 104 diploid potato accessions were evaluated under both well-watered and water deficit treatments at tuber initiation stage. The response to water deficit conditions was assessed with the relative chlorophyll content (CC), the maximum quantum efficiency of PSII (Fv/Fm), relative water content (RWC), leaf sugar content, tuber number per plant (TN), and tuber fresh weight per plant (TW). The phenotypic evaluation results revealed that the physiological, biochemical and yield-component variables had a broad variation, while the yield-component variables more powerfully distinguished between the tolerant and susceptible genotypes than the physiological and biochemical variables. The multivariate analysis based on the Drought Tolerance Index (DTI) revealed different levels of water deficit tolerance for the 104 genotypes. The Genome-Wide Association Studies (GWAS) was conducted using a matrix of 47 K single nucleotide polymorphisms (SNP), recently available for this population. We are reporting 38 Quantitative Trait Loci (QTL), seven for well-watered conditions, twenty-two for water deficit condition,s and nine for DTI which explain between 12.6% and 44.1% of the phenotypic variance. A set of 6 QTL were found to be associated with more than one variable. Of the nine QTL detected from DTI on chromosomes 2, 3, 5, 8, 10 and 12, three candidate genes with a feasible role in water deficit response were identified. These results provide a foundation for future research directed at understanding the molecular mechanisms underlying potato tolerance to water deficits, and the QTL identified could be used in marker-assisted selection (MAS) for water-deficit tolerance breeding in potato.
In the second study, we investigated the physiological, biochemical and yield-related variables of four contrasting water-deficit tolerance diploid potato genotypes to water deficit with emphasis on temporal trend responses. Comparative analysis successfully identified that the physiological changes were faster and pronounced in the water-deficit sensitive genotypes. In contrast, in the tolerant genotypes water deficit induced earlier and more remarkable accumulation of sucrose and glucose. The observed temporal response showed that statistical differences between tolerant and sensitive genotypes in ψl, CC, and soluble sugar content can be distinguished from 3DAT. In general, the temporal variation in physiological and biochemical parameters demonstrated the presence of different strategies among tolerant genotypes. These results can contribute to a better understanding of the temporal physiological and biochemical mechanisms leading to water-deficit tolerance and will help potato breeding programs with improved stress tolerance and stable yields under changing climate conditions without the loss of yield potential under optimal conditions.
The results of this study provide insights into the nature of genetic variations governing water deficit tolerance in diploid potato. Knowledge gained of the dissection may be utilized in breeding programs to select lines with improved yield and water deficit tolerance. Additionally, the information from the panel SNP polymorphisms and candidate gene detection provides research avenues to further refine/narrow down genomic regions associated with these agronomically important traits, and also opens gates for genetic enhancement through genomic aided selection. | |
dc.description.abstract | El mejoramiento genético de la papa diploide (Solanum tuberosum Group Phureja) para tolerancia al déficit de agua y rendimiento de tubérculos es un desafío debido a la naturaleza compleja de estos rasgos. Con el fin de desarrollar una investigación que considere la complejidad del rasgo y, al mismo tiempo, hacer que los experimentos sean más tratables, llevamos a cabo dos estudios. El primero se realizó para investigar la arquitectura genética de la tolerancia al déficit hídrico empleando la Colección de Trabajo del Programa de Mejoramiento de Papa de la Universidad Nacional de Colombia. Se evaluó un panel de diversidad de 104 accesiones diploides de papa bajo tratamientos de riego abundante y de déficit hídrico en la etapa de iniciación del tubérculo. La respuesta a condiciones de déficit hídrico se evaluó con el contenido relativo de clorofila (CC), la eficiencia cuántica máxima de PSII (Fv/Fm), el contenido relativo de agua (RWC), el contenido de azúcar foliar, el número de tubérculos por planta (TN) y el número de tubérculos. peso fresco por planta (PT). Los resultados de la evaluación fenotípica revelaron que las variables fisiológicas, bioquímicas y del componente de rendimiento tuvieron una amplia variación, mientras que las variables del componente de rendimiento distinguieron con mayor fuerza entre los genotipos tolerantes y susceptibles que las variables fisiológicas y bioquímicas. El análisis multivariado basado en el Índice de Tolerancia a la Sequía (DTI) reveló diferentes niveles de tolerancia al déficit hídrico para los 104 genotipos. Los estudios de asociación de todo el genoma (GWAS) se realizaron utilizando una matriz de polimorfismos de un solo nucleótido (SNP) de 47 K, disponible recientemente para esta población. Estamos reportando 38 Quantitative Trait Loci (QTL), siete para condiciones de riego abundante, veintidós para condiciones de déficit hídrico y nueve para DTI que explican entre el 12,6% y el 44,1% de la varianza fenotípica. Se encontró que un conjunto de 6 QTL estaba asociado con más de una variable. De los nueve QTL detectados de DTI en los cromosomas 2, 3, 5, 8, 10 y 12, se identificaron tres genes candidatos con un papel factible en la respuesta al déficit hídrico. Estos resultados proporcionan una base para futuras investigaciones dirigidas a comprender los mecanismos moleculares que subyacen a la tolerancia de la papa a los déficits de agua, y el QTL identificado podría usarse en la selección asistida por marcadores (MAS) para el mejoramiento de la papa con tolerancia al déficit de agua.
En el segundo estudio, investigamos las variables fisiológicas, bioquímicas y relacionadas con el rendimiento de cuatro genotipos de papa diploide con tolerancia al déficit de agua que contrastan con el déficit de agua, con énfasis en las respuestas de tendencia temporal. El análisis comparativo identificó con éxito que los cambios fisiológicos fueron más rápidos y pronunciados en los genotipos sensibles al déficit de agua. En cambio, en los genotipos tolerantes el déficit hídrico indujo una acumulación más temprana y notable de sacarosa y glucosa. La respuesta temporal observada mostró que las diferencias estadísticas entre los genotipos tolerantes y sensibles en ψl, CC y contenido de azúcar soluble se pueden distinguir de 3DAT. En general, la variación temporal de los parámetros fisiológicos y bioquímicos demostró la presencia de diferentes estrategias entre los genotipos tolerantes. Estos resultados pueden contribuir a una mejor comprensión de los mecanismos fisiológicos y bioquímicos temporales que conducen a la tolerancia al déficit de agua y ayudarán a los programas de mejoramiento de la papa con una mejor tolerancia al estrés y rendimientos estables en condiciones climáticas cambiantes sin pérdida del potencial de rendimiento en condiciones óptimas.
Los resultados de este estudio brindan información sobre la naturaleza de las variaciones genéticas que gobiernan la tolerancia al déficit hídrico en la papa diploide. El conocimiento adquirido de la disección se puede utilizar en programas de mejoramiento para seleccionar líneas con rendimiento mejorado y tolerancia al déficit de agua. Además, la información del panel de polimorfismos SNP y la detección de genes candidatos proporciona vías de investigación para refinar/reducir aún más las regiones genómicas asociadas con estos rasgos agronómicamente importantes, y también abre puertas para la mejora genética a través de la selección genómica asistida. (Texto tomado de la fuente) | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias Agrarias - Doctorado en Ciencias Agrarias | |
dc.publisher | Departamento de Agronomía | |
dc.publisher | Facultad de Ciencias Agrarias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Agrovoc | |
dc.relation | Aliche E, Theeuwen T, Oortwijn M, Visser R, Van der Linden G. Carbon partitioning mechanisms in potato under drought stress. Plant Physiol. Biochem. 2020; 146:211-219. doi: 10.1016/j.plaphy.2019.11.019 | |
dc.relation | Aliche E, Oortwijn M, Theeuwen T, et al. Genetic mapping of tuber size distribution and marketable tuber yield under drought stress in potato. Euphytica. 2019; 215:189. doi:10.1007/s10681-019-25-08-0 | |
dc.relation | Aliche E, Oortwijn M, Theeuwen M, Bachem B, Visser F, Van der Linden G. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agric. Wat. Man. 2018; 206:20–30. doi: 10.1016/j.agwat.2018.04.013 | |
dc.relation | Álvarez M, Angarita M, Delgado M, García C, Jiménez-Gomez J, et al. Identification of novel associations of candidate genes with resistance to late blight in Solanum tuberosum Group Phureja, Front. Plant Sci. 2017;8: 1040. doi: 10.3389/flps.2017.01040 | |
dc.relation | Andleeb T, Shah T, Nawaz R, Munir I, Munsi, F, et al. QTL mapping for drought stress tolerance in plants. Salt and drought stress tolerance in plants. 2020; 383-403. Cham: Springer. doi:10.1007/978-3-030-40277-8_16 | |
dc.relation | Anithakumari A, Dolstra O, Vosman B, Visser R. In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica. 2011; 181: 357-369.doi: 10.1007/s10681-011-0446-6 | |
dc.relation | Anithakumari A, Nataraja K, Visser R, van der Linden C. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breeding. 2012; 30(3):1–17. doi: 10.1007/s11032-012-9728-5 | |
dc.relation | Araus J, Kefauver S, Zaman-Allah M, Olsen M, Cairns, J. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci.2018, 23: 451–466. doi: 10.1016/j.tplants.2018.02.001 | |
dc.relation | Ariza W, Rodríguez L, Moreno D, Guerrero C, Moreno L. Effect of water deficit on some physiological and biochemical responses the yellow diploid potato (Solanum tuberosum L. group Phureja). Agron. Colomb. 2020; 38 (1): 36-44. doi: 10.15446/agron.colomb.v38n1.78982 | |
dc.relation | Basu S, Ramegowda V, Kumar A, Pereira A. Plant adaptation to stress. F1000Res. 2016; 5: F1000 Faculty Rev-1554. doi: 10.12688/f1000research.7678.1 | |
dc.relation | Berdugo-Cely J, Valbuena R, Sánchez-Betancourt E, Barrero L, Yockteng R. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers. PLoS ONE 2017, 12, e0173039 | |
dc.relation | Bonilla M, CardozoF, Morale A. Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de la papa en Colombia con énfasis en papa criolla, Ministerio de Agricultura y Desarrollo Rural. 2009. | |
dc.relation | Brachi B, Morris G, Borevitz J. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol.2011, 12, 232. doi:10.1186/gb-2011-12-10-232 | |
dc.relation | Byrne S; Meade F; Mesiti F; Griffin D; Kennedy C, Milbourne, D. Genome-Wide Association and Genomic Prediction for Fry Color in Potato. Agronomy .2020, 10, 90. doi: 10.3390/agronomy10010090 | |
dc.relation | Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell.2014, 26: 4636–4655. doi: 10.1105/tpc.114.129601 | |
dc.relation | Demirel U, Morris W, Ducreux L, Yavuz C, Asim A, et al. Physiological, biochemical and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front. Plant Sci. 2020; 11:169. Doi: 10.3389/flps.2020.00169 | |
dc.relation | Devaux A, Goffart J, Kromann P. Potato of the future: Opportunities and challenges in sustainable Agri-food systems. Potato Res. 2021; 64:681-720. doi: 10.1007/s11540-021-09501-4 | |
dc.relation | Díaz P, Evaluación de la tolerancia al estrés hídrico en genotipos de papa criolla (Solanum Phureja Juz et Buk). Master degree thesis. 2016. Universidad Nacional de Colombia.102 | |
dc.relation | Duarte D, Narváez C, Restrepo L, Kushalappa A, Mosquera T. Development and validation of liquid chromatographic method to quantify sucrose, glucose and fructose of Solanum tuberosum Group Phureja. J. Chromatogr. B. 2015, 975,18-23. doi: 10.1016/j.jchromb.2014.10.039 | |
dc.relation | Estrada N, 2000. La biodiversidad en el mejoramiento genético de la papa. Centro de Información para el desarrollo, La Paz, Bolivia. PROINPA/CID/CIP Potatoes, 272. | |
dc.relation | Estrada N, 1996. Los recursos genéticos en el mejoramiento de la papa en los países Andinos, in: Papas Colombianas Con El Mejor Entorno Ambiental. UNIPAPA-ICA-CORPOICA. | |
dc.relation | FAOSTAT. Food and agriculture Organization of the United Nations. 2019. Production: Crops. http://faostast.fao.org | |
dc.relation | Friedli M, Kirchgessner,N, Grieder C, Liebisch F, Mannale M, Walter, A. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions. Plant Methods .2016, 12: 1–15 | |
dc.relation | Furbank R, and Tester M. Phenomics – technologies to relieve the phenotyping bottleneck. Trend Plant Sci. 2011, 16: 635–644. doi: 10.1016/j.tplants.2011.09.005 | |
dc.relation | Gervais T, Creelman A, Li X, Bizimungu B, De Koeyer D, et al. Potato response to drought stress: physiological and growth basis. Front. Plant Sci. 2021; 12:1630 .doi: 10.3389/flsp.2021.698060 | |
dc.relation | Ghislain M, Andrade D, Rodriguez F, Hijmans R, Spooner D. Genetic analysis of the cultivated potato L. Phureja group using RADPs and nuclear SSRs. Theor. Appl. Genet. 2006; 113(8):1515-1527. doi:10.1007/s00122-006-0399-7 | |
dc.relation | Gitari H, Nyawabe S, Kamau S, Karanja N, Raza M, et al. Revisiting intercropping indices with respect to potato-legume intercropping systems. Field Crops Res. 2020; 258:107957. doi: 10.1016/j.fcr.2020.107957 | |
dc.relation | Hill D, Nelson D, Hammond J, Bell L. Morphophysiology of potato (Solanum tuberosum) in response to drought stress: paving the way forward. Front. Plant Sci. 2021; 15:675690. doi: 10.3389/fpls.2021.675690 | |
dc.relation | Jamann T, Balint-Kurti p, Holland J. QTL mapping using high-throughput sequencing. In: Alfonso J., Stepanova A. (eds). Plant functional genomics. Methods in molecular biology. 2015; 1284. Humana Press, New York. doi:10.1007/978-1-4939-2444-8_13 | |
dc.relation | Joshi M, Fogelman E, Belausov E, Ginzberg I. Potato root system development and factors that determine its arquitecture. J. Plant Physiol. 2016;205:113-123. doi:10.1016/j.jplph.2016.08.14 | |
dc.relation | Juyó D, Soto J, Ballvora A, León J, Mosquera T. Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PloS ONE. 2019; 14(7), e0213818. doi: 10.1371/journal.pone.0213818 | |
dc.relation | Juyó D., Sarmiento F., Alvarez M., Brochero H., Cortes H., Gebhart C. Genetic diversity and population structure in dipliod potatotes. Crop. Sci. 2015;55:760–769. doi: 10.2135/cropsci2014.07.0524. | |
dc.relation | Khan M, Saravia D, Munive S, Lozano F, Farfan E, et al. Multiple QTLs linked to agro-morphological and physiological traits related to drought tolerance in potato. Plant Mol. Biol. Rep. 2015; 33:1286-1298. doi: 10.1007/s11105-014-0824-z | |
dc.relation | Klaasen , Willemsem J, Vos P, et al., Genome-wide association in tetraploid potato reveals four QTLs for protein content. Mol. Breeding.2019, 39:151. Doi:10.1007/s11032-019-1070-8 | |
dc.relation | Kohl K, Aneley G, Hass M, Peters R. Confounding factors in container-based drought tolerance assessments in Solanum tuberosum. Agronomy.2021,11:865. doi:10.3390/agronomy11050865 | |
dc.relation | Li N, Gao D, Zhou X, Chen S, Li C, et al. Intercropping with Potato-Onion enhanced the soil microbial diversity of tomato. Microorganisms. 2020; 8:834. doi:10.3390/microorganisms8060834 | |
dc.relation | Lopes M, Reynolds M. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J. Exp. Bot. 2012, 63, 3789–3798. doi: 10.1093/jxb/ers071 | |
dc.relation | Martínez I, Muñoz M, Acuña I, Uribe M. Evaluating the drought tolerance of seven potato varieties on volcanic ash soils in a medium-term trial. Front. Plant Sci. 2021; 12:1238. doi:10.3389/flps.2021.693060 | |
dc.relation | Montes J, Technow F, Dhillon B, Mauch F, Melchinger A. High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crops Res.2011, 121: 268–273. doi: 10.1016/j.fcr.2010.12.017 | |
dc.relation | Narváez C, Peña C, Restrepo L, Kushalappa A, Mosquera T. Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. J. Food Compos. Anal. 2018;66:179–184. doi: 10.1016/j.jfca.2017.12.019 | |
dc.relation | Nasir N, Toth Z. Effect of drought stress on potato production. A review. Agronomy. 2022; 12:635.doi: 10.3390/agronomy12030635 | |
dc.relation | Parra M., Piñeros C., Soto J., Mosquera T. Chromosomes I and X harbor consistent genetic factors associated with anthocyanin variation in potato. Agronomy. 2019;10:366. doi: 10.3390/agronomy9070366. | |
dc.relation | Peña C, Sanchez L, Kushalappa A, Rodriguez L, Mosquera T, et al. Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT. 2015;62:76–86. doi: 10.1016/j.lwt.2015.01.038. | |
dc.relation | Pino, T. Estrés hídrico y térmico en papas, avances y protocolos. Santiago, Chile. Instituto de Investigaciones Agropecuarias. 2016, Boletín INIA Nº 331. 148p | |
dc.relation | Piñeros C, Narvaéz C, Kushalappa A, Mosquera T. Hydroxycinnamic acids in cooked potato tubers from Solanum tuberosum Group Phureja. Food Sci. Nutr. 2016;5:1–10. doi: 10.1002/fsn3.403 | |
dc.relation | Plich J, Boguszewska-Mańkowska D, Marczewski W. Relations between photosynthetic parameters and drought-induced tuber yield decrease in Katahdin-derived potato cultivars. Pot. Res. 2020; 63: 463–477. doi: 10.1007/s11540-020-09451-3 | |
dc.relation | Potato Genome Sequencing Consortium (PGSC). Genome sequence and analysis of the tuber crop potato. Nature. 2011; 475:189–195. doi: 10.1038/nature10158 | |
dc.relation | Prashar,A, Yildiz J, Mcnicol J, Bryan G, Jones H. Infra-red thermography for high throughput field phenotyping in Solanum tuberosum. 2013, PLoS One 8:e65816. doi: 10.1371/journal.pone.0065816 | |
dc.relation | Prashar A, and Jones G. Infra-red thermography as a high-throughput tool for field phenotyping. Agronomy. 2014, 4: 397–417. doi: 10.3390/agronomy4030397 | |
dc.relation | Puértolas J, Ballester C, Elphinstone D, Dodd I. Two potato (Solanum tuberosum) varieties differ in drought due to differences in root growth at depth. Funct. Plant Biol. 2014;41:1107-1118. doi: 10.1071/FP14105 | |
dc.relation | Qin J, Bian C, Liu J, Zhang J, Jin L. An efficient greenhouse method to screen potato genotypes for drought tolerance. Sci Hortic. 2019; 253:61-69. doi:10.1016/j.scienta.2019.04.017 | |
dc.relation | Rafalski, J. Association genetics in crop improvement. Curr. Opin. Plant Biol.2010; 13: 174–180.doi: 10.1016/j.pbi.2009.12.004 | |
dc.relation | Richards R, Rebetzke G, Watt M, Condon A, Spielmeyer W, Dolferus, R. Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct. Plant Biol.2010. 37: 85–97. doi: 10.1071/F. | |
dc.relation | Rodríguez L, Ñustez C, Estrada N. Criolla Latina, Criolla Paisa and Criolla Colombia, new cultivars of “diploid potato” for the province of Antioquia (Colombia). Agron. Colomb.2009, 27, 289–303. | |
dc.relation | Romero A, Alarcón A, Valbuena R, Galeano C. Physiological assessment of water stress in potato using spectral information. Front. Plant Sci. 2017;8:1608. doi: 10.3389/fpls.2017.01608 | |
dc.relation | Rudack K, Seddig S, Sprenger H, Kohl K, Uptmoor R. Drought stress-induced changes in starch yield and physiological traits in potato. J. Agron. Crop Sci. 2017;203 (6):494-505.doi:10.1111/jac.12224 | |
dc.relation | Schafleitner R, Gutierrez R, Espino R, Gaudin A, Perez J, et al. Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Res. 2007;50:71-85 | |
dc.relation | Schumacher C, Krannich C, Maletzki L, Kohl K, Kopka J, et al. Unravelling differences in candidate genes for drought tolerance in potato (Solanum tuberosum L.) by use of new functional microsatellite markers. Genes. 2021;12:494. Doi:10.3390/genes12040494 | |
dc.relation | Soltys-Kalina D, Plich J, Strzelczyk-Żyta D, Śliwka J, Marczewski, W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breed Sci- 2016; 66: 328–331. doi: 10.1270/jsbbs.66.328 | |
dc.relation | Spooner D, Rodriguez F, Polgar Z, Ballard H, Janshky S. Genomic origins of potato polyploids: GBSSI Gene Sequencing Data .Crop Sci. 2008; 48(S1): 27-36. doi:10.2135/cropsci2007.09.0504tpg | |
dc.relation | Spooner D, Ñúñez J, Trujillo G, Herrera M, Guzmán F, et al. Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc. Natl. Aca. Sci. 2007.104:19398-19403. doi: 10.1073/pnas.0709796104 | |
dc.relation | Straadt I, Rasmussen O. AFLP analysis of Solanum phureja DNA introgressed into potato dihaploids. Plant Breed. 2003;122:352-356. doi:10.1046/j.1439-0523.2003.000878x | |
dc.relation | Tagliotti M, Deperi S, Bedogni M, Huarte M. Genome-wide association analysis of agronomical and physiological traits linked to drought tolerance in a diverse potatoes (Solanum tuberosum )panel. Plant Breed.2021: 0:1-11. doi:10.1111/pbr.12938 | |
dc.relation | Torrance L, Cowan G, McLean K, MacFarlene S, et al. Natural resistance to Potato virus Y in Solanum tuberosum Group Phureja. Theor. Appl. Genet. 2020.; 133:967-980. Doi: 10.1007/s00122-019-03521-y | |
dc.relation | Tuberosa, R. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 2012, 3:347. doi: 10.3389/fphys.2012.00347 | |
dc.relation | United Nations Development Programme (UNDP). Human Development Report. The real Wealth of Nations: Pathways to Human Development. New York, NY: UNDP, 20th Anniversary Edition, 2010 | |
dc.relation | Yang G, Yang X, Zhang X, Li Z, Liu Z, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front. Plant Sci. 2017, 8:1111. doi: 10.3389/fpls.2017.01111 | |
dc.relation | Wang F, Zou M, Zhao L, Xia Z, Wang J. Genome wide association mapping of late blight tolerance trait in potato (Solanum tuberosum L. )Frontiers Sci. 2021,12. Doi:10.3389/fgene.2021.714575 | |
dc.relation | Wang Y, Rashid M, Li X, Yao C, Lu L, Bai J. et al. Collection and Evaluation of Genetic Diversity and Population Structure of Potato Landraces and Varieties in China. Front. Plant Sci. 2019, 10, 139 | |
dc.relation | Wang X, Singh, D, Marla S, Morris G, Poland, J. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods.2018, 14:1–16. doi: 10.1109/lgrs.2020.3039179 | |
dc.relation | Wijesinha-Bettoni R, Mouille B. The contribution of potatoes to global food security, nutrition and healthy diets. Am. J. Potato Res. 2019; 96:139-149. doi: 10.1007/s12230-018-09697-1 | |
dc.relation | Zaki H, Radwan K. Response of potato (Solanum tuberosum L.) cultivars to drought stress under invitro and field conditions. Chem. Biol. Technol. Agric. 2020; 9:1. doi:10.1186/s40538-021-00266-z | |
dc.relation | Zhang F, Qu L, Gu Y. et al. Resequencing and genome-wide association studies of autotetraploid potato. Mol Horticulture.2022, 2, 6.doi:10.1186/s43897-022-00027-y | |
dc.relation | Zarzynska K, Boguszewska-Mankowska D, Nosalewicz A. Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant Soil Environ. 2017; 63 (4):159-164. doi:10.17221/4/2017-PSE | |
dc.relation | Nikolaou G., Neocleous D., Christou A., Kitta E., Katsoulas N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy. 2020;10:1120. doi: 10.3390/agronomy10081120. | |
dc.relation | Chen X., Wang L., Niu Z., Zhang M., Li C., Li J. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agric. For. Meteorol. 2020;282–283:107867. doi: 10.1016/j.agrformet.2019.107867. | |
dc.relation | Mukherjee D. Stochastic model for crop water stress during agricultural droughts. Eng. Rep. 2019;1:1–24. doi: 10.1002/eng2.12081. | |
dc.relation | Lamaoui M., Jemo M., Datla R., Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Front. Chem. 2018;6:26. doi: 10.3389/fchem.2018.00026. | |
dc.relation | FAO World Corp Production Statistics. [(accessed on 26 May 2020)];2018 Available online: http//faostat.fao.org/ | |
dc.relation | Sprenger H., Rudack K., Schudoma C., Neumann A., Seddig S., Peter R., Zuther E., Kopka J., Hincha D., Walther D., et al. Assessment of drought tolerance and its potential yield in potato. Funct. Plant Biol. 2015;42:655–667. doi: 10.1071/FP15013 | |
dc.relation | Obidiegwu J., Bryan G., Jones H., Prashar A. Coping with drought: Stress and adaptive response in potato and perspective for improvement. Front. Plant Sci. 2015;6:542. doi: 10.3389/fpls.2015.00542. | |
dc.relation | Hijmans R. The effect of climate change on global potato production. Am. J. Potato Res. 2003;80:271–279. doi: 10.1007/BF02855363. | |
dc.relation | Jones P., Lister D., Jaggard K., Pidgeon J. Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Clim. Chang. 2003;58:93–108. doi: 10.1023/A:1023420102432. | |
dc.relation | Monneveux P., Ramirez D., Pino M. Drought tolerance in potato (S. tuberosum) Can we learn from drought tolerance research in cereals. Plant Sci. 2013;205–206:76–86. doi: 10.1016/j.plantsci.2013.01.011 | |
dc.relation | Hirut B., Shimelis H., Fentahum M., Bonierbale M., Gastelo M., Asfaw A. Combining ability of highland tropic adapted potato for tuber and yield components under drought. PLoS ONE. 2017;12:e0181541. doi: 10.1371/journal.pone.0181541. | |
dc.relation | Romero A., Alarcon A., Galeano C. Physiological assessment of water stress in potato using spectral information. Front. Plant Sci. 2017;8:1608. doi: 10.3389/fpls.2017.01608. | |
dc.relation | Rolando J., Ramírez D., Yactayo W., Monneveux P., Quiroz R. Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.) Environ. Exp. Bot. 2015;110:27–35. doi: 10.1016/j.envexpbot.2014.09.006 | |
dc.relation | Aliche E., Theeuwen T., Oortwijn M., Visser R., Van der Linden G. Carbon partitioning mechanisms in potato under drought stress. Plant Physiol. Biochem. 2020;146:211–219. doi: 10.1016/j.plaphy.2019.11.019. | |
dc.relation | Anithakumari A., Nataraja K., Visser R., Van der Linden C. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breed. 2012;30:1413–1429. doi: 10.1007/s11032-012-9728-5. | |
dc.relation | Schafleitner R., Gutiérrez R., Espino R., Gaudin A., Perez J., Martínez M., Domínguez A. Field screening for variation of drought tolerance in Solanum tuberosum L. Agronomical, physiological and genetic analysis. Potato Res. 2007;50:71–85. doi: 10.1007/s11540-007-9030-9. | |
dc.relation | Dien D., Mochizuki T., Yamakawa T. Effect of various drought stress and subsequent recovery on proline, total soluble sugar and starch metabolisms in rice (Oryza sativa L.) varieties. Plant Prod. Sci. 2019;22:530–545. doi: 10.1080/1343943X.2019.1647787. | |
dc.relation | Shi S., Fan M., Iwama K., Li F., Zhang Z., Jia L. Physiological basis of drought tolerance in potato grown under long-term water deficiency. Int. J. Plant. Prod. 2015;9:305–320. doi: 10.22069/IJPP.2015.2050. | |
dc.relation | Zhang S., Xu X., Sun Y., Zhang J., Li C. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress. J. Integr. Agric. 2018;17:336–347. doi: 10.1016/S2095-3119(17)61758-1. | |
dc.relation | Aliche E., Oortwijn R., Theeuwen T., Bachem C., Visser R., Van der Linden G. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agric. Water Manag. 2018;206:20–30. doi: 10.1016/j.agwat.2018.04.013. | |
dc.relation | Qin J., Bian C., Liu J., Zhang J., Jin L. An efficient greenhouse method to screen potato genotypes for drought tolerance. Sci. Hortic. 2019;253:61–69. doi: 10.1016/j.scienta.2019.04.017. | |
dc.relation | Ramírez C., Rolando J., Yactayo W., Monneveux P., Mares V., Quiroz R. Improving potato drought tolerance through the induction of long-term water stress memory. Plant Sci. 2015;282:26–32. doi: 10.1016/j.plantsci.2015.05.016. | |
dc.relation | Boguzsewska-Mankowska D., Pieczynski M., Wyrzykowska A., Kalaji H., Sieczko L., Szweykowska-kulinska Z., Zagdanska B. Divergent strategies displayed by potato (Solanum tuberosum L.) cultivars to cope with soil drought. J. Agron. Crop. Sci. 2017;204:13–30. doi: 10.1111/jac.12245. | |
dc.relation | Li X., Ramirez D., Qin J., Dormatey R., Bi Z., Sun C., Wang H., Bai J. Water restriction scenarios and their effects in traits in potato with different degrees of drought stress. Sci. Hortic. 2019;256:108525. doi: 10.1016/j.scienta.2019.05.052. | |
dc.relation | Cabello R., Chujoy E., Mendiburu F., Bonierbale M., Monnevuex P. Large-scale evaluation of potatoes improved varieties, pre-breeding material and landraces for drought tolerance. Am. J. Potato Res. 2012;89:400–410. doi: 10.1007/s12230-012-9260-5. | |
dc.relation | Tardieu F. Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. J. Exp. Bot. 2012;63:25–31. doi: 10.1093/jxb/err269. | |
dc.relation | Juyó D., Sarmiento F., Alvarez M., Brochero H., Cortes H., Gebhart C. Genetic diversity and population structure in dipliod potatotes. Crop. Sci. 2015;55:760–769. doi: 10.2135/cropsci2014.07.0524. | |
dc.relation | Spooner D., Ñúñez J., Trujillo G., Herrera M., Guzmán F., Ghislain M. Extensive simple sequence repeats genotypes of potato landraces support a major reevaluation of their gene pool structure and classification. Proc. Natl. Acad. Sci. USA. 2007;104:19398–19403. doi: 10.1073/pnas.0709796104. | |
dc.relation | Estrada N. Papas Colombianas con el Mejor Entorno Ambiental. UNIPAPA-ICA-CORPOICA; Bogotá, Colombia: 1996. Los recursos genéticos en el mejoramiento de la papa en los países andinos; pp. 1–14. | |
dc.relation | Mosquera T., Del Castillo S., Gálvez D. Breeding differently: Participatory selection and scaling up innovations in Colombia. Potato Res. 2017;60:361–381. doi: 10.1007/s11540-018-9389-9 | |
dc.relation | Juyó D., Soto J., Ballvora A., Léon J., Mosquera T. Novel organ-specific genetic factor for quantitative resistance to late blight in potato. PLoS ONE. 2019;14:e0213818. doi: 10.1371/journal.pone.0213818 | |
dc.relation | Ramírez L., Zuluaga C., Cotes J. Evaluación de la resistencia a la sarna polvosa en genotipos bajo condiciones controladas a partir de tubérculos semillas. RFCB. 2014;11:9–19. doi: 10.18359/rfcb.378 | |
dc.relation | Peña C., Sanchez L., Kushalappa A., Rodriguez L., Mosquera T., Nárvaez C. Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT. 2015;62:76–86. doi: 10.1016/j.lwt.2015.01.038. | |
dc.relation | Narváez C., Peña C., Restrepo L., Kushalappa A., Mosquera T. Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. J. Food Compos. Anal. 2018;66:179–184. doi: 10.1016/j.jfca.2017.12.019. | |
dc.relation | Ñúztes C. Estudios Fenotípicos y Genéticos Asociados a la Calidad de Fritura en Solanum tuberosum Phureja Juz et Buk. [Online]. Ph.D. Thesis, Universidad Nacional de Colombia, 2011. [(accessed on 10 June 2020)]; Available online: http://www.bdigital.unal.edu.co/4318/ | |
dc.relation | Duarte D., Ñústez C., Narváez C., Restrepo L., Melo S., Sarmiento F., Kushalappa A., Mosquera T. Natural variation of sucrose, glucose and fructose contents in Colombian genotypes of Solanum tuberosum Group Phureja at harvest. J. Sci. Food Agric. 2016;96:4288–4294. doi: 10.1002/jsfa.7783. | |
dc.relation | Piñeros C., Narvaéz C., Kushalappa A., Mosquera T. Hydroxycinnamic acids in cooked potato tubers from Solanum tuberosum Group Phureja. Food Sci. Nutr. 2016;5:1–10. doi: 10.1002/fsn3.403. | |
dc.relation | Parra M., Piñeros C., Soto J., Mosquera T. Chromosomes I and X harbor consistent genetic factors associated with anthocyanin variation in potato. Agronomy. 2019;10:366. doi: 10.3390/agronomy9070366. | |
dc.relation | Lichtenthaler H. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembrans. Method. Enzymol. 1987;148:350–382. doi: 10.1016/0076-687948036-1. | |
dc.relation | Lozano P., Sarmiento F., Mejía L., Álvarez F., Melgarejo L. Physiological, biochemical and transcriptional responses of Passiflora edulis f. edulis under progressive drought stress. Sci. Hortic. 2021;275:109655. doi: 10.1016/j.scienta.2020.109655. | |
dc.relation | Liu F., Jensena C., Shahanzaria A., Andersenb M., Jacobsen S. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 2005;168:831–836. doi: 10.1016/j.plantsci.2004.10.016 | |
dc.relation | Duarte D., Narváez C., Restrepo L., Kushalappa A., Mosquera T. Development and validation of liquid chromatographic method to quantify sucrose, glucose and fructose of Solanum tuberosum Group Phureja. J. Chromatogr. B. 2015;975:18–23. | |
dc.relation | Fernandez G. Effective selection criteria for assessing stress tolerance. In: Kuo C.G., editor. Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress; Taipei, Taiwan. 13–16 August 1992; Tainan, Taiwan: AVRDC Publication; 1992. pp. 257–270. | |
dc.relation | Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017;40:4–10. doi: 10.1111/pce.12800. | |
dc.relation | Fabregas N., Fernie A. The metabolic response to drought. J. Expt. Bot. 2019:7010771085. doi: 10.1093/jxb/ery437. | |
dc.relation | Naservafaei S., Sohrabi Y., Moradi P., Sweeny E., Mastinu A. Biological Response of Lallemantia iberica to Brassinolide Treatment under Different Watering Conditions. Plants. 2021;10:496. doi: 10.3390/plants10030496. | |
dc.relation | Batool T., Ali S., Seleiman M. Plant growth promoting rhizobacterium alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci. Rep. 2020;10:16975. doi: 10.1038/s41598-020-73489-z. | |
dc.relation | Marcek T., Hamow K., Végh B., Janda T., Darko E. Metabolic response to drought in six winter wheat genotypes. PLoS ONE. 2019;14:e0212411. | |
dc.relation | Guo R., Shi L., Jiao Y., Li M., Zhong X., Gu F., Liu Q., Xia X., Li H. Metabolic response to drought stress in the tissues of drought–tolerant and drought-sensitive wheat genotype seedlings. AoB Plants. 2018;10:ply016. doi: 10.1093/aobpla/ply016. | |
dc.relation | Ronquim C., Prado C., Souza J. Growth, photosynthesis and leaf water potential in young plants of Capaifera langsdorffi Desf. (Caesalpiniacea) under contrasting irradiances. Braz. Soc. Plant Phys. 2019;23:197–208. doi: 10.1590/S1677-04202009000300004. | |
dc.relation | Dos Santos C., Verissimo V., Wanderley-Filho H., Ferreira V., Cavalcante P., Rolim E., Endress L. Seasonal variations of photosynthesis, gas Exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semi-humid and semi-arid areas subject to water stress. Ind. Crop. Prod. 2013;41:203–213. doi: 10.1016/j.indcrop.2012.04.003. | |
dc.relation | Baker N. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008;59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759. | |
dc.relation | Rodriguez L., Ñústez C., Moreno L. Drought stress affect physiological parameters but not tuber yield in three Andean potatoes (Solanum tuberosum L.) cultivars. Agron.Colomb. 2017;35:158–170. doi: 10.15446/agron.colomb.v35n2.65901 | |
dc.relation | Kapoor D., Bhardwaj S., Landi M., Sharma A., Ramakrishna M., Sharma A. The impact of drought in plants metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. 2020;10:5692. doi: 10.3390/app10165692. | |
dc.relation | Ramírez D., Yactayo W., Gutiérrez R., Mares V., De Mendiburu F., Posadas A. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci. Hortic. 2014;168:202–209. doi: 10.1016/j.scienta.2014.01.036. | |
dc.relation | Plich J., Boguszewska-Mankowska D., Marczewski W. Relations between photosynthetic parameters and drought-induced tuber yield decrease in Katahdin-derived potato cultivars. Potato Res. 2020;63:463–477. doi: 10.1007/s11540-020-09451-3. | |
dc.relation | Soltys- Kalina D., Plich J., Marczewski W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of “Katahdin”- derived potato cultivars. Breed. Sci. 2016;66:328–331. doi: 10.1270/jsbbs.66.328. | |
dc.relation | Rudack K., Seddig S., Sprenger H., Kohl K., Uptmoor R., Ordon F. Drought stress-induced changes in starch yield and physiological traits in potato. J. Agron. Crop. Sci. 2017:1–12. doi: 10.1111/jac.12224. | |
dc.relation | Cabello R., Monneveux P., Bonierbale M., Khan M. Heritability of yield components under irrigated and drought conditions in Andigenum potatoes. Am. J. Potato Res. 2014;91:492–499. doi: 10.1007/s12230-014-9379-7. | |
dc.relation | Badr A., El-Shazly H., Tarawneh R., Borner A. Screening for drought tolerance in Maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants. 2020;9:565. doi: 10.3390/plants9050565. | |
dc.relation | Deuvax A, Kromann P, Ortiz O. Potatoes for sustainable global food security. Potato Res. 2014; 57:185–199.doi: 10.1007/s11540-014-9265-1 | |
dc.relation | FAOSTAT. In: FAOSTAT [Internet]. 2020 [cited 24 Oct 2020]. Available: http://www.fao. org/faostat/en/#home | |
dc.relation | Narvaéz-Cuenca C, Peña C, Restrepo L, Kushalappa A. Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. J. Food Compos. Anal. 2018; 66:179-184. doi: 0.1016/j.jfca.2017.12.019 | |
dc.relation | Peña C, Restrepo L, Kushalappa A, Rodríguez L, Mosquera T, Narvaéz-Cuenca. Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT. 2015; 62:76-86. doi: 10.1016/j.lwt.2015.01.038 | |
dc.relation | Ortiz O, Mares V. The historical, social, and economic importance of the potato crop. Kumar Chakrabarti S, Xie C, Kumar Tiwari J. (eds). 2017.The Potato Genome. Compendium of plant Genomes. Springer, Cham. doi: 10.1007/978-3-319-66135-3_1 | |
dc.relation | Monneveux P, Ramírez D, Pino M. Drought tolerance in potato (S. Tuberosum L.): can we learn from drought tolerance research in cereals? Plant Sci. 2013; 205:76–86. doi: 10.1016/j.plantsci.2013.01.011 | |
dc.relation | Aliche E, Oortwijn M, Theeuwen T, Bachem C, Visser R, et al. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agric. Water Mang. 2018; 206: 20-30.doi: 10.1016/j.agwat.2018.04.013 | |
dc.relation | Binod P, Bhim B, Duryodhan C, Bishu P, Sung J, et al. Growth and yield characters of potato genotypes grown in drought and irrigated conditions of Nepal. Int. J. Appl. Sci. Biotechnol. 2015; 3: 513-519.doi: 10.3126/ijasbt. v3i3.13347 | |
dc.relation | Cabello R, De Mendiburu F, Bonierbale M, Monneveux P, Roca W, et al. Large-scale evaluation of potato improved varieties, genetic stocks and landraces for drought tolerance. Am. J. Potato Res. 2012; 89: 400–410.doi: 10.1007/s12230-012-9260-5 | |
dc.relation | O'Neill B, Oppenheimer, Warren R. et al. IPCC reasons for concern regarding climate change risks. Nature Clim. Change. 2017; 7: 28-37. doi: 10.1038/nclimate3179 | |
dc.relation | Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)].2014; IPCC, Geneva, Switzerland | |
dc.relation | Raymundo R, Asseng S, Robertson R, Petsakos A, Hoogenboom G, et al. Climate change impact on global potato production. Eur. J. Agron. 2018; 100:87-98. doi: 10.1016/j.eja.2017.11.008 | |
dc.relation | Daryanto S, Wang L, Jacinthe P. Drought effects on root and tuber production: a meta-analysis. Agric Water Manag. 2016; 176,122–131.doi: 10.1016/j.agwat.2016.05.019 | |
dc.relation | Khan M, Saravia D, Munive S, Lozano F, Farfan E, et al. Multiple QTLs linked to agro-morphological and physiological traits related to drought tolerance in potato. Plant Mol. Biol. Rep. 2015; 33:1286-1298. doi: 10.1007/s11105-014-08-24z | |
dc.relation | Potato Genome Sequencing Consortium (PGSC). Genome sequence and analysis of the tuber crop potato. Nature. 2011; 475:189–195. doi: 10.1038/nature10158 | |
dc.relation | Juyó D, Soto J, Ballvora A, León J, Mosquera T. Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PloS ONE. 2019; 14(7), e0213818. doi: 10.1371/journal.pone.0213818 | |
dc.relation | Álvarez M, Angarita M, Delgado M, García C, Jiménez J, et al. Identification of novel associations of candidate genes with resistance to late blight in Solanum tuberosum Group Phureja. Front. Plant Sci. 2017; 8,1040. doi: 10.3389/fpls.2017.01040. eCollection 2017 | |
dc.relation | Li J, Lindqvist-Kreuze H, Tian Z, Song B, Landeo J, et al. Conditional QTL underlying resistance to late blight in a diploid potato population. Theor. Appl. Genet. 2012; 124: 1339-1350.doi: 10.1007/s00122-012-1791-0 | |
dc.relation | Braun S, Endelman J, Haynes K, Jansky S. Quantitative trait loci for resistance to common scab and cold-induced sweeting in diploid potato. Plant Genome. 2017; 10:1-9. doi:10.3835/plantgenome2016.10.0110 | |
dc.relation | Parra M, Piñeros C, Soto J, Mosquera T. Chromosomes I and X harbor consistent genetic factors associated with anthocyanin variation in potato. Agronomy. 2019; 10(4): 532. doi: 10.3390/agronomy9070366 | |
dc.relation | Duarte D, Juyó D, Gebhardt C, Sarmiento F, Mosquera T. Novel SNP markers in InvGE and Sssl genes are associated with natural variation of sugar contents and friyng color in Solanum tuberosum Group Phureja. BMC Genetics. 2017; 18(1):91. doi: 10.1186/s12863-017-0489-3 | |
dc.relation | Obidiegwe J, Bryan G, Jones H, Prashar A. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 2015; 6: 542. doi: 10.3389/fpls.2015.00542 | |
dc.relation | Anithakumari A, Dolstra O, Vosman B, Visser R. In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica. 2011; 181: 357-369.doi: 10.1007/s10681-011-0446-6 | |
dc.relation | Anithakumari A, Nataraja K, Visser R, van der Linden C. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breeding. 2012; 30(3):1–17.doi: 10.1007/s11032-012-9728-5 | |
dc.relation | Korte A, Farlow A. The advantages and limitations of traits with GWAS: a review: Plant Methods. 2013; 9: 29.doi: 10.1186/1746-4811-9-29 | |
dc.relation | Alqudah A, Sallam A, Baenziger S, Borner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: Lessons from barley- A review. J. Adv. Res. 2019; 22:119-135. doi: 10.1016/j.jare.2019.10.013 | |
dc.relation | Cortes L, Zhang A, Yu J. Status and prospects of genome-wide association studies in plants. The plant genome. 2021;14(1): e20077. doi:10.1002/tpg2.20077 | |
dc.relation | Thabet S, Moursi Y, Karam M, Borner A, Alqudah M. Natural variation uncovers candidate genes for barley spikelet number and grain yield under drought stress. Gene. 2020;11: 533. doi:10.3390/genes11050533 | |
dc.relation | Dos Santos Silva P, Sousa P, De Oliveira E. Genome-wide association study of drought tolerance in cassava. Euphytica. 2021; 217:60. doi:10.1007/s10681-021-02800-4 | |
dc.relation | Chen L, Fang Y, Li X, Zeng K, Chen H, et al. Identification of soybean drought-tolerant genotypes and loci correlated with agronomic traits contributes new candidate genes for breeding. Plant Mol. Biol. 2020; 102:109-122. doi: 10.1001/s11103-0.19-00934-7 | |
dc.relation | Gizaw S, Godoy J, Pumphrey M, Carter A. Spectral reflectance for indirect selection and genome-wide association analyses of grain yield and drought tolerance in north America spring wheat. Crop Sci. 2018; 58 (6): 2289-2301. doi:10.2135/cropsci2017.11.0690 | |
dc.relation | Fernandez G. Effective selection criteria for assessing stress tolerance. In: Kuo CG (ed.) Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. Tainan: AVRDC Publication.1992; 257–270. doi: 10.22001/wvc.72511 | |
dc.relation | Díaz P, Melgarejo L, Arcila I, Mosquera T. Physiological, biochemical and yield-component responses of Solanum tuberosum L. Group Phureja genotypes to a water deficit. Plants. 2021; 10(4):634. doi: 10.3390/plants10040638 | |
dc.relation | Liu Y, Zeng Y, Yuanming L, Liu Z, Lin-Wang K, et al. Genomic survey and gene expression analysis of MYB-related transcription factor superfamily in potato (Solanum tuberosum L.). Int. J. Biol.Macromol. 2020; 164:2450-2464. doi: 10.1016/j.ijbiomac.2020.08.062 | |
dc.relation | R Core Team (2020). R: A Language and Environment for Statistical Computing. Available online at: http://www.r-project.org/ (accessed April 2020). | |
dc.relation | 36. Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155: 945–959 | |
dc.relation | Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14: 2611–2620.doi:10.1111/j.1365-294X.2005. 02553.x | |
dc.relation | Lipka A, Tian C, Wang Q, Peiffer J, Li M, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012; 18(15): 2397-2399.doi: 10.1093/bioinformatics/bts444 | |
dc.relation | Yu J, Pressoir G, Briggs W, Vroh Bi I, Yamasaki M, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006; 38(2) :203-208. doi :10. 1038.ng1702 | |
dc.relation | Zhang Z, Ersoz E, Lai C, Todhunter R, Tiwari H, et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010; 42 :355-360. doi :10.1038/ng.546 | |
dc.relation | Segura V, Vilhjalmsson B, Platt A, Korte A, Seren U, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 2012; 44 :825-830. doi :10.1038/ng.2314 | |
dc.relation | Endelman J. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome. 2011; 4(3):250-255. doi: 10.3835/plantgenome2011.08.0024 | |
dc.relation | Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, et al. Potato Annexin STANN1 promotes drought tolerance and mitigates light stress in transgenic Solanum tuberosum L. plants. PloS One. 2015; 10(7): e0132683. doi: 10.1371/journal.pone.0132683 | |
dc.relation | Aliche E, Theeuwen T, Oortwijn M, Visser R, Van der Linden G. Carbon partitioning mechanism in potato under stress. Plant Physiol. Biochem. 2020; 146:211-219. doi: 10.1016/j.plaphy.2019.11.019 | |
dc.relation | Hirut B, Shimeli H, Fentahum M, Bonierbale M, Gastelo M, et al. Combining ability of highland tropic adapted potato for tuber and yield components under drought. PLoS ONE. 2017; 12: e0181541. doi: 10.1371/journal.pone.0181541 | |
dc.relation | Juyó D, Sarmiento F, Álvarez M, Brochero H, Gebhardt C, et al. Genetic diversity and population structure in diploid potatoes of Solanum tuberosum Group phureja. Crop Sci. 2015; 55: 760–769. doi: 10.2135/cropsci2014.07.0524 | |
dc.relation | Camadro E. Relevance of the genetic structure of natural populations, and sampling and classification approaches conservation and use of wild crop relatives: potato as an example. Botany. 2012; 90: 1065-1072. doi:10.1139/b2012-090 | |
dc.relation | Spooner D, Gavrilenko T, Jansky S, Ovchinnikova A, Krylova E, et al. Ecogeography od ploidy variation in cultivated potato (Solanum sect. Petota). Am. J. Bot. 2010; 97: 2049-2060.doi: 10.3732/ajb.1000277 | |
dc.relation | Contreras-Soto R, Mora F, Lazzari F, Oliveira M, Scapim C, et al. Genome-wide association mapping for flowering and maturity in tropical soybean: implications for breeding strategies. Breed. Sci. 2017; 67:435- 449. doi: 10.1270/jsbbs.17024 | |
dc.relation | Mora F; Castillo D; Lado B; Matus I, Poland J, et al. Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a worldwide germplasm collection of spring wheat using SNP markers. Mol. Breed. 2015; 35: 69. doi: 10.1007/s11032-015-0264-y | |
dc.relation | Zhu R, Gao Y, Zhang Q. Quantitative trait locus mapping of floral and related traits using an F2 population of Aquilegia. Plant Breed. 2014; 133(1):153-161. doi:10.1111/pbr.12128 | |
dc.relation | Skeffington A, Graf A, Duxbury Z, Gruissem W, Smith A. Glucan, water dikinase exerts little control over starch degradation in Arabidopsis leaves at night. Plant Physiol. 2014; 165, 866-879. doi: 10.1104/pp.114.237016 | |
dc.relation | Rudack K, Seddig S, Sprenger H, Kohl K, Uptmoor R, et al. Drought stress-induced changes in starch yield and physiological traits in potato. J. Agron. Crop Sci. 2017; 203 (6):494-505. doi: 10.1111/jac.12224 | |
dc.relation | Hwang J, Song W, Hong D, Ko D, Yamaoka Y, et al. Plant ABC transporter enable many unique aspects of a terrestrial plants lifestyle. Mol. Plant. 2016; 9:338-355. doi: 10.1016/j.molp.2016.02.003 | |
dc.relation | Parmar R, Seth R, Singh P, Singh G, Kumar S, et al. Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. kuntze. Sci. Rep. 2019; 9: 7487. doi: 10.1038/s41598-019-43925-w | |
dc.relation | Romero A, Alarcón A, Valbuena R, Galeano C. Physiological assessment of water stress in potato using spectral information. Front.Plant Sci. 2017; 8,1608. doi: 10.3389/fpls.2017.01608 | |
dc.relation | Ramirez D, Yactayo W, Gutierrez R, Mares V. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci.Hortic. 2014;168: 202-209. doi: 10.1016/j.scientia.2014.01.036 | |
dc.relation | Gao Y, Wang Y, Wang X, Liu L. Hexameric structure of the ATPase motor subunit of magnesium chelatase in chlorophyll biosynthesis. Protein Sci. 2019;29 (4): 1026-1032.doi: 10.1002/pro.3816 | |
dc.relation | Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, et al. Transcription factors in plants stress responses: Challenges and potential for sugarcane improvement. Plants. 2020; 9: 491. doi: 10.3390/plants9040491 | |
dc.relation | Yang X, Liu J, Xu J, Duan S, Wang Q, et al. Transcription profiling reveals effects of drought stress gene expression in diploid potato Genotype P3-198. Int. J. Mol. Sci. 2019; 20,852. doi: 10.3390/ijms20040852 | |
dc.relation | Stein O. Granot D. 2019.An overview of sucrose synthase in plants. Front. Plant Sci. 2019;10,95. doi: 10.3389/fpls.2019.00095 | |
dc.relation | Kondrak M, Marincs F, Antal F, Juhasz Z, Banfalvi Z. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol. 2012; 12:74. doi: 10.1186/1471-2229-12-74 | |
dc.relation | Xu J, Wang X, Guo W. The cytochrome P450 superfamily: key players in plant development and defense. J. Integr. Agri. 2015; 14,1673-1686. doi: 10.1016/S2095-3119(14)60980-1 | |
dc.relation | Li P, Li Y, Zhang F, Zhang G, Jiang X, et al. The Arabidopsis UDP-glycosyltransferase UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J. 2016;89 (1):85.103. doi: 10.1111/tpj.13324 | |
dc.relation | Mosquera T, Álvarez M, Jiménez J, Muktar M, Paulo M, et al. Gebhardt C. 2016. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLoS ONE. 2016;11(6), e0156254. doi: 10.1371/journal.pone.0156254 | |
dc.relation | Guo M, Lu Z, Zhai Y, Chai W, Gong Z, et al. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterization of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol. 2015; 15:151. doi: 10.1186/s12870-015-0512-7 | |
dc.relation | Sprenger H, Kurowsky C, Horn R, Erban A, Seddig S, et al. The drought response of potato reference cultivars with contrasting tolerance. Plant, Cell and Envir. 2016;39 (11): 2370-2389.doi: 10.1111/pce.12780 | |
dc.relation | Liu J, Pang X, Cheng Y, Yin Y, Zhang Q, et al. The Hsp70 gene family in Solanum tuberosum: Genome-wide identification, phylogeny and expressions patterns. Sci. Rep. 2018; 8:11628. doi: 10.1038/s41598-018-34878-7 | |
dc.relation | Zhao P, Wang D, Wang R, Kong N, Zhang C, et al. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics. 2018;19 (61). doi: 10.1186/s12864-018-4443-1 | |
dc.relation | Yamada K, Osakabe Y, Mizoi J. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. J Biol Chem. 2010; 285, 1138–1146. doi: 10.1074/jbc.M109.054288 | |
dc.relation | Poschet G, Hannisch B, Raab S, Jungkunz I, Klemens P, et al. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. Plant Physiol. 2011; 157 (4):1664-1676. doi: 10.1104/pp.111.186825 | |
dc.relation | Islam M, Choudhury M, Majlishb A, Islamc T, Ghosh A. Comprehensive genome-wide analysis of glutathione S-transferase gene family in potato (Solanum tuberosum L.) and their expression profiling in various anatomical tissues and perturbation conditions. Gene. 2018; 639: 149-162. doi: 10.1016/j.gene.2017.10.007 | |
dc.relation | Dong T, Xu X, Park Y, Kim D, Lee Y, et al. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis. Plant Physi. 2014; 165:227–89. doi: 10.1104/pp.114.239210 | |
dc.relation | Mhashe D, Mahatma K, Jha S, Singh P, Mahatma L, et al. Castor (Ricinus communis L.) Rc-LOX plays important role in wilt resistance. Ind. Crops Prod. 2013; 45: 20-24. doi: 10.1016/j.indcrop.2012.11.035 | |
dc.relation | Hyun T, Van der Graaff E, Albacete A, Eom S, Grobkinsky D, et al. The Arabidopsis PLAT domain protein 1 is a critically involved in abiotic stress tolerance. PloS One. 2014; 9, e112946. doi: 10.1371/journal.pone.0112946 | |
dc.relation | Li J, Han G, Sun C, Suin N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal Behav. 2019;14(8):1613131. doi:10.1080/15592324 | |
dc.relation | Chen Y, Li C, Yi J, Yang Y, Lei C, et al. Transcriptome response to drought, rehydration and re-dehydration in potato. Int. J. Mol. Sci. 2020; 21 (1):159. doi :10.3390/ijms21010159 | |
dc.relation | Shin D, Moon S, Kim B, Park S, Lee S, et al. Expressions of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol. 2011; 155(1):421-432. doi: 10.1104/pp110.163634 | |
dc.relation | Abid M, Ali S, Qi L, Zahoor R, Tian Z, et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci. Rep. 2018; 8: 4615. doi: 10.1038/s41598-018-21441-7 | |
dc.relation | Ahmadi S, Andersen N, Plauborg F, Poulsen R. Effects of irrigation strategies and soils on field-grown potatoes : gas exchange and xylem ABA. Agr. Water Manage. 2010; 97: 1486-1494. doi: 10.1016/j.agwat.2010.05.002 | |
dc.relation | Aliche E, Theeuwen T, Oortwijn M, Visser R, Van der Linden G. Carbon partitioning mechanisms in potato under drought stress. Plant Physiol. Biochem. 2020, 146, 211-219, doi: 10.1016/j.plaphy.2019.11.019 | |
dc.relation | Aliche E, Oortwijn M, Theeuwen T, et al. Genetic mapping of tuber size distribution and marketable tuber yield under drought stress in potatoes. Euphytica. 2019; 215: 186. doi: 10.1007/s10681-019-2508-0 | |
dc.relation | Anithakumari A, Nataraja K, Visser R, van der Linden C. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breed. 2011; 30 (3):1.17. doi:10.1007/s11032-012-9728-5 | |
dc.relation | Ariza W, Rodríguez L, Moreno D, Guerrero C, Moreno L. Effect of water deficit on some physiological and biochemical responses the yellow diploid potato (Solanum tuberosum L. group Phureja). Agron. Colomb. 2020; 38 (1): 36-44. doi: 10.15446/agron.colomb.v38n1.78982 | |
dc.relation | Baker, N. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008; 59:89-113. doi: 10.1146/annurev.arplant.59.032607.092759 | |
dc.relation | Banik P, Zeng W, Tai H, Bizimungu B, Tanino K. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environ. Exp. Bot. 2016; 126:76-89. doi: 10.1016/j.envexpbot.2016.01.008 | |
dc.relation | Barnaby J, Fleisher D, Singh S, Sicher R, Reddy V. Combined effect and CO2 enrichment on foliar metabolites of potato (Solanum tuberosum L.) cultivars. J. Plant Interact. 2019; 14(1):110-118. doi: 10.1080/17429145.2018.1562110 | |
dc.relation | Basu S, Ramegowda V, Kumar A, Pereira A. Plant adaptation to stress. F1000Res. 2016; 5: F1000 Faculty Rev-1554. doi: 10.12688/f1000research.7678.1 | |
dc.relation | Boguszewska-Mankowska D, Pieczynski M, Wyrzykowska A, Kalaji H, Sieczko L, et al. Divergent strategies displayed by potato cultivars (Solanum tuberosum L.) cultivars to cope with soil drought. J. Agron. Crop Sci. 2018; 204(1):13-30. doi:10.1111/jac.12245 | |
dc.relation | Boguszewska-Mankowska D, Zarzyńska K, Nosalewicz, A. Drought differentially affects root system size and architecture of potato cultivars with differing drought tolerance. Am.J. Potato Res. 2020; 97(1): 54– 62. doi: 10.1007/s12230-019-09755-2 | |
dc.relation | Bunding C, Vu T, Sedding S, Schum A, Winkelmann. Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an In Vitro screening: Role of proline, osmotic adjustment and drought response in pot trial. J. Agro. Crop Sci. 2017; 203(3):206-218. doi:10.1111/jac.12186 | |
dc.relation | Díaz P, Melgarejo L, Arcila I, Mosquera T. Physiological, biochemical and yield-component responses of Solanum tuberosum L. Group Phureja genotypes to a water deficit. 2021. Plants; 10(4):634. doi: 10.3390/plants10040638 | |
dc.relation | Dien D, Mochizuki T, Yamakawa T. Effects of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolism in rice (Oriza sativa L.) varieties. Plant Prod. Sci. 2019; 22(4):530-545. doi: 10.1080/1343943X.2019.1647787 | |
dc.relation | Du Y, Zhao Q, Chen L, Yao X, Zhang W, et al. Effect of drought stress on sugar metabolism in leaves and root of soybean seedlings. Plant Physiol. Biochem. 2020; 146:1-12. doi: 10.1016/j.plaphy.2019.11.003 | |
dc.relation | Duarte D, Narváez C, Restrepo L, Kushalappa A, Mosquera T. Development and validation of liquid chromatographic method to quantify sucrose, glucose and fructose of Solanum tuberosum Group Phureja. J. Chromatogr. B. 2015, 975,18-23. doi: 10.1016/j.jchromb.2014.10.039 | |
dc.relation | Farhad M, Babak A, Reza Z, Hassan R, Afshin. Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Aust. J. Crop Sci. 2011; 5(1):55-60. doi:10.3316/informit.834571763803137 | |
dc.relation | Gervais T, Creelman A, Li X, Benoit B, De Koeyer D, Dahal K. Potato response to drought stress: physiological and growth basis. Front. Plant. Sci. 2021; 12:1630. Doi:10.3389/fpls.2021.698060 | |
dc.relation | Gray S, Brady S. Plant developmental responses to climate change. Dev. Biol. 2016; 419: 64-77. doi: 10.1016/j.ydbio.2016.07.023 | |
dc.relation | Hijmans J. The effect of climate change on global potato production. Am. J. Potato Res. 2003 ;80:271:279. doi: 10.1007/BF02855363 | |
dc.relation | Hirut B, Shimelis H, Fentahun M, Bonierbale M, Gastelo M, et al. Combining ability of highland tropic adapted potato for tuber yield and yield components under drought. Plos One. 2017;12(7):e0181541. doi: 10.1371/journal.pone.0181541 | |
dc.relation | Hoelle J, Asch F, Khan A; Bonierdale M. Phenology-adjusted stress severity index to assess genotypic responses to terminal drought in field grown potato. Agronomy. 2020;10(9):1298. doi: 10.3390/agronomy10031298 | |
dc.relation | Kondrák M, Marincs F, Antal F, Jahász Z, Bánfalvi Z. Effects of yeast trethalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol. 2012;12:74. doi:10.1186/1471-2229-12-74 | |
dc.relation | Hu L, Xie Y, Fan S, Wang Z, Zhang B. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. Plant Sci. 2018; 272:276-293. doi: 10.10167j,plantsci.2018.03.036 | |
dc.relation | Ibañez V, Kozub C, González C, Jerez D, Masueeli R, et al. Response to water deficit of semi-desert wild potato Solanum Kurtzianum genotypes collected from different altitudes. Plant Sci. 2021; 308:110911. doi:10.10.16/j.plantsci.2021.110911 | |
dc.relation | IPCC. Climate Change 2021: The physical science basis. Contribution working group I to the sixth assessment report of the intergovernmental panel on climate change. 2021; Cambridge University Press. In Press | |
dc.relation | Kim W, Lizumi T, Nishimori M. Global patterns of crop production losses associated with drought from 1983 to 2009. JAMC. 2019; 58(6): 1233-1244. doi:10.1175/JAMC-D-18-0174.1 | |
dc.relation | Legay S, Lefevre L, Lamourex D, Barreta C, Gutierrez R. Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerant and sensitive in advanced potato clones (Solanum tuberosum L.). Funct. Integr. Genomics. 2011; 11:275-291. doi: 10.1007/s1042-010-0206-z | |
dc.relation | Leng G, Hall. Crop yield sensitivity of global major agricultural countries to drought and the projected changes in the future. Sci. Total Environ. 2019; 654: 811-821. doi:10.1016/j.scitotenv2018.10434 | |
dc.relation | Li X, Ramírez D, Qin J, Dormatey R, Bi Z, et al. Water restriction scenarios and their effects on traits in potato with different degrees of drought tolerance. Sci. Hort. 2019; 256: 108525. doi: 10.1016/j.scienta.2019.05.052 | |
dc.relation | Marcek T, Áron K, Végh B, Janda T, Darko E. Metabolic response to drought in six winter wheat genotypes. Plos One. 2019;14(2): e0212411 . doi: 10.1371/journal.pone.0212411 | |
dc.relation | Martorell S, Díaz-Espejo A, Medrano H, Ball M, Choat B. Rapidly hydraulic recovery in Eucalyptus pauciflora ater drought: linkages between stem hydraulic and leaf exchange. Plant Cell Environ. 2014; 37:617-626. doi: 10.1111/pce.12182 | |
dc.relation | Osakabe Y, Osakabe K, Shinozahi K, Tran L. Response of plants to water stress. Front. Plant Sci. 2014; 5: 86. doi:10.3389/fpls.2014.00086 | |
dc.relation | Plich J, Boguszewska-Mankowska D, Marczewki W. Relations between photosynthetic parameters and drought-induced tuber yield decrease in Katahdin- derived potato cultivars. Potato Res. 2020; 63:463-470. doi: 10.1007/s11540-020-09451-3 | |
dc.relation | Qin J, Bian C, Liu J, Zhang J, Jin L. An efficient greenhouse use method to screen potato genotypes for drought tolerance. Sci. Hort. 2019; 253: 61-69. doi:10.1016/j.scientia.2019.04.017 | |
dc.relation | Ramírez D, Yactayo W, Gutiérrez R, Mares V, De Mendiburu F, et al. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci. Hort. 2014; 168:202-209. doi: 10.1016/j.scientia.2014.01.036 | |
dc.relation | Raymundo E, Asseng S, Robertson R, Petsakos A, Hoogenboom G, et al. Climate change on global potato production . Eur. J. Agron. 2018. 100: 87-98. doi: 10.1016/j.eja.2017.11008 | |
dc.relation | R Core Team. R: A Language and Environment for Statistical Computing. 2021, R Foundation Computing, Vienna, Austria. Available online at: http://www.r-project.org/ (accessed May 2021). | |
dc.relation | Rodrigues J, Inzé D, Nelissen H, Saibo N. Source-sink regulation in crops under water deficit. Trend Plant Sci. 2019; 24(7):652-663. doi:10.1016/j.tplants.2019.04.005 | |
dc.relation | Rodríguez L, Ñústez C, Moreno L. Drought stress affects physiological parameters but not tuber yield in stress Andean potato (Solanum tubesorum L.) cultivars. Agron. Colomb. 2017; 35(2):158-170. doi: 10.15446/agron.colomb.v35n2.65901 | |
dc.relation | Rodríguez L, Sanjuanelo D, Ñústez C, Moreno-Fonseca L. Growth and phenology of three Andean potato varieties (Solanum tuberosum L.) under water stress. Agron. Colom. 2016;34(2). doi: 10.15446/agron.colom.v34n2.55279 | |
dc.relation | Rolando J, Ramírez D, Yactayo W, Monneveux P, Quiroz R. Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environ. Exp. Bot.2015; 110:27-35. doi: 10.1016/j.envexpbot.2014.09.006 | |
dc.relation | Romero A, Alarcón A, Valbuena R, Galeano C. Physiological assessment of water stress in potato using spectral information. Front Plant Sci. 2017; 8: 1608. doi: 10.3389/fpls.2017.01608 | |
dc.relation | Rudack K, S eddig S, Sprenger H, Kohl K, Uptomoor R, et al. Drought stress-induced changes in starch yield and physiological traits in potato. J. Agron. Crop Sci. 2017; 1-12. doi:10.1111/jac.12224 | |
dc.relation | Saravia D, Farfán E, Gutiérrez R, De Mendiburu F, Schafleitner R. Yield and physiological response of potatoes indicate different strategies to cope with drought stress and nitrogen fertilization. Am. J. Potato Res. 2016; 93:288-296. doi: 10.1007/s12230-016-9505-9 | |
dc.relation | Shi S, Fan M, Iwaka K, Li F, Jia L. Physiological basis of drought tolerance in potato grown under long-term water deficit. Int. J. Plant Prod. 2015; 9(2): 305-320. | |
dc.relation | Soltys-Kalina D, Plich J, Strzelczyk-Zyta S, Sliwka J, Marczewski W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of “Katahdin”derived potato cultivars. Breed. Sci. 2016; 66:328:331. doi: 10.1270/jsbbs.66.328 | |
dc.relation | Sprenger H, Rudack K, Schudoma C, Neumann A, Seddig, S, et al. Assessment of drought tolerance and its potential yield in potato. Funct. Plant Biol. 2015; 42: 655-667.doi: 10.1071/FP15013 | |
dc.relation | Urban L, Aarrouf J, Bidel L. Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and chlorophyll a fluorescence. Front. Plan Sci. 2017;8:2068. doi:10.3389/fpls.2017.02068 | |
dc.relation | Wang Z, Wei P, Wu M, Xu Y, Li F, et al. Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny and expression patterns. Planta.2015; 242(1):153-166. doi: 10.1007/s00425-015-2297-1 | |
dc.relation | Xia H, Ma X, Xu K, et al. Temporal trancriptomic differences between tolerant and susceptible genotypes contribute to rice drought tolerance. BMC Genomics. 2020;21:776. doi:10.1186/s12864-020-07193-7 | |
dc.relation | Yang X, Lu M, Wang Y, Wang Y, Liu Z, et al. Response mechanism of plants to drought stress. Horticulturae. 2021; 7:50. doi: 10.3390/horticulturae7030050 | |
dc.relation | Zarzyńska K, Boguszewska-Mańkowska D, Nosalewicz, A. Differences in size and architecture of potato cultivars and their tolerance to drought stress. Plant, Soil Envinron. 2017; 63(4): 159– 164. doi:10.17221/4/2017-PSE | |
dc.relation | Zhang S, Xu X, Sun Y, Zhang J, Li C. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress. J. Integr. Agric. 2018; 17(2):336-347. doi:10.1016/S2095-3119(17)61758-1 | |
dc.relation | Zulfiqar F, Akram , Ashraf . Osmoprotection in plants under abiotic stresses: new insight into a classical phenomenon. Planta. 2020:251:3. doi: 10.1007/s00425-019-03293-1 | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Natural allelic diversity and signal responses associated with water deficit tolerance in Solanum tuberosum Group Phureja | |
dc.type | Tesis | |