dc.contributorMosquera Vasquez, Teresa
dc.contributorMelgarejo Luz Marina
dc.contributorGenética de Rasgos de Interés Agronómico
dc.creatorDiaz Valencia, Paula Andrea
dc.date.accessioned2022-06-14T16:09:25Z
dc.date.accessioned2022-09-21T19:46:56Z
dc.date.available2022-06-14T16:09:25Z
dc.date.available2022-09-21T19:46:56Z
dc.date.created2022-06-14T16:09:25Z
dc.date.issued2022-06-08
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81580
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3418543
dc.description.abstractGenetic improvement of diploid potato (Solanum tuberosum Group Phureja) for water deficit tolerance and tuber yield is challenging because of the complex nature of these traits. In order to develop a research that cconsiders the complexity of the trait and simultaneously to make the experiments more tractable, we conducted two studies. The first was conducted to investigate the genetic architecture of the water deficit tolerance by employing the Working Collection of the Potato Breeding Program at the Universidad Nacional de Colombia. A diversity panel of 104 diploid potato accessions were evaluated under both well-watered and water deficit treatments at tuber initiation stage. The response to water deficit conditions was assessed with the relative chlorophyll content (CC), the maximum quantum efficiency of PSII (Fv/Fm), relative water content (RWC), leaf sugar content, tuber number per plant (TN), and tuber fresh weight per plant (TW). The phenotypic evaluation results revealed that the physiological, biochemical and yield-component variables had a broad variation, while the yield-component variables more powerfully distinguished between the tolerant and susceptible genotypes than the physiological and biochemical variables. The multivariate analysis based on the Drought Tolerance Index (DTI) revealed different levels of water deficit tolerance for the 104 genotypes. The Genome-Wide Association Studies (GWAS) was conducted using a matrix of 47 K single nucleotide polymorphisms (SNP), recently available for this population. We are reporting 38 Quantitative Trait Loci (QTL), seven for well-watered conditions, twenty-two for water deficit condition,s and nine for DTI which explain between 12.6% and 44.1% of the phenotypic variance. A set of 6 QTL were found to be associated with more than one variable. Of the nine QTL detected from DTI on chromosomes 2, 3, 5, 8, 10 and 12, three candidate genes with a feasible role in water deficit response were identified. These results provide a foundation for future research directed at understanding the molecular mechanisms underlying potato tolerance to water deficits, and the QTL identified could be used in marker-assisted selection (MAS) for water-deficit tolerance breeding in potato. In the second study, we investigated the physiological, biochemical and yield-related variables of four contrasting water-deficit tolerance diploid potato genotypes to water deficit with emphasis on temporal trend responses. Comparative analysis successfully identified that the physiological changes were faster and pronounced in the water-deficit sensitive genotypes. In contrast, in the tolerant genotypes water deficit induced earlier and more remarkable accumulation of sucrose and glucose. The observed temporal response showed that statistical differences between tolerant and sensitive genotypes in ψl, CC, and soluble sugar content can be distinguished from 3DAT. In general, the temporal variation in physiological and biochemical parameters demonstrated the presence of different strategies among tolerant genotypes. These results can contribute to a better understanding of the temporal physiological and biochemical mechanisms leading to water-deficit tolerance and will help potato breeding programs with improved stress tolerance and stable yields under changing climate conditions without the loss of yield potential under optimal conditions. The results of this study provide insights into the nature of genetic variations governing water deficit tolerance in diploid potato. Knowledge gained of the dissection may be utilized in breeding programs to select lines with improved yield and water deficit tolerance. Additionally, the information from the panel SNP polymorphisms and candidate gene detection provides research avenues to further refine/narrow down genomic regions associated with these agronomically important traits, and also opens gates for genetic enhancement through genomic aided selection.
dc.description.abstractEl mejoramiento genético de la papa diploide (Solanum tuberosum Group Phureja) para tolerancia al déficit de agua y rendimiento de tubérculos es un desafío debido a la naturaleza compleja de estos rasgos. Con el fin de desarrollar una investigación que considere la complejidad del rasgo y, al mismo tiempo, hacer que los experimentos sean más tratables, llevamos a cabo dos estudios. El primero se realizó para investigar la arquitectura genética de la tolerancia al déficit hídrico empleando la Colección de Trabajo del Programa de Mejoramiento de Papa de la Universidad Nacional de Colombia. Se evaluó un panel de diversidad de 104 accesiones diploides de papa bajo tratamientos de riego abundante y de déficit hídrico en la etapa de iniciación del tubérculo. La respuesta a condiciones de déficit hídrico se evaluó con el contenido relativo de clorofila (CC), la eficiencia cuántica máxima de PSII (Fv/Fm), el contenido relativo de agua (RWC), el contenido de azúcar foliar, el número de tubérculos por planta (TN) y el número de tubérculos. peso fresco por planta (PT). Los resultados de la evaluación fenotípica revelaron que las variables fisiológicas, bioquímicas y del componente de rendimiento tuvieron una amplia variación, mientras que las variables del componente de rendimiento distinguieron con mayor fuerza entre los genotipos tolerantes y susceptibles que las variables fisiológicas y bioquímicas. El análisis multivariado basado en el Índice de Tolerancia a la Sequía (DTI) reveló diferentes niveles de tolerancia al déficit hídrico para los 104 genotipos. Los estudios de asociación de todo el genoma (GWAS) se realizaron utilizando una matriz de polimorfismos de un solo nucleótido (SNP) de 47 K, disponible recientemente para esta población. Estamos reportando 38 Quantitative Trait Loci (QTL), siete para condiciones de riego abundante, veintidós para condiciones de déficit hídrico y nueve para DTI que explican entre el 12,6% y el 44,1% de la varianza fenotípica. Se encontró que un conjunto de 6 QTL estaba asociado con más de una variable. De los nueve QTL detectados de DTI en los cromosomas 2, 3, 5, 8, 10 y 12, se identificaron tres genes candidatos con un papel factible en la respuesta al déficit hídrico. Estos resultados proporcionan una base para futuras investigaciones dirigidas a comprender los mecanismos moleculares que subyacen a la tolerancia de la papa a los déficits de agua, y el QTL identificado podría usarse en la selección asistida por marcadores (MAS) para el mejoramiento de la papa con tolerancia al déficit de agua. En el segundo estudio, investigamos las variables fisiológicas, bioquímicas y relacionadas con el rendimiento de cuatro genotipos de papa diploide con tolerancia al déficit de agua que contrastan con el déficit de agua, con énfasis en las respuestas de tendencia temporal. El análisis comparativo identificó con éxito que los cambios fisiológicos fueron más rápidos y pronunciados en los genotipos sensibles al déficit de agua. En cambio, en los genotipos tolerantes el déficit hídrico indujo una acumulación más temprana y notable de sacarosa y glucosa. La respuesta temporal observada mostró que las diferencias estadísticas entre los genotipos tolerantes y sensibles en ψl, CC y contenido de azúcar soluble se pueden distinguir de 3DAT. En general, la variación temporal de los parámetros fisiológicos y bioquímicos demostró la presencia de diferentes estrategias entre los genotipos tolerantes. Estos resultados pueden contribuir a una mejor comprensión de los mecanismos fisiológicos y bioquímicos temporales que conducen a la tolerancia al déficit de agua y ayudarán a los programas de mejoramiento de la papa con una mejor tolerancia al estrés y rendimientos estables en condiciones climáticas cambiantes sin pérdida del potencial de rendimiento en condiciones óptimas. Los resultados de este estudio brindan información sobre la naturaleza de las variaciones genéticas que gobiernan la tolerancia al déficit hídrico en la papa diploide. El conocimiento adquirido de la disección se puede utilizar en programas de mejoramiento para seleccionar líneas con rendimiento mejorado y tolerancia al déficit de agua. Además, la información del panel de polimorfismos SNP y la detección de genes candidatos proporciona vías de investigación para refinar/reducir aún más las regiones genómicas asociadas con estos rasgos agronómicamente importantes, y también abre puertas para la mejora genética a través de la selección genómica asistida. (Texto tomado de la fuente)
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Doctorado en Ciencias Agrarias
dc.publisherDepartamento de Agronomía
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAgrovoc
dc.relationAliche E, Theeuwen T, Oortwijn M, Visser R, Van der Linden G. Carbon partitioning mechanisms in potato under drought stress. Plant Physiol. Biochem. 2020; 146:211-219. doi: 10.1016/j.plaphy.2019.11.019
dc.relationAliche E, Oortwijn M, Theeuwen T, et al. Genetic mapping of tuber size distribution and marketable tuber yield under drought stress in potato. Euphytica. 2019; 215:189. doi:10.1007/s10681-019-25-08-0
dc.relationAliche E, Oortwijn M, Theeuwen M, Bachem B, Visser F, Van der Linden G. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agric. Wat. Man. 2018; 206:20–30. doi: 10.1016/j.agwat.2018.04.013
dc.relationÁlvarez M, Angarita M, Delgado M, García C, Jiménez-Gomez J, et al. Identification of novel associations of candidate genes with resistance to late blight in Solanum tuberosum Group Phureja, Front. Plant Sci. 2017;8: 1040. doi: 10.3389/flps.2017.01040
dc.relationAndleeb T, Shah T, Nawaz R, Munir I, Munsi, F, et al. QTL mapping for drought stress tolerance in plants. Salt and drought stress tolerance in plants. 2020; 383-403. Cham: Springer. doi:10.1007/978-3-030-40277-8_16
dc.relationAnithakumari A, Dolstra O, Vosman B, Visser R. In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica. 2011; 181: 357-369.doi: 10.1007/s10681-011-0446-6
dc.relationAnithakumari A, Nataraja K, Visser R, van der Linden C. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breeding. 2012; 30(3):1–17. doi: 10.1007/s11032-012-9728-5
dc.relationAraus J, Kefauver S, Zaman-Allah M, Olsen M, Cairns, J. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci.2018, 23: 451–466. doi: 10.1016/j.tplants.2018.02.001
dc.relationAriza W, Rodríguez L, Moreno D, Guerrero C, Moreno L. Effect of water deficit on some physiological and biochemical responses the yellow diploid potato (Solanum tuberosum L. group Phureja). Agron. Colomb. 2020; 38 (1): 36-44. doi: 10.15446/agron.colomb.v38n1.78982
dc.relationBasu S, Ramegowda V, Kumar A, Pereira A. Plant adaptation to stress. F1000Res. 2016; 5: F1000 Faculty Rev-1554. doi: 10.12688/f1000research.7678.1
dc.relationBerdugo-Cely J, Valbuena R, Sánchez-Betancourt E, Barrero L, Yockteng R. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers. PLoS ONE 2017, 12, e0173039
dc.relationBonilla M, CardozoF, Morale A. Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de la papa en Colombia con énfasis en papa criolla, Ministerio de Agricultura y Desarrollo Rural. 2009.
dc.relationBrachi B, Morris G, Borevitz J. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol.2011, 12, 232. doi:10.1186/gb-2011-12-10-232
dc.relationByrne S; Meade F; Mesiti F; Griffin D; Kennedy C, Milbourne, D. Genome-Wide Association and Genomic Prediction for Fry Color in Potato. Agronomy .2020, 10, 90. doi: 10.3390/agronomy10010090
dc.relationChen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell.2014, 26: 4636–4655. doi: 10.1105/tpc.114.129601
dc.relationDemirel U, Morris W, Ducreux L, Yavuz C, Asim A, et al. Physiological, biochemical and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front. Plant Sci. 2020; 11:169. Doi: 10.3389/flps.2020.00169
dc.relationDevaux A, Goffart J, Kromann P. Potato of the future: Opportunities and challenges in sustainable Agri-food systems. Potato Res. 2021; 64:681-720. doi: 10.1007/s11540-021-09501-4
dc.relationDíaz P, Evaluación de la tolerancia al estrés hídrico en genotipos de papa criolla (Solanum Phureja Juz et Buk). Master degree thesis. 2016. Universidad Nacional de Colombia.102
dc.relationDuarte D, Narváez C, Restrepo L, Kushalappa A, Mosquera T. Development and validation of liquid chromatographic method to quantify sucrose, glucose and fructose of Solanum tuberosum Group Phureja. J. Chromatogr. B. 2015, 975,18-23. doi: 10.1016/j.jchromb.2014.10.039
dc.relationEstrada N, 2000. La biodiversidad en el mejoramiento genético de la papa. Centro de Información para el desarrollo, La Paz, Bolivia. PROINPA/CID/CIP Potatoes, 272.
dc.relationEstrada N, 1996. Los recursos genéticos en el mejoramiento de la papa en los países Andinos, in: Papas Colombianas Con El Mejor Entorno Ambiental. UNIPAPA-ICA-CORPOICA.
dc.relationFAOSTAT. Food and agriculture Organization of the United Nations. 2019. Production: Crops. http://faostast.fao.org
dc.relationFriedli M, Kirchgessner,N, Grieder C, Liebisch F, Mannale M, Walter, A. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions. Plant Methods .2016, 12: 1–15
dc.relationFurbank R, and Tester M. Phenomics – technologies to relieve the phenotyping bottleneck. Trend Plant Sci. 2011, 16: 635–644. doi: 10.1016/j.tplants.2011.09.005
dc.relationGervais T, Creelman A, Li X, Bizimungu B, De Koeyer D, et al. Potato response to drought stress: physiological and growth basis. Front. Plant Sci. 2021; 12:1630 .doi: 10.3389/flsp.2021.698060
dc.relationGhislain M, Andrade D, Rodriguez F, Hijmans R, Spooner D. Genetic analysis of the cultivated potato L. Phureja group using RADPs and nuclear SSRs. Theor. Appl. Genet. 2006; 113(8):1515-1527. doi:10.1007/s00122-006-0399-7
dc.relationGitari H, Nyawabe S, Kamau S, Karanja N, Raza M, et al. Revisiting intercropping indices with respect to potato-legume intercropping systems. Field Crops Res. 2020; 258:107957. doi: 10.1016/j.fcr.2020.107957
dc.relationHill D, Nelson D, Hammond J, Bell L. Morphophysiology of potato (Solanum tuberosum) in response to drought stress: paving the way forward. Front. Plant Sci. 2021; 15:675690. doi: 10.3389/fpls.2021.675690
dc.relationJamann T, Balint-Kurti p, Holland J. QTL mapping using high-throughput sequencing. In: Alfonso J., Stepanova A. (eds). Plant functional genomics. Methods in molecular biology. 2015; 1284. Humana Press, New York. doi:10.1007/978-1-4939-2444-8_13
dc.relationJoshi M, Fogelman E, Belausov E, Ginzberg I. Potato root system development and factors that determine its arquitecture. J. Plant Physiol. 2016;205:113-123. doi:10.1016/j.jplph.2016.08.14
dc.relationJuyó D, Soto J, Ballvora A, León J, Mosquera T. Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PloS ONE. 2019; 14(7), e0213818. doi: 10.1371/journal.pone.0213818
dc.relationJuyó D., Sarmiento F., Alvarez M., Brochero H., Cortes H., Gebhart C. Genetic diversity and population structure in dipliod potatotes. Crop. Sci. 2015;55:760–769. doi: 10.2135/cropsci2014.07.0524.
dc.relationKhan M, Saravia D, Munive S, Lozano F, Farfan E, et al. Multiple QTLs linked to agro-morphological and physiological traits related to drought tolerance in potato. Plant Mol. Biol. Rep. 2015; 33:1286-1298. doi: 10.1007/s11105-014-0824-z
dc.relationKlaasen , Willemsem J, Vos P, et al., Genome-wide association in tetraploid potato reveals four QTLs for protein content. Mol. Breeding.2019, 39:151. Doi:10.1007/s11032-019-1070-8
dc.relationKohl K, Aneley G, Hass M, Peters R. Confounding factors in container-based drought tolerance assessments in Solanum tuberosum. Agronomy.2021,11:865. doi:10.3390/agronomy11050865
dc.relationLi N, Gao D, Zhou X, Chen S, Li C, et al. Intercropping with Potato-Onion enhanced the soil microbial diversity of tomato. Microorganisms. 2020; 8:834. doi:10.3390/microorganisms8060834
dc.relationLopes M, Reynolds M. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J. Exp. Bot. 2012, 63, 3789–3798. doi: 10.1093/jxb/ers071
dc.relationMartínez I, Muñoz M, Acuña I, Uribe M. Evaluating the drought tolerance of seven potato varieties on volcanic ash soils in a medium-term trial. Front. Plant Sci. 2021; 12:1238. doi:10.3389/flps.2021.693060
dc.relationMontes J, Technow F, Dhillon B, Mauch F, Melchinger A. High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crops Res.2011, 121: 268–273. doi: 10.1016/j.fcr.2010.12.017
dc.relationNarváez C, Peña C, Restrepo L, Kushalappa A, Mosquera T. Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. J. Food Compos. Anal. 2018;66:179–184. doi: 10.1016/j.jfca.2017.12.019
dc.relationNasir N, Toth Z. Effect of drought stress on potato production. A review. Agronomy. 2022; 12:635.doi: 10.3390/agronomy12030635
dc.relationParra M., Piñeros C., Soto J., Mosquera T. Chromosomes I and X harbor consistent genetic factors associated with anthocyanin variation in potato. Agronomy. 2019;10:366. doi: 10.3390/agronomy9070366.
dc.relationPeña C, Sanchez L, Kushalappa A, Rodriguez L, Mosquera T, et al. Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT. 2015;62:76–86. doi: 10.1016/j.lwt.2015.01.038.
dc.relationPino, T. Estrés hídrico y térmico en papas, avances y protocolos. Santiago, Chile. Instituto de Investigaciones Agropecuarias. 2016, Boletín INIA Nº 331. 148p
dc.relationPiñeros C, Narvaéz C, Kushalappa A, Mosquera T. Hydroxycinnamic acids in cooked potato tubers from Solanum tuberosum Group Phureja. Food Sci. Nutr. 2016;5:1–10. doi: 10.1002/fsn3.403
dc.relationPlich J, Boguszewska-Mańkowska D, Marczewski W. Relations between photosynthetic parameters and drought-induced tuber yield decrease in Katahdin-derived potato cultivars. Pot. Res. 2020; 63: 463–477. doi: 10.1007/s11540-020-09451-3
dc.relationPotato Genome Sequencing Consortium (PGSC). Genome sequence and analysis of the tuber crop potato. Nature. 2011; 475:189–195. doi: 10.1038/nature10158
dc.relationPrashar,A, Yildiz J, Mcnicol J, Bryan G, Jones H. Infra-red thermography for high throughput field phenotyping in Solanum tuberosum. 2013, PLoS One 8:e65816. doi: 10.1371/journal.pone.0065816
dc.relationPrashar A, and Jones G. Infra-red thermography as a high-throughput tool for field phenotyping. Agronomy. 2014, 4: 397–417. doi: 10.3390/agronomy4030397
dc.relationPuértolas J, Ballester C, Elphinstone D, Dodd I. Two potato (Solanum tuberosum) varieties differ in drought due to differences in root growth at depth. Funct. Plant Biol. 2014;41:1107-1118. doi: 10.1071/FP14105
dc.relationQin J, Bian C, Liu J, Zhang J, Jin L. An efficient greenhouse method to screen potato genotypes for drought tolerance. Sci Hortic. 2019; 253:61-69. doi:10.1016/j.scienta.2019.04.017
dc.relationRafalski, J. Association genetics in crop improvement. Curr. Opin. Plant Biol.2010; 13: 174–180.doi: 10.1016/j.pbi.2009.12.004
dc.relationRichards R, Rebetzke G, Watt M, Condon A, Spielmeyer W, Dolferus, R. Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct. Plant Biol.2010. 37: 85–97. doi: 10.1071/F.
dc.relationRodríguez L, Ñustez C, Estrada N. Criolla Latina, Criolla Paisa and Criolla Colombia, new cultivars of “diploid potato” for the province of Antioquia (Colombia). Agron. Colomb.2009, 27, 289–303.
dc.relationRomero A, Alarcón A, Valbuena R, Galeano C. Physiological assessment of water stress in potato using spectral information. Front. Plant Sci. 2017;8:1608. doi: 10.3389/fpls.2017.01608
dc.relationRudack K, Seddig S, Sprenger H, Kohl K, Uptmoor R. Drought stress-induced changes in starch yield and physiological traits in potato. J. Agron. Crop Sci. 2017;203 (6):494-505.doi:10.1111/jac.12224
dc.relationSchafleitner R, Gutierrez R, Espino R, Gaudin A, Perez J, et al. Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Res. 2007;50:71-85
dc.relationSchumacher C, Krannich C, Maletzki L, Kohl K, Kopka J, et al. Unravelling differences in candidate genes for drought tolerance in potato (Solanum tuberosum L.) by use of new functional microsatellite markers. Genes. 2021;12:494. Doi:10.3390/genes12040494
dc.relationSoltys-Kalina D, Plich J, Strzelczyk-Żyta D, Śliwka J, Marczewski, W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breed Sci- 2016; 66: 328–331. doi: 10.1270/jsbbs.66.328
dc.relationSpooner D, Rodriguez F, Polgar Z, Ballard H, Janshky S. Genomic origins of potato polyploids: GBSSI Gene Sequencing Data .Crop Sci. 2008; 48(S1): 27-36. doi:10.2135/cropsci2007.09.0504tpg
dc.relationSpooner D, Ñúñez J, Trujillo G, Herrera M, Guzmán F, et al. Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc. Natl. Aca. Sci. 2007.104:19398-19403. doi: 10.1073/pnas.0709796104
dc.relationStraadt I, Rasmussen O. AFLP analysis of Solanum phureja DNA introgressed into potato dihaploids. Plant Breed. 2003;122:352-356. doi:10.1046/j.1439-0523.2003.000878x
dc.relationTagliotti M, Deperi S, Bedogni M, Huarte M. Genome-wide association analysis of agronomical and physiological traits linked to drought tolerance in a diverse potatoes (Solanum tuberosum )panel. Plant Breed.2021: 0:1-11. doi:10.1111/pbr.12938
dc.relationTorrance L, Cowan G, McLean K, MacFarlene S, et al. Natural resistance to Potato virus Y in Solanum tuberosum Group Phureja. Theor. Appl. Genet. 2020.; 133:967-980. Doi: 10.1007/s00122-019-03521-y
dc.relationTuberosa, R. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 2012, 3:347. doi: 10.3389/fphys.2012.00347
dc.relationUnited Nations Development Programme (UNDP). Human Development Report. The real Wealth of Nations: Pathways to Human Development. New York, NY: UNDP, 20th Anniversary Edition, 2010
dc.relationYang G, Yang X, Zhang X, Li Z, Liu Z, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front. Plant Sci. 2017, 8:1111. doi: 10.3389/fpls.2017.01111
dc.relationWang F, Zou M, Zhao L, Xia Z, Wang J. Genome wide association mapping of late blight tolerance trait in potato (Solanum tuberosum L. )Frontiers Sci. 2021,12. Doi:10.3389/fgene.2021.714575
dc.relationWang Y, Rashid M, Li X, Yao C, Lu L, Bai J. et al. Collection and Evaluation of Genetic Diversity and Population Structure of Potato Landraces and Varieties in China. Front. Plant Sci. 2019, 10, 139
dc.relationWang X, Singh, D, Marla S, Morris G, Poland, J. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods.2018, 14:1–16. doi: 10.1109/lgrs.2020.3039179
dc.relationWijesinha-Bettoni R, Mouille B. The contribution of potatoes to global food security, nutrition and healthy diets. Am. J. Potato Res. 2019; 96:139-149. doi: 10.1007/s12230-018-09697-1
dc.relationZaki H, Radwan K. Response of potato (Solanum tuberosum L.) cultivars to drought stress under invitro and field conditions. Chem. Biol. Technol. Agric. 2020; 9:1. doi:10.1186/s40538-021-00266-z
dc.relationZhang F, Qu L, Gu Y. et al. Resequencing and genome-wide association studies of autotetraploid potato. Mol Horticulture.2022, 2, 6.doi:10.1186/s43897-022-00027-y
dc.relationZarzynska K, Boguszewska-Mankowska D, Nosalewicz A. Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant Soil Environ. 2017; 63 (4):159-164. doi:10.17221/4/2017-PSE
dc.relationNikolaou G., Neocleous D., Christou A., Kitta E., Katsoulas N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy. 2020;10:1120. doi: 10.3390/agronomy10081120.
dc.relationChen X., Wang L., Niu Z., Zhang M., Li C., Li J. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agric. For. Meteorol. 2020;282–283:107867. doi: 10.1016/j.agrformet.2019.107867.
dc.relationMukherjee D. Stochastic model for crop water stress during agricultural droughts. Eng. Rep. 2019;1:1–24. doi: 10.1002/eng2.12081.
dc.relationLamaoui M., Jemo M., Datla R., Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Front. Chem. 2018;6:26. doi: 10.3389/fchem.2018.00026.
dc.relationFAO World Corp Production Statistics. [(accessed on 26 May 2020)];2018 Available online: http//faostat.fao.org/
dc.relationSprenger H., Rudack K., Schudoma C., Neumann A., Seddig S., Peter R., Zuther E., Kopka J., Hincha D., Walther D., et al. Assessment of drought tolerance and its potential yield in potato. Funct. Plant Biol. 2015;42:655–667. doi: 10.1071/FP15013
dc.relationObidiegwu J., Bryan G., Jones H., Prashar A. Coping with drought: Stress and adaptive response in potato and perspective for improvement. Front. Plant Sci. 2015;6:542. doi: 10.3389/fpls.2015.00542.
dc.relationHijmans R. The effect of climate change on global potato production. Am. J. Potato Res. 2003;80:271–279. doi: 10.1007/BF02855363.
dc.relationJones P., Lister D., Jaggard K., Pidgeon J. Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Clim. Chang. 2003;58:93–108. doi: 10.1023/A:1023420102432.
dc.relationMonneveux P., Ramirez D., Pino M. Drought tolerance in potato (S. tuberosum) Can we learn from drought tolerance research in cereals. Plant Sci. 2013;205–206:76–86. doi: 10.1016/j.plantsci.2013.01.011
dc.relationHirut B., Shimelis H., Fentahum M., Bonierbale M., Gastelo M., Asfaw A. Combining ability of highland tropic adapted potato for tuber and yield components under drought. PLoS ONE. 2017;12:e0181541. doi: 10.1371/journal.pone.0181541.
dc.relationRomero A., Alarcon A., Galeano C. Physiological assessment of water stress in potato using spectral information. Front. Plant Sci. 2017;8:1608. doi: 10.3389/fpls.2017.01608.
dc.relationRolando J., Ramírez D., Yactayo W., Monneveux P., Quiroz R. Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.) Environ. Exp. Bot. 2015;110:27–35. doi: 10.1016/j.envexpbot.2014.09.006
dc.relationAliche E., Theeuwen T., Oortwijn M., Visser R., Van der Linden G. Carbon partitioning mechanisms in potato under drought stress. Plant Physiol. Biochem. 2020;146:211–219. doi: 10.1016/j.plaphy.2019.11.019.
dc.relationAnithakumari A., Nataraja K., Visser R., Van der Linden C. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breed. 2012;30:1413–1429. doi: 10.1007/s11032-012-9728-5.
dc.relationSchafleitner R., Gutiérrez R., Espino R., Gaudin A., Perez J., Martínez M., Domínguez A. Field screening for variation of drought tolerance in Solanum tuberosum L. Agronomical, physiological and genetic analysis. Potato Res. 2007;50:71–85. doi: 10.1007/s11540-007-9030-9.
dc.relationDien D., Mochizuki T., Yamakawa T. Effect of various drought stress and subsequent recovery on proline, total soluble sugar and starch metabolisms in rice (Oryza sativa L.) varieties. Plant Prod. Sci. 2019;22:530–545. doi: 10.1080/1343943X.2019.1647787.
dc.relationShi S., Fan M., Iwama K., Li F., Zhang Z., Jia L. Physiological basis of drought tolerance in potato grown under long-term water deficiency. Int. J. Plant. Prod. 2015;9:305–320. doi: 10.22069/IJPP.2015.2050.
dc.relationZhang S., Xu X., Sun Y., Zhang J., Li C. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress. J. Integr. Agric. 2018;17:336–347. doi: 10.1016/S2095-3119(17)61758-1.
dc.relationAliche E., Oortwijn R., Theeuwen T., Bachem C., Visser R., Van der Linden G. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agric. Water Manag. 2018;206:20–30. doi: 10.1016/j.agwat.2018.04.013.
dc.relationQin J., Bian C., Liu J., Zhang J., Jin L. An efficient greenhouse method to screen potato genotypes for drought tolerance. Sci. Hortic. 2019;253:61–69. doi: 10.1016/j.scienta.2019.04.017.
dc.relationRamírez C., Rolando J., Yactayo W., Monneveux P., Mares V., Quiroz R. Improving potato drought tolerance through the induction of long-term water stress memory. Plant Sci. 2015;282:26–32. doi: 10.1016/j.plantsci.2015.05.016.
dc.relationBoguzsewska-Mankowska D., Pieczynski M., Wyrzykowska A., Kalaji H., Sieczko L., Szweykowska-kulinska Z., Zagdanska B. Divergent strategies displayed by potato (Solanum tuberosum L.) cultivars to cope with soil drought. J. Agron. Crop. Sci. 2017;204:13–30. doi: 10.1111/jac.12245.
dc.relationLi X., Ramirez D., Qin J., Dormatey R., Bi Z., Sun C., Wang H., Bai J. Water restriction scenarios and their effects in traits in potato with different degrees of drought stress. Sci. Hortic. 2019;256:108525. doi: 10.1016/j.scienta.2019.05.052.
dc.relationCabello R., Chujoy E., Mendiburu F., Bonierbale M., Monnevuex P. Large-scale evaluation of potatoes improved varieties, pre-breeding material and landraces for drought tolerance. Am. J. Potato Res. 2012;89:400–410. doi: 10.1007/s12230-012-9260-5.
dc.relationTardieu F. Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. J. Exp. Bot. 2012;63:25–31. doi: 10.1093/jxb/err269.
dc.relationJuyó D., Sarmiento F., Alvarez M., Brochero H., Cortes H., Gebhart C. Genetic diversity and population structure in dipliod potatotes. Crop. Sci. 2015;55:760–769. doi: 10.2135/cropsci2014.07.0524.
dc.relationSpooner D., Ñúñez J., Trujillo G., Herrera M., Guzmán F., Ghislain M. Extensive simple sequence repeats genotypes of potato landraces support a major reevaluation of their gene pool structure and classification. Proc. Natl. Acad. Sci. USA. 2007;104:19398–19403. doi: 10.1073/pnas.0709796104.
dc.relationEstrada N. Papas Colombianas con el Mejor Entorno Ambiental. UNIPAPA-ICA-CORPOICA; Bogotá, Colombia: 1996. Los recursos genéticos en el mejoramiento de la papa en los países andinos; pp. 1–14.
dc.relationMosquera T., Del Castillo S., Gálvez D. Breeding differently: Participatory selection and scaling up innovations in Colombia. Potato Res. 2017;60:361–381. doi: 10.1007/s11540-018-9389-9
dc.relationJuyó D., Soto J., Ballvora A., Léon J., Mosquera T. Novel organ-specific genetic factor for quantitative resistance to late blight in potato. PLoS ONE. 2019;14:e0213818. doi: 10.1371/journal.pone.0213818
dc.relationRamírez L., Zuluaga C., Cotes J. Evaluación de la resistencia a la sarna polvosa en genotipos bajo condiciones controladas a partir de tubérculos semillas. RFCB. 2014;11:9–19. doi: 10.18359/rfcb.378
dc.relationPeña C., Sanchez L., Kushalappa A., Rodriguez L., Mosquera T., Nárvaez C. Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT. 2015;62:76–86. doi: 10.1016/j.lwt.2015.01.038.
dc.relationNarváez C., Peña C., Restrepo L., Kushalappa A., Mosquera T. Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. J. Food Compos. Anal. 2018;66:179–184. doi: 10.1016/j.jfca.2017.12.019.
dc.relationÑúztes C. Estudios Fenotípicos y Genéticos Asociados a la Calidad de Fritura en Solanum tuberosum Phureja Juz et Buk. [Online]. Ph.D. Thesis, Universidad Nacional de Colombia, 2011. [(accessed on 10 June 2020)]; Available online: http://www.bdigital.unal.edu.co/4318/
dc.relationDuarte D., Ñústez C., Narváez C., Restrepo L., Melo S., Sarmiento F., Kushalappa A., Mosquera T. Natural variation of sucrose, glucose and fructose contents in Colombian genotypes of Solanum tuberosum Group Phureja at harvest. J. Sci. Food Agric. 2016;96:4288–4294. doi: 10.1002/jsfa.7783.
dc.relationPiñeros C., Narvaéz C., Kushalappa A., Mosquera T. Hydroxycinnamic acids in cooked potato tubers from Solanum tuberosum Group Phureja. Food Sci. Nutr. 2016;5:1–10. doi: 10.1002/fsn3.403.
dc.relationParra M., Piñeros C., Soto J., Mosquera T. Chromosomes I and X harbor consistent genetic factors associated with anthocyanin variation in potato. Agronomy. 2019;10:366. doi: 10.3390/agronomy9070366.
dc.relationLichtenthaler H. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembrans. Method. Enzymol. 1987;148:350–382. doi: 10.1016/0076-687948036-1.
dc.relationLozano P., Sarmiento F., Mejía L., Álvarez F., Melgarejo L. Physiological, biochemical and transcriptional responses of Passiflora edulis f. edulis under progressive drought stress. Sci. Hortic. 2021;275:109655. doi: 10.1016/j.scienta.2020.109655.
dc.relationLiu F., Jensena C., Shahanzaria A., Andersenb M., Jacobsen S. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 2005;168:831–836. doi: 10.1016/j.plantsci.2004.10.016
dc.relationDuarte D., Narváez C., Restrepo L., Kushalappa A., Mosquera T. Development and validation of liquid chromatographic method to quantify sucrose, glucose and fructose of Solanum tuberosum Group Phureja. J. Chromatogr. B. 2015;975:18–23.
dc.relationFernandez G. Effective selection criteria for assessing stress tolerance. In: Kuo C.G., editor. Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress; Taipei, Taiwan. 13–16 August 1992; Tainan, Taiwan: AVRDC Publication; 1992. pp. 257–270.
dc.relationBlum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017;40:4–10. doi: 10.1111/pce.12800.
dc.relationFabregas N., Fernie A. The metabolic response to drought. J. Expt. Bot. 2019:7010771085. doi: 10.1093/jxb/ery437.
dc.relationNaservafaei S., Sohrabi Y., Moradi P., Sweeny E., Mastinu A. Biological Response of Lallemantia iberica to Brassinolide Treatment under Different Watering Conditions. Plants. 2021;10:496. doi: 10.3390/plants10030496.
dc.relationBatool T., Ali S., Seleiman M. Plant growth promoting rhizobacterium alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci. Rep. 2020;10:16975. doi: 10.1038/s41598-020-73489-z.
dc.relationMarcek T., Hamow K., Végh B., Janda T., Darko E. Metabolic response to drought in six winter wheat genotypes. PLoS ONE. 2019;14:e0212411.
dc.relationGuo R., Shi L., Jiao Y., Li M., Zhong X., Gu F., Liu Q., Xia X., Li H. Metabolic response to drought stress in the tissues of drought–tolerant and drought-sensitive wheat genotype seedlings. AoB Plants. 2018;10:ply016. doi: 10.1093/aobpla/ply016.
dc.relationRonquim C., Prado C., Souza J. Growth, photosynthesis and leaf water potential in young plants of Capaifera langsdorffi Desf. (Caesalpiniacea) under contrasting irradiances. Braz. Soc. Plant Phys. 2019;23:197–208. doi: 10.1590/S1677-04202009000300004.
dc.relationDos Santos C., Verissimo V., Wanderley-Filho H., Ferreira V., Cavalcante P., Rolim E., Endress L. Seasonal variations of photosynthesis, gas Exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semi-humid and semi-arid areas subject to water stress. Ind. Crop. Prod. 2013;41:203–213. doi: 10.1016/j.indcrop.2012.04.003.
dc.relationBaker N. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008;59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759.
dc.relationRodriguez L., Ñústez C., Moreno L. Drought stress affect physiological parameters but not tuber yield in three Andean potatoes (Solanum tuberosum L.) cultivars. Agron.Colomb. 2017;35:158–170. doi: 10.15446/agron.colomb.v35n2.65901
dc.relationKapoor D., Bhardwaj S., Landi M., Sharma A., Ramakrishna M., Sharma A. The impact of drought in plants metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. 2020;10:5692. doi: 10.3390/app10165692.
dc.relationRamírez D., Yactayo W., Gutiérrez R., Mares V., De Mendiburu F., Posadas A. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci. Hortic. 2014;168:202–209. doi: 10.1016/j.scienta.2014.01.036.
dc.relationPlich J., Boguszewska-Mankowska D., Marczewski W. Relations between photosynthetic parameters and drought-induced tuber yield decrease in Katahdin-derived potato cultivars. Potato Res. 2020;63:463–477. doi: 10.1007/s11540-020-09451-3.
dc.relationSoltys- Kalina D., Plich J., Marczewski W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of “Katahdin”- derived potato cultivars. Breed. Sci. 2016;66:328–331. doi: 10.1270/jsbbs.66.328.
dc.relationRudack K., Seddig S., Sprenger H., Kohl K., Uptmoor R., Ordon F. Drought stress-induced changes in starch yield and physiological traits in potato. J. Agron. Crop. Sci. 2017:1–12. doi: 10.1111/jac.12224.
dc.relationCabello R., Monneveux P., Bonierbale M., Khan M. Heritability of yield components under irrigated and drought conditions in Andigenum potatoes. Am. J. Potato Res. 2014;91:492–499. doi: 10.1007/s12230-014-9379-7.
dc.relationBadr A., El-Shazly H., Tarawneh R., Borner A. Screening for drought tolerance in Maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants. 2020;9:565. doi: 10.3390/plants9050565.
dc.relationDeuvax A, Kromann P, Ortiz O. Potatoes for sustainable global food security. Potato Res. 2014; 57:185–199.doi: 10.1007/s11540-014-9265-1
dc.relationFAOSTAT. In: FAOSTAT [Internet]. 2020 [cited 24 Oct 2020]. Available: http://www.fao. org/faostat/en/#home
dc.relationNarvaéz-Cuenca C, Peña C, Restrepo L, Kushalappa A. Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. J. Food Compos. Anal. 2018; 66:179-184. doi: 0.1016/j.jfca.2017.12.019
dc.relationPeña C, Restrepo L, Kushalappa A, Rodríguez L, Mosquera T, Narvaéz-Cuenca. Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT. 2015; 62:76-86. doi: 10.1016/j.lwt.2015.01.038
dc.relationOrtiz O, Mares V. The historical, social, and economic importance of the potato crop. Kumar Chakrabarti S, Xie C, Kumar Tiwari J. (eds). 2017.The Potato Genome. Compendium of plant Genomes. Springer, Cham. doi: 10.1007/978-3-319-66135-3_1
dc.relationMonneveux P, Ramírez D, Pino M. Drought tolerance in potato (S. Tuberosum L.): can we learn from drought tolerance research in cereals? Plant Sci. 2013; 205:76–86. doi: 10.1016/j.plantsci.2013.01.011
dc.relationAliche E, Oortwijn M, Theeuwen T, Bachem C, Visser R, et al. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agric. Water Mang. 2018; 206: 20-30.doi: 10.1016/j.agwat.2018.04.013
dc.relationBinod P, Bhim B, Duryodhan C, Bishu P, Sung J, et al. Growth and yield characters of potato genotypes grown in drought and irrigated conditions of Nepal. Int. J. Appl. Sci. Biotechnol. 2015; 3: 513-519.doi: 10.3126/ijasbt. v3i3.13347
dc.relationCabello R, De Mendiburu F, Bonierbale M, Monneveux P, Roca W, et al. Large-scale evaluation of potato improved varieties, genetic stocks and landraces for drought tolerance. Am. J. Potato Res. 2012; 89: 400–410.doi: 10.1007/s12230-012-9260-5
dc.relationO'Neill B, Oppenheimer, Warren R. et al. IPCC reasons for concern regarding climate change risks. Nature Clim. Change. 2017; 7: 28-37. doi: 10.1038/nclimate3179
dc.relationIntergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)].2014; IPCC, Geneva, Switzerland
dc.relationRaymundo R, Asseng S, Robertson R, Petsakos A, Hoogenboom G, et al. Climate change impact on global potato production. Eur. J. Agron. 2018; 100:87-98. doi: 10.1016/j.eja.2017.11.008
dc.relationDaryanto S, Wang L, Jacinthe P. Drought effects on root and tuber production: a meta-analysis. Agric Water Manag. 2016; 176,122–131.doi: 10.1016/j.agwat.2016.05.019
dc.relationKhan M, Saravia D, Munive S, Lozano F, Farfan E, et al. Multiple QTLs linked to agro-morphological and physiological traits related to drought tolerance in potato. Plant Mol. Biol. Rep. 2015; 33:1286-1298. doi: 10.1007/s11105-014-08-24z
dc.relationPotato Genome Sequencing Consortium (PGSC). Genome sequence and analysis of the tuber crop potato. Nature. 2011; 475:189–195. doi: 10.1038/nature10158
dc.relationJuyó D, Soto J, Ballvora A, León J, Mosquera T. Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PloS ONE. 2019; 14(7), e0213818. doi: 10.1371/journal.pone.0213818
dc.relationÁlvarez M, Angarita M, Delgado M, García C, Jiménez J, et al. Identification of novel associations of candidate genes with resistance to late blight in Solanum tuberosum Group Phureja. Front. Plant Sci. 2017; 8,1040. doi: 10.3389/fpls.2017.01040. eCollection 2017
dc.relationLi J, Lindqvist-Kreuze H, Tian Z, Song B, Landeo J, et al. Conditional QTL underlying resistance to late blight in a diploid potato population. Theor. Appl. Genet. 2012; 124: 1339-1350.doi: 10.1007/s00122-012-1791-0
dc.relationBraun S, Endelman J, Haynes K, Jansky S. Quantitative trait loci for resistance to common scab and cold-induced sweeting in diploid potato. Plant Genome. 2017; 10:1-9. doi:10.3835/plantgenome2016.10.0110
dc.relationParra M, Piñeros C, Soto J, Mosquera T. Chromosomes I and X harbor consistent genetic factors associated with anthocyanin variation in potato. Agronomy. 2019; 10(4): 532. doi: 10.3390/agronomy9070366
dc.relationDuarte D, Juyó D, Gebhardt C, Sarmiento F, Mosquera T. Novel SNP markers in InvGE and Sssl genes are associated with natural variation of sugar contents and friyng color in Solanum tuberosum Group Phureja. BMC Genetics. 2017; 18(1):91. doi: 10.1186/s12863-017-0489-3
dc.relationObidiegwe J, Bryan G, Jones H, Prashar A. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 2015; 6: 542. doi: 10.3389/fpls.2015.00542
dc.relationAnithakumari A, Dolstra O, Vosman B, Visser R. In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica. 2011; 181: 357-369.doi: 10.1007/s10681-011-0446-6
dc.relationAnithakumari A, Nataraja K, Visser R, van der Linden C. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breeding. 2012; 30(3):1–17.doi: 10.1007/s11032-012-9728-5
dc.relationKorte A, Farlow A. The advantages and limitations of traits with GWAS: a review: Plant Methods. 2013; 9: 29.doi: 10.1186/1746-4811-9-29
dc.relationAlqudah A, Sallam A, Baenziger S, Borner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: Lessons from barley- A review. J. Adv. Res. 2019; 22:119-135. doi: 10.1016/j.jare.2019.10.013
dc.relationCortes L, Zhang A, Yu J. Status and prospects of genome-wide association studies in plants. The plant genome. 2021;14(1): e20077. doi:10.1002/tpg2.20077
dc.relationThabet S, Moursi Y, Karam M, Borner A, Alqudah M. Natural variation uncovers candidate genes for barley spikelet number and grain yield under drought stress. Gene. 2020;11: 533. doi:10.3390/genes11050533
dc.relationDos Santos Silva P, Sousa P, De Oliveira E. Genome-wide association study of drought tolerance in cassava. Euphytica. 2021; 217:60. doi:10.1007/s10681-021-02800-4
dc.relationChen L, Fang Y, Li X, Zeng K, Chen H, et al. Identification of soybean drought-tolerant genotypes and loci correlated with agronomic traits contributes new candidate genes for breeding. Plant Mol. Biol. 2020; 102:109-122. doi: 10.1001/s11103-0.19-00934-7
dc.relationGizaw S, Godoy J, Pumphrey M, Carter A. Spectral reflectance for indirect selection and genome-wide association analyses of grain yield and drought tolerance in north America spring wheat. Crop Sci. 2018; 58 (6): 2289-2301. doi:10.2135/cropsci2017.11.0690
dc.relationFernandez G. Effective selection criteria for assessing stress tolerance. In: Kuo CG (ed.) Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. Tainan: AVRDC Publication.1992; 257–270. doi: 10.22001/wvc.72511
dc.relationDíaz P, Melgarejo L, Arcila I, Mosquera T. Physiological, biochemical and yield-component responses of Solanum tuberosum L. Group Phureja genotypes to a water deficit. Plants. 2021; 10(4):634. doi: 10.3390/plants10040638
dc.relationLiu Y, Zeng Y, Yuanming L, Liu Z, Lin-Wang K, et al. Genomic survey and gene expression analysis of MYB-related transcription factor superfamily in potato (Solanum tuberosum L.). Int. J. Biol.Macromol. 2020; 164:2450-2464. doi: 10.1016/j.ijbiomac.2020.08.062
dc.relationR Core Team (2020). R: A Language and Environment for Statistical Computing. Available online at: http://www.r-project.org/ (accessed April 2020).
dc.relation36. Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155: 945–959
dc.relationEvanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14: 2611–2620.doi:10.1111/j.1365-294X.2005. 02553.x
dc.relationLipka A, Tian C, Wang Q, Peiffer J, Li M, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012; 18(15): 2397-2399.doi: 10.1093/bioinformatics/bts444
dc.relationYu J, Pressoir G, Briggs W, Vroh Bi I, Yamasaki M, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006; 38(2) :203-208. doi :10. 1038.ng1702
dc.relationZhang Z, Ersoz E, Lai C, Todhunter R, Tiwari H, et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010; 42 :355-360. doi :10.1038/ng.546
dc.relationSegura V, Vilhjalmsson B, Platt A, Korte A, Seren U, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 2012; 44 :825-830. doi :10.1038/ng.2314
dc.relationEndelman J. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome. 2011; 4(3):250-255. doi: 10.3835/plantgenome2011.08.0024
dc.relationSzalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, et al. Potato Annexin STANN1 promotes drought tolerance and mitigates light stress in transgenic Solanum tuberosum L. plants. PloS One. 2015; 10(7): e0132683. doi: 10.1371/journal.pone.0132683
dc.relationAliche E, Theeuwen T, Oortwijn M, Visser R, Van der Linden G. Carbon partitioning mechanism in potato under stress. Plant Physiol. Biochem. 2020; 146:211-219. doi: 10.1016/j.plaphy.2019.11.019
dc.relationHirut B, Shimeli H, Fentahum M, Bonierbale M, Gastelo M, et al. Combining ability of highland tropic adapted potato for tuber and yield components under drought. PLoS ONE. 2017; 12: e0181541. doi: 10.1371/journal.pone.0181541
dc.relationJuyó D, Sarmiento F, Álvarez M, Brochero H, Gebhardt C, et al. Genetic diversity and population structure in diploid potatoes of Solanum tuberosum Group phureja. Crop Sci. 2015; 55: 760–769. doi: 10.2135/cropsci2014.07.0524
dc.relationCamadro E. Relevance of the genetic structure of natural populations, and sampling and classification approaches conservation and use of wild crop relatives: potato as an example. Botany. 2012; 90: 1065-1072. doi:10.1139/b2012-090
dc.relationSpooner D, Gavrilenko T, Jansky S, Ovchinnikova A, Krylova E, et al. Ecogeography od ploidy variation in cultivated potato (Solanum sect. Petota). Am. J. Bot. 2010; 97: 2049-2060.doi: 10.3732/ajb.1000277
dc.relationContreras-Soto R, Mora F, Lazzari F, Oliveira M, Scapim C, et al. Genome-wide association mapping for flowering and maturity in tropical soybean: implications for breeding strategies. Breed. Sci. 2017; 67:435- 449. doi: 10.1270/jsbbs.17024
dc.relationMora F; Castillo D; Lado B; Matus I, Poland J, et al. Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a worldwide germplasm collection of spring wheat using SNP markers. Mol. Breed. 2015; 35: 69. doi: 10.1007/s11032-015-0264-y
dc.relationZhu R, Gao Y, Zhang Q. Quantitative trait locus mapping of floral and related traits using an F2 population of Aquilegia. Plant Breed. 2014; 133(1):153-161. doi:10.1111/pbr.12128
dc.relationSkeffington A, Graf A, Duxbury Z, Gruissem W, Smith A. Glucan, water dikinase exerts little control over starch degradation in Arabidopsis leaves at night. Plant Physiol. 2014; 165, 866-879. doi: 10.1104/pp.114.237016
dc.relationRudack K, Seddig S, Sprenger H, Kohl K, Uptmoor R, et al. Drought stress-induced changes in starch yield and physiological traits in potato. J. Agron. Crop Sci. 2017; 203 (6):494-505. doi: 10.1111/jac.12224
dc.relationHwang J, Song W, Hong D, Ko D, Yamaoka Y, et al. Plant ABC transporter enable many unique aspects of a terrestrial plants lifestyle. Mol. Plant. 2016; 9:338-355. doi: 10.1016/j.molp.2016.02.003
dc.relationParmar R, Seth R, Singh P, Singh G, Kumar S, et al. Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. kuntze. Sci. Rep. 2019; 9: 7487. doi: 10.1038/s41598-019-43925-w
dc.relationRomero A, Alarcón A, Valbuena R, Galeano C. Physiological assessment of water stress in potato using spectral information. Front.Plant Sci. 2017; 8,1608. doi: 10.3389/fpls.2017.01608
dc.relationRamirez D, Yactayo W, Gutierrez R, Mares V. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci.Hortic. 2014;168: 202-209. doi: 10.1016/j.scientia.2014.01.036
dc.relationGao Y, Wang Y, Wang X, Liu L. Hexameric structure of the ATPase motor subunit of magnesium chelatase in chlorophyll biosynthesis. Protein Sci. 2019;29 (4): 1026-1032.doi: 10.1002/pro.3816
dc.relationJaved T, Shabbir R, Ali A, Afzal I, Zaheer U, et al. Transcription factors in plants stress responses: Challenges and potential for sugarcane improvement. Plants. 2020; 9: 491. doi: 10.3390/plants9040491
dc.relationYang X, Liu J, Xu J, Duan S, Wang Q, et al. Transcription profiling reveals effects of drought stress gene expression in diploid potato Genotype P3-198. Int. J. Mol. Sci. 2019; 20,852. doi: 10.3390/ijms20040852
dc.relationStein O. Granot D. 2019.An overview of sucrose synthase in plants. Front. Plant Sci. 2019;10,95. doi: 10.3389/fpls.2019.00095
dc.relationKondrak M, Marincs F, Antal F, Juhasz Z, Banfalvi Z. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol. 2012; 12:74. doi: 10.1186/1471-2229-12-74
dc.relationXu J, Wang X, Guo W. The cytochrome P450 superfamily: key players in plant development and defense. J. Integr. Agri. 2015; 14,1673-1686. doi: 10.1016/S2095-3119(14)60980-1
dc.relationLi P, Li Y, Zhang F, Zhang G, Jiang X, et al. The Arabidopsis UDP-glycosyltransferase UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J. 2016;89 (1):85.103. doi: 10.1111/tpj.13324
dc.relationMosquera T, Álvarez M, Jiménez J, Muktar M, Paulo M, et al. Gebhardt C. 2016. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLoS ONE. 2016;11(6), e0156254. doi: 10.1371/journal.pone.0156254
dc.relationGuo M, Lu Z, Zhai Y, Chai W, Gong Z, et al. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterization of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol. 2015; 15:151. doi: 10.1186/s12870-015-0512-7
dc.relationSprenger H, Kurowsky C, Horn R, Erban A, Seddig S, et al. The drought response of potato reference cultivars with contrasting tolerance. Plant, Cell and Envir. 2016;39 (11): 2370-2389.doi: 10.1111/pce.12780
dc.relationLiu J, Pang X, Cheng Y, Yin Y, Zhang Q, et al. The Hsp70 gene family in Solanum tuberosum: Genome-wide identification, phylogeny and expressions patterns. Sci. Rep. 2018; 8:11628. doi: 10.1038/s41598-018-34878-7
dc.relationZhao P, Wang D, Wang R, Kong N, Zhang C, et al. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics. 2018;19 (61). doi: 10.1186/s12864-018-4443-1
dc.relationYamada K, Osakabe Y, Mizoi J. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. J Biol Chem. 2010; 285, 1138–1146. doi: 10.1074/jbc.M109.054288
dc.relationPoschet G, Hannisch B, Raab S, Jungkunz I, Klemens P, et al. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. Plant Physiol. 2011; 157 (4):1664-1676. doi: 10.1104/pp.111.186825
dc.relationIslam M, Choudhury M, Majlishb A, Islamc T, Ghosh A. Comprehensive genome-wide analysis of glutathione S-transferase gene family in potato (Solanum tuberosum L.) and their expression profiling in various anatomical tissues and perturbation conditions. Gene. 2018; 639: 149-162. doi: 10.1016/j.gene.2017.10.007
dc.relationDong T, Xu X, Park Y, Kim D, Lee Y, et al. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis. Plant Physi. 2014; 165:227–89. doi: 10.1104/pp.114.239210
dc.relationMhashe D, Mahatma K, Jha S, Singh P, Mahatma L, et al. Castor (Ricinus communis L.) Rc-LOX plays important role in wilt resistance. Ind. Crops Prod. 2013; 45: 20-24. doi: 10.1016/j.indcrop.2012.11.035
dc.relationHyun T, Van der Graaff E, Albacete A, Eom S, Grobkinsky D, et al. The Arabidopsis PLAT domain protein 1 is a critically involved in abiotic stress tolerance. PloS One. 2014; 9, e112946. doi: 10.1371/journal.pone.0112946
dc.relationLi J, Han G, Sun C, Suin N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal Behav. 2019;14(8):1613131. doi:10.1080/15592324
dc.relationChen Y, Li C, Yi J, Yang Y, Lei C, et al. Transcriptome response to drought, rehydration and re-dehydration in potato. Int. J. Mol. Sci. 2020; 21 (1):159. doi :10.3390/ijms21010159
dc.relationShin D, Moon S, Kim B, Park S, Lee S, et al. Expressions of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol. 2011; 155(1):421-432. doi: 10.1104/pp110.163634
dc.relationAbid M, Ali S, Qi L, Zahoor R, Tian Z, et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci. Rep. 2018; 8: 4615. doi: 10.1038/s41598-018-21441-7
dc.relationAhmadi S, Andersen N, Plauborg F, Poulsen R. Effects of irrigation strategies and soils on field-grown potatoes : gas exchange and xylem ABA. Agr. Water Manage. 2010; 97: 1486-1494. doi: 10.1016/j.agwat.2010.05.002
dc.relationAliche E, Theeuwen T, Oortwijn M, Visser R, Van der Linden G. Carbon partitioning mechanisms in potato under drought stress. Plant Physiol. Biochem. 2020, 146, 211-219, doi: 10.1016/j.plaphy.2019.11.019
dc.relationAliche E, Oortwijn M, Theeuwen T, et al. Genetic mapping of tuber size distribution and marketable tuber yield under drought stress in potatoes. Euphytica. 2019; 215: 186. doi: 10.1007/s10681-019-2508-0
dc.relationAnithakumari A, Nataraja K, Visser R, van der Linden C. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breed. 2011; 30 (3):1.17. doi:10.1007/s11032-012-9728-5
dc.relationAriza W, Rodríguez L, Moreno D, Guerrero C, Moreno L. Effect of water deficit on some physiological and biochemical responses the yellow diploid potato (Solanum tuberosum L. group Phureja). Agron. Colomb. 2020; 38 (1): 36-44. doi: 10.15446/agron.colomb.v38n1.78982
dc.relationBaker, N. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008; 59:89-113. doi: 10.1146/annurev.arplant.59.032607.092759
dc.relationBanik P, Zeng W, Tai H, Bizimungu B, Tanino K. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environ. Exp. Bot. 2016; 126:76-89. doi: 10.1016/j.envexpbot.2016.01.008
dc.relationBarnaby J, Fleisher D, Singh S, Sicher R, Reddy V. Combined effect and CO2 enrichment on foliar metabolites of potato (Solanum tuberosum L.) cultivars. J. Plant Interact. 2019; 14(1):110-118. doi: 10.1080/17429145.2018.1562110
dc.relationBasu S, Ramegowda V, Kumar A, Pereira A. Plant adaptation to stress. F1000Res. 2016; 5: F1000 Faculty Rev-1554. doi: 10.12688/f1000research.7678.1
dc.relationBoguszewska-Mankowska D, Pieczynski M, Wyrzykowska A, Kalaji H, Sieczko L, et al. Divergent strategies displayed by potato cultivars (Solanum tuberosum L.) cultivars to cope with soil drought. J. Agron. Crop Sci. 2018; 204(1):13-30. doi:10.1111/jac.12245
dc.relationBoguszewska-Mankowska D, Zarzyńska K, Nosalewicz, A. Drought differentially affects root system size and architecture of potato cultivars with differing drought tolerance. Am.J. Potato Res. 2020; 97(1): 54– 62. doi: 10.1007/s12230-019-09755-2
dc.relationBunding C, Vu T, Sedding S, Schum A, Winkelmann. Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an In Vitro screening: Role of proline, osmotic adjustment and drought response in pot trial. J. Agro. Crop Sci. 2017; 203(3):206-218. doi:10.1111/jac.12186
dc.relationDíaz P, Melgarejo L, Arcila I, Mosquera T. Physiological, biochemical and yield-component responses of Solanum tuberosum L. Group Phureja genotypes to a water deficit. 2021. Plants; 10(4):634. doi: 10.3390/plants10040638
dc.relationDien D, Mochizuki T, Yamakawa T. Effects of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolism in rice (Oriza sativa L.) varieties. Plant Prod. Sci. 2019; 22(4):530-545. doi: 10.1080/1343943X.2019.1647787
dc.relationDu Y, Zhao Q, Chen L, Yao X, Zhang W, et al. Effect of drought stress on sugar metabolism in leaves and root of soybean seedlings. Plant Physiol. Biochem. 2020; 146:1-12. doi: 10.1016/j.plaphy.2019.11.003
dc.relationDuarte D, Narváez C, Restrepo L, Kushalappa A, Mosquera T. Development and validation of liquid chromatographic method to quantify sucrose, glucose and fructose of Solanum tuberosum Group Phureja. J. Chromatogr. B. 2015, 975,18-23. doi: 10.1016/j.jchromb.2014.10.039
dc.relationFarhad M, Babak A, Reza Z, Hassan R, Afshin. Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. Aust. J. Crop Sci. 2011; 5(1):55-60. doi:10.3316/informit.834571763803137
dc.relationGervais T, Creelman A, Li X, Benoit B, De Koeyer D, Dahal K. Potato response to drought stress: physiological and growth basis. Front. Plant. Sci. 2021; 12:1630. Doi:10.3389/fpls.2021.698060
dc.relationGray S, Brady S. Plant developmental responses to climate change. Dev. Biol. 2016; 419: 64-77. doi: 10.1016/j.ydbio.2016.07.023
dc.relationHijmans J. The effect of climate change on global potato production. Am. J. Potato Res. 2003 ;80:271:279. doi: 10.1007/BF02855363
dc.relationHirut B, Shimelis H, Fentahun M, Bonierbale M, Gastelo M, et al. Combining ability of highland tropic adapted potato for tuber yield and yield components under drought. Plos One. 2017;12(7):e0181541. doi: 10.1371/journal.pone.0181541
dc.relationHoelle J, Asch F, Khan A; Bonierdale M. Phenology-adjusted stress severity index to assess genotypic responses to terminal drought in field grown potato. Agronomy. 2020;10(9):1298. doi: 10.3390/agronomy10031298
dc.relationKondrák M, Marincs F, Antal F, Jahász Z, Bánfalvi Z. Effects of yeast trethalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol. 2012;12:74. doi:10.1186/1471-2229-12-74
dc.relationHu L, Xie Y, Fan S, Wang Z, Zhang B. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. Plant Sci. 2018; 272:276-293. doi: 10.10167j,plantsci.2018.03.036
dc.relationIbañez V, Kozub C, González C, Jerez D, Masueeli R, et al. Response to water deficit of semi-desert wild potato Solanum Kurtzianum genotypes collected from different altitudes. Plant Sci. 2021; 308:110911. doi:10.10.16/j.plantsci.2021.110911
dc.relationIPCC. Climate Change 2021: The physical science basis. Contribution working group I to the sixth assessment report of the intergovernmental panel on climate change. 2021; Cambridge University Press. In Press
dc.relationKim W, Lizumi T, Nishimori M. Global patterns of crop production losses associated with drought from 1983 to 2009. JAMC. 2019; 58(6): 1233-1244. doi:10.1175/JAMC-D-18-0174.1
dc.relationLegay S, Lefevre L, Lamourex D, Barreta C, Gutierrez R. Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerant and sensitive in advanced potato clones (Solanum tuberosum L.). Funct. Integr. Genomics. 2011; 11:275-291. doi: 10.1007/s1042-010-0206-z
dc.relationLeng G, Hall. Crop yield sensitivity of global major agricultural countries to drought and the projected changes in the future. Sci. Total Environ. 2019; 654: 811-821. doi:10.1016/j.scitotenv2018.10434
dc.relationLi X, Ramírez D, Qin J, Dormatey R, Bi Z, et al. Water restriction scenarios and their effects on traits in potato with different degrees of drought tolerance. Sci. Hort. 2019; 256: 108525. doi: 10.1016/j.scienta.2019.05.052
dc.relationMarcek T, Áron K, Végh B, Janda T, Darko E. Metabolic response to drought in six winter wheat genotypes. Plos One. 2019;14(2): e0212411 . doi: 10.1371/journal.pone.0212411
dc.relationMartorell S, Díaz-Espejo A, Medrano H, Ball M, Choat B. Rapidly hydraulic recovery in Eucalyptus pauciflora ater drought: linkages between stem hydraulic and leaf exchange. Plant Cell Environ. 2014; 37:617-626. doi: 10.1111/pce.12182
dc.relationOsakabe Y, Osakabe K, Shinozahi K, Tran L. Response of plants to water stress. Front. Plant Sci. 2014; 5: 86. doi:10.3389/fpls.2014.00086
dc.relationPlich J, Boguszewska-Mankowska D, Marczewki W. Relations between photosynthetic parameters and drought-induced tuber yield decrease in Katahdin- derived potato cultivars. Potato Res. 2020; 63:463-470. doi: 10.1007/s11540-020-09451-3
dc.relationQin J, Bian C, Liu J, Zhang J, Jin L. An efficient greenhouse use method to screen potato genotypes for drought tolerance. Sci. Hort. 2019; 253: 61-69. doi:10.1016/j.scientia.2019.04.017
dc.relationRamírez D, Yactayo W, Gutiérrez R, Mares V, De Mendiburu F, et al. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci. Hort. 2014; 168:202-209. doi: 10.1016/j.scientia.2014.01.036
dc.relationRaymundo E, Asseng S, Robertson R, Petsakos A, Hoogenboom G, et al. Climate change on global potato production . Eur. J. Agron. 2018. 100: 87-98. doi: 10.1016/j.eja.2017.11008
dc.relationR Core Team. R: A Language and Environment for Statistical Computing. 2021, R Foundation Computing, Vienna, Austria. Available online at: http://www.r-project.org/ (accessed May 2021).
dc.relationRodrigues J, Inzé D, Nelissen H, Saibo N. Source-sink regulation in crops under water deficit. Trend Plant Sci. 2019; 24(7):652-663. doi:10.1016/j.tplants.2019.04.005
dc.relationRodríguez L, Ñústez C, Moreno L. Drought stress affects physiological parameters but not tuber yield in stress Andean potato (Solanum tubesorum L.) cultivars. Agron. Colomb. 2017; 35(2):158-170. doi: 10.15446/agron.colomb.v35n2.65901
dc.relationRodríguez L, Sanjuanelo D, Ñústez C, Moreno-Fonseca L. Growth and phenology of three Andean potato varieties (Solanum tuberosum L.) under water stress. Agron. Colom. 2016;34(2). doi: 10.15446/agron.colom.v34n2.55279
dc.relationRolando J, Ramírez D, Yactayo W, Monneveux P, Quiroz R. Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environ. Exp. Bot.2015; 110:27-35. doi: 10.1016/j.envexpbot.2014.09.006
dc.relationRomero A, Alarcón A, Valbuena R, Galeano C. Physiological assessment of water stress in potato using spectral information. Front Plant Sci. 2017; 8: 1608. doi: 10.3389/fpls.2017.01608
dc.relationRudack K, S eddig S, Sprenger H, Kohl K, Uptomoor R, et al. Drought stress-induced changes in starch yield and physiological traits in potato. J. Agron. Crop Sci. 2017; 1-12. doi:10.1111/jac.12224
dc.relationSaravia D, Farfán E, Gutiérrez R, De Mendiburu F, Schafleitner R. Yield and physiological response of potatoes indicate different strategies to cope with drought stress and nitrogen fertilization. Am. J. Potato Res. 2016; 93:288-296. doi: 10.1007/s12230-016-9505-9
dc.relationShi S, Fan M, Iwaka K, Li F, Jia L. Physiological basis of drought tolerance in potato grown under long-term water deficit. Int. J. Plant Prod. 2015; 9(2): 305-320.
dc.relationSoltys-Kalina D, Plich J, Strzelczyk-Zyta S, Sliwka J, Marczewski W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of “Katahdin”derived potato cultivars. Breed. Sci. 2016; 66:328:331. doi: 10.1270/jsbbs.66.328
dc.relationSprenger H, Rudack K, Schudoma C, Neumann A, Seddig, S, et al. Assessment of drought tolerance and its potential yield in potato. Funct. Plant Biol. 2015; 42: 655-667.doi: 10.1071/FP15013
dc.relationUrban L, Aarrouf J, Bidel L. Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and chlorophyll a fluorescence. Front. Plan Sci. 2017;8:2068. doi:10.3389/fpls.2017.02068
dc.relationWang Z, Wei P, Wu M, Xu Y, Li F, et al. Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny and expression patterns. Planta.2015; 242(1):153-166. doi: 10.1007/s00425-015-2297-1
dc.relationXia H, Ma X, Xu K, et al. Temporal trancriptomic differences between tolerant and susceptible genotypes contribute to rice drought tolerance. BMC Genomics. 2020;21:776. doi:10.1186/s12864-020-07193-7
dc.relationYang X, Lu M, Wang Y, Wang Y, Liu Z, et al. Response mechanism of plants to drought stress. Horticulturae. 2021; 7:50. doi: 10.3390/horticulturae7030050
dc.relationZarzyńska K, Boguszewska-Mańkowska D, Nosalewicz, A. Differences in size and architecture of potato cultivars and their tolerance to drought stress. Plant, Soil Envinron. 2017; 63(4): 159– 164. doi:10.17221/4/2017-PSE
dc.relationZhang S, Xu X, Sun Y, Zhang J, Li C. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress. J. Integr. Agric. 2018; 17(2):336-347. doi:10.1016/S2095-3119(17)61758-1
dc.relationZulfiqar F, Akram , Ashraf . Osmoprotection in plants under abiotic stresses: new insight into a classical phenomenon. Planta. 2020:251:3. doi: 10.1007/s00425-019-03293-1
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleNatural allelic diversity and signal responses associated with water deficit tolerance in Solanum tuberosum Group Phureja
dc.typeTesis


Este ítem pertenece a la siguiente institución