dc.contributor | Orduz-Peralta, Sergio | |
dc.contributor | Hoyos-Madrigal, Bibian | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | Biología Funcional | |
dc.creator | Bedoya-Cardona, Johann Evelio | |
dc.date.accessioned | 2020-05-21T21:43:10Z | |
dc.date.available | 2020-05-21T21:43:10Z | |
dc.date.created | 2020-05-21T21:43:10Z | |
dc.date.issued | 2019-11-29 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77546 | |
dc.description.abstract | Using surface-active compounds to reduce the interfacial tension between hydrocarbons and water is a mechanism used in Enhanced Oil Recovery. Therefore, substances with a high surfactant activity that cause this reduction are continually being sought, and in this aspect, lipopeptides can be a cost-effective alternative. Molecular simulation techniques allow the analysis of this molecular activity in silico by representing the molecules of a system through an atomic interaction potential. According to the above, the surfactant properties of two lipopeptides produced by bacteria of the genus Bacillus, the iC15 surfactin and the iC13 kurstakin were studied, by Molecular Dynamics simulations.
After selecting a suitable interaction potential to represent the molecules, simulations were made to study the effect of monomolecular films of the protonated lipopeptides on the surface tension (ST) of water, and the interfacial tension (IFT) of the hexadecane-water system. The pressure tensor method was used to calculate this tension founding that under this simulation system conditions, a saturated monolayer of iC15 suffocating reduces the ST of water to less than a half, and a similar behavior was observed for the IFT of the hexadecane-water system, checking its surfactant capacity. On the other hand, monolayers of the iC13 kurstakin present an excess of internal pressure which increases the ST of the air-water system and does not influence the IFT of the hexadecane-water, so it is not considered to be promising in Enhanced Oil Recovery. | |
dc.description.abstract | El empleo de compuestos con actividad surfactante para reducir la tensión interfacial entre hidrocarburos y el agua es uno de los mecanismos usados en recobro mejorado de petróleo, por ello continuamente se buscan sustancias con una alta actividad tensoactiva que ocasionen esta reducción, y en dicho aspecto los lipopéptidos pueden ser una alternativa rentable. Adicionalmente, las técnicas de simulación molecular permiten analizar este tipo de actividad molecular in silicio al representar las moléculas de un sistema mediante un potencial de interacción atómica. De acuerdo con lo anterior, mediante este trabajo se evaluaron las propiedades tensoactivas de dos lipopéptidos producidos por bacterias del género Bacillus spp., la surfactina iC15 y la kurstakina iC13 por medio de simulación por Dinámica Molecular.
Luego de seleccionar un potencial de interacción adecuado para representar las moléculas se hicieron simulaciones para estudiar el efecto de películas monomoleculares de los lipopéptidos protonados en la tensión superficial (TS) del agua, y en la tensión interfacial (TIF) del sistema hexadecano-agua. Para calcular dicha tensión se usó el método del tensor de presión. Se comprobó que bajo las condiciones de simulación usadas, una monocapa saturada de la surfactina iC15 reduce la TS del agua a menos de la mitad y un comportamiento similar se observó para la TIF del sistema hexadecano-agua, comprobando así su capacidad tensoactiva. Por otra parte se observó que monocapas de la kurstakina iC13 presentan un exceso de presión interna, por lo que aumentan la TS del sistema aire-agua y no presentan un efecto en la TIF del sistema hexadecano-agua, por lo que no se considera que sea promisoria en Recobro Mejorado de Petróleo.. | |
dc.language | spa | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | |
dc.publisher | Escuela de biociencias | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Abascal, J. L., & Vega, C. (2005). A general purpose model for the condensed phases of water: TIP4P/2005. The Journal of Chemical Physics, 123(23), 234505. https://doi.org/10.1063/1.2121687 | |
dc.relation | Abderrahmani, A., Tapi, A., Nateche, F., Chollet, M., Leclère, V., Wathelet, B., … Jacques, P. (2011). Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Applied Microbiology and Biotechnology, 92(3), 571–581. https://doi.org/10.1007/s00253-011-3453-6 | |
dc.relation | Abraham, M., Hess, B., Spoel, D. van der, & Lindahl, E. (2015). GROMACS User Manual version 5.0.7. Www.Gromacs.Org. https://doi.org/10.1007/SpringerReference_28001 | |
dc.relation | Alejandre, J., & Chapela, G. A. (2010). The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions. Journal of Chemical Physics, 132(1). https://doi.org/10.1063/1.3279128 | |
dc.relation | Arima, K., Kakinuma, A., & Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus Subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications, 31(3), 488–494. https://doi.org/10.1016/0006-291X(68)90503-2 | |
dc.relation | Aveyard, R., & Haydon, D. A. (1965). Thermodynamic properties of aliphatic hydrocarbon/water interfaces. Transactions of the Faraday Society, 61(0), 2255–2261. https://doi.org/10.1039/tf9656102255 | |
dc.relation | Béchet, M., Caradec, T., Hussein, W., Abderrahmani, A., Chollet, M., Leclère, V., … Jacques, P. (2012). Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Applied Microbiology and Biotechnology, 95(3), 593–600. https://doi.org/10.1007/s00253-012-4181-2 | |
dc.relation | Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038 | |
dc.relation | Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118 | |
dc.relation | Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction Models for Water in Relation to Protein Hydration BT - Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, April 13–16, 1981 (B. Pullman, ed.). https://doi.org/10.1007/978-94-015-7658-1_21 | |
dc.relation | Berger, O., Edholm, O., & Jähnig, F. (1997). Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophysical Journal, 72(5), 2002–2013. https://doi.org/10.1016/S0006-3495(97)78845-3 | |
dc.relation | Best, R. B., & Mittal, J. (2010). Protein simulations with an optimized water model: Cooperative helix formation and temperature-induced unfolded state collapse. Journal of Physical Chemistry B, 114(46), 14916–14923. https://doi.org/10.1021/jp108618d | |
dc.relation | Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & MacKerell, A. D. (2012). Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x | |
dc.relation | Biria, D., Maghsoudi, E., Roostaazad, R., Dadafarin, H., Lotfi, S. S., & Amoozegar, M. A. (2010). Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World Journal of Microbiology and Biotechnology, 26(5), 871–878. https://doi.org/10.1007/s11274-009-0246-5 | |
dc.relation | Bonmatin, J.-M., Laprévote, O., & Peypoux, F. (2003). Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Combinatorial Chemistry & High Throughput Screening, 6(6), 541–556. https://doi.org/10.2174/138620703106298716 | |
dc.relation | Bresme, F., Chacón, E., & Tarazona, P. (2010). Force-field dependence on the interfacial structure of oil-water interfaces. Molecular Physics, 108(14), 1887–1898. https://doi.org/10.1080/00268976.2010.496376 | |
dc.relation | Bussi, G., Donadio, D., & Parrinello, M. (2008). Canonical sampling through velocity-rescaling. https://doi.org/10.1063/1.2408420 | |
dc.relation | Campanelli, J. R., & Wang, X. (1999). Dynamic interfacial tension of surfactant mixtures at liquid-liquid interfaces. Journal of Colloid and Interface Science, 213(2), 340–351. https://doi.org/10.1006/jcis.1999.6149 | |
dc.relation | Hathout, Y., Demirev, P., Fenselau, C., Ho, Y.-P., & Ryzhov, V. (2002). Kurstakins: A New Class of Lipopeptides Isolated from Bacillus t huringiensis. Journal of Natural Products, 63(11), 1492–1496. https://doi.org/10.1021/np000169q | |
dc.relation | Grangemard, I., Wallach, J., Maget-Dana, R., & Peypoux, F. (2001). Lichenysin: A more efficient cation chelator than surfactin. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 90(3), 199–210. https://doi.org/10.1385/ABAB:90:3:199 | |
dc.relation | Giner-Casares, J. J., Camacho, L., Martín-Romero, M. T., & Cascales, J. J. L. (2008). A DMPA langmuir monolayer study: From gas to solid phase. An atomistic description by molecular dynamics simulation. Langmuir, 24(5), 1823–1828. https://doi.org/10.1021/la7030297 | |
dc.relation | Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H | |
dc.relation | Chen, F., & Smith, P. E. (2007). Simulated surface tensions of common water models. Journal of Chemical Physics, 126(22), 126–129. https://doi.org/10.1063/1.2745718 | |
dc.relation | Cooper, D. G., Macdonald, C. R., Duff, S. J. B., & Kosaric, N. (1981). Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Applied and Environmental Microbiology, 42(3), 408–412. | |
dc.relation | Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics. https://doi.org/10.1063/1.464397 | |
dc.relation | de Sousa, M., Dantas, I. T., Felix, A. K. N., de Sant’ana, H. B., Melo, V. M. M., & Gonçalves, L. R. B. (2014). Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633. Brazilian Archives of Biology and Technology, 57(2), 295–301. https://doi.org/10.1590/S1516-89132014000200019 | |
dc.relation | Deleu, M., Razafindralambo, H., Popineau, Y., Jacques, P., Thonart, P., & Paquot, M. (1999). Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152(1–2), 3–10. https://doi.org/10.1016/S0927-7757(98)00627-X | |
dc.relation | Dickson, C. J., Madej, B. D., Skjevik, Å. A., Betz, R. M., Teigen, K., Gould, I. R., & Walker, R. C. (2014). Lipid14: The amber lipid force field. Journal of Chemical Theory and Computation, 10(2), 865–879. https://doi.org/10.1021/ct4010307 | |
dc.relation | Douarche, C., Allain, J. M., & Raspaud, E. (2015). Bacillus subtilis Bacteria Generate an Internal Mechanical Force within a Biofilm. Biophysical Journal, 109(10), 2195–2202. https://doi.org/10.1016/j.bpj.2015.10.004 | |
dc.relation | Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H., & Shaw, D. E. (2012). Biomolecular simulation: a computational microscope for molecular biology. Annual Review of Biophysics, 41, 429–452. https://doi.org/10.1146/annurev-biophys-042910-155245 | |
dc.relation | Dubois, T., Faegri, K., Perchat, S., Lemy, C., Buisson, C., Nielsen-LeRoux, C., … Lereclus, D. (2012). Necrotrophism is a Quorum-sensing-regulated lifestyle in bacillus thuringiensis. PLoS Pathogens, 8(4). https://doi.org/10.1371/journal.ppat.1002629 | |
dc.relation | Eichenberger, A. P., Huang, W., Riniker, S., & Van Gunsteren, W. F. (2015). Supra-Atomic Coarse-Grained GROMOS Force Field for Aliphatic Hydrocarbons in the Liquid Phase. Journal of Chemical Theory and Computation, 11(7), 2925–2937. https://doi.org/10.1021/acs.jctc.5b00295 | |
dc.relation | Gang, H., Liu, J., & Mu, B. (2015). Binding structure and kinetics of surfactin monolayer formed at the air/water interface to counterions: A molecular dynamics simulation study. Biochimica et Biophysica Acta - Biomembranes, 1848(10), 1955–1962. https://doi.org/10.1016/j.bbamem.2015.05.016 | |
dc.relation | Gang, H. Z., Liu, J. F., & Mu, B. Z. (2010a). Interfacial behavior of surfactin at the decane/water interface: A molecular dynamics simulation. Journal of Physical Chemistry B, 114(46), 14947–14954. https://doi.org/10.1021/jp1057379 | |
dc.relation | Gang, H. Z., Liu, J. F., & Mu, B. Z. (2010b). Molecular dynamics simulation of surfactin derivatives at the decane/water interface at low surface coverage. Journal of Physical Chemistry B, 114(8), 2728–2737. https://doi.org/10.1021/jp909202u | |
dc.relation | Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. https://doi.org/10.1186/1758-2946-4-17 | |
dc.relation | Gang, H. Z., Liu, J. F., & Mu, B. Z. (2011). Molecular dynamics study of surfactin monolayer at the air/water interface. Journal of Physical Chemistry B, 115(44), 12770–12777. https://doi.org/10.1021/jp206350j | |
dc.relation | Hashimoto, M., Garstecki, P., Stone, H. A., & Whitesides, G. M. (2008). Interfacial instabilities in a microfluidic Hele-Shaw cell. Soft Matter, 4(7), 1403. https://doi.org/10.1039/b715867j | |
dc.relation | Herzog, F. A., Braun, L., Schoen, I., & Vogel, V. (2016). Improved Side Chain Dynamics in MARTINI Simulations of Protein-Lipid Interfaces. Journal of Chemical Theory and Computation, 12(5), 2446–2458. https://doi.org/10.1021/acs.jctc.6b00122 | |
dc.relation | Horta, B. A. C., Fuchs, P. F. J., Van Gunsteren, W. F., & Hünenberger, P. H. (2011). New interaction parameters for oxygen compounds in the GROMOS force field: Improved pure-liquid and solvation properties for alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters. Journal of Chemical Theory and Computation, 7(4), 1016–1031. https://doi.org/10.1021/ct1006407 | |
dc.relation | Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354 | |
dc.relation | Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/https://doi.org/10.1016/0263-7855(96)00018-5 | |
dc.relation | Huszcza, E., & Burczyk, B. (2003). Biosurfactant production by Bacillus coagulans. Journal of Surfactants and Detergents, 6(1), 61–64. https://doi.org/10.1007/s11743-003-0249-2 | |
dc.relation | Iglesias-Fernández, J., Darré, L., Kohlmeyer, A., Thomas, R. K., Shen, H. H., & Domene, C. (2015). Surfactin at the Water/Air Interface and in Solution. Langmuir, 31(40), 11097–11104. https://doi.org/10.1021/acs.langmuir.5b02305 | |
dc.relation | Jarosaw Meller. (2001). Molecular Dynamics. Encyclopedia of Life Sciences, 1–8. | |
dc.relation | Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001 | |
dc.relation | Joshi, S. J., Al-Wahaibi, Y. M., Al-Bahry, S. N., Elshafie, A. E., Al-Bemani, A. S., Al-Bahri, A., & Al-Mandhari, M. S. (2016). Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery. Frontiers in Microbiology, 7(November), 1–14. https://doi.org/10.3389/fmicb.2016.01853 | |
dc.relation | Kakinuma, A., Sugino, H., Isono, M., Tamura, G., & Arima, K. (1969). Determination of Fatty Acid in Surfactin and Elucidation of the Total Structure of Surfactin. Agricultural and Biological Chemistry. https://doi.org/10.1080/00021369.1969.10859409 | |
dc.relation | Kearns, D. B. (2011). A field guide to bacterial swarming motility. Nat Rev Micro, 8(9), 634–644. https://doi.org/10.1038/nrmicro2405.A | |
dc.relation | Lazar, I., Petrisor, I. G., & Yen, T. F. (2007). Microbial Enhanced Oil Recovery (MEOR). Petroleum Science and Technology, 25(11), 1353–1366. https://doi.org/10.1080/10916460701287714 | |
dc.relation | Lennard-Jones, J. E. (1931). Cohesion. Proceedings of the Physical Society, 43(5), 461–482. https://doi.org/10.1088/0959-5309/43/5/301 | |
dc.relation | Liu, J. F., Mbadinga, S. M., Yang, S. Z., Gu, J. D., & Mu, B. Z. (2015). Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. International Journal of Molecular Sciences, 16(3), 4814–4837. https://doi.org/10.3390/ijms16034814 | |
dc.relation | Liu, Q., Lin, J., Wang, W., Huang, H., & Li, S. (2014). Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochemical Engineering Journal, 93(3), 31–37. https://doi.org/10.1016/j.bej.2014.08.023 | |
dc.relation | Long, X., He, N., He, Y., Jiang, J., & Wu, T. (2017). Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresource Technology, 241, 200–206. https://doi.org/10.1016/j.biortech.2017.05.120 | |
dc.relation | Mao, Y., & Zhang, Y. (2012). Thermal conductivity , shear viscosity and specific heat of rigid water models. Chemical Physics Letters, 542, 37–41. https://doi.org/10.1016/j.cplett.2012.05.044 | |
dc.relation | Martin, M. G., & Siepmann, J. (1998). Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. The Journal of Physical Chemistry B. https://doi.org/10.1021/jp972543+ | |
dc.relation | Mendoza, F. N., Lopez-Rendon, R., Lopez-Lemus, J., Cruz, J., & Alejandre, J. (2008). Surface tension of hydrocarbon chains at the liquid-vapour interface. Molecular Physics, 106(8), 1055–1059. https://doi.org/10.1080/00268970802119694 | |
dc.relation | Mori, T., Miyashita, N., Im, W., Feig, M., & Sugita, Y. (2016). Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1858(7), 1635–1651. https://doi.org/10.1016/j.bbamem.2015.12.032 | |
dc.relation | Navpreet, K. W., & Cameotra, S. S. (2015). Lipopeptides: Biosynthesis and Applications. Journal of Microbial & Biochemical Technology, 07(02), 103–107. https://doi.org/10.4172/1948-5948.1000189 | |
dc.relation | Nerurkar, A. S., & Anuradha S., N. (2010). Structural and Molecular Characteristics of Lichenysin and Its Relationship with Surface Activity. In R. Sen (Ed.), Biosurfactants (pp. 304–315). https://doi.org/10.1007/978-1-4419-5979-9_23 | |
dc.relation | Nicolas, J. P. (2003). Molecular dynamics simulation of surfactin molecules at the water-hexane interface. Biophysical Journal, 85(3), 1377–1391. https://doi.org/10.1016/S0006-3495(03)74571-8 | |
dc.relation | Nicolas, J. P., & Smit, B. (2002). Molecular dynamics simulations of the surface tension of n-hexane, n-decane and n-hexadecane. Molecular Physics, 100(15), 2471–2475. https://doi.org/10.1080/00268970210130182 | |
dc.relation | Nijmeijer, M. J. P., Bakker, A. F., Bruin, C., & Sikkenk, J. H. (1988). A molecular dynamics simulation of the Lennard‐Jones liquid–vapor interface. The Journal of Chemical Physics, 89(6), 3789–3792. https://doi.org/10.1063/1.454902 | |
dc.relation | Onaizi, S. A., Nasser, M. S., & Twaiq, F. (2014). Adsorption and thermodynamics of biosurfactant, surfactin, monolayers at the air-buffered liquid interface. Colloid and Polymer Science, 292(7), 1649–1656. https://doi.org/10.1007/s00396-014-3223-y | |
dc.relation | Patel, J., Borgohain, S., Kumar, M., Rangarajan, V., Somasundaran, P., & Sen, R. (2015). Recent developments in microbial enhanced oil recovery. Renewable and Sustainable Energy Reviews, 52, 1539–1558. https://doi.org/10.1016/j.rser.2015.07.135 | |
dc.relation | Pathak, K. V., & Keharia, H. (2013). Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR). Biotech, 4, 41–48. https://doi.org/10.1007/s13205-013-0119-3 | |
dc.relation | Pérez, A., Luque, F. J., & Orozco, M. (2012). Frontiers in molecular dynamics simulations of DNA. Accounts of Chemical Research. https://doi.org/10.1021/ar2001217 | |
dc.relation | Peterson, I. R. (1990). Langmuir-blodgett films. Journal of Physics D: Applied Physics, Vol. 23, pp. 379–395. https://doi.org/10.1088/0022-3727/23/4/001 | |
dc.relation | Peypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s002530051432 | |
dc.relation | Peypoux, Françoise, Guinand, M., Michel, G., Delcambe, L., Das, B. C., & Lederer, E. (1978). Structure of Iturine A, a Peptidolipid Antibiotic from Bacillus subtilis. Biochemistry, 17(19), 3992–3996. https://doi.org/10.1021/bi00612a018 | |
dc.relation | Price, N. P. J., Rooney, A. P., Swezey, J. L., Perry, E., & Cohan, F. M. (2007). Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiology Letters, 271(1), 83–89. https://doi.org/10.1111/j.1574-6968.2007.00702.x | |
dc.relation | Prince, L. M. (1967). A theory of aqueous emulsions I. Negative interfacial tension at the oil/water interface. Journal of Colloid And Interface Science, 23(2), 165–173. https://doi.org/10.1016/0021-9797(67)90099-9 | |
dc.relation | Pwaga, S., Iluore, C., Hundseth, Ø., Juárez Perales, F., & Idrees, M. U. (2010). Comparative Study of Different EOR Methods. Trondheim, Norway. | |
dc.relation | Robertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field. Journal of Chemical Theory and Computation, 11(7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356 | |
dc.relation | Rolo, L. I., Cac, A. I., Queimada, J., & Marrucho, I. M. (2002). Surface Tension of Heptane, Decane, Hexadecane, Eicosane, and Some of Their Binary Mixtures. 1442–1445. | |
dc.relation | Rosenberg, E., & Ron, E. Z. (1999). High- and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology, 52(2), 154–162. https://doi.org/10.1007/s002530051502 | |
dc.relation | Rossini, F. D. (1964). PHYSICAL PROPERTIES OF n-HEXADECANE, n-DECYLCYCLOPENTANE, 12-DECYLCYCLOHEXANE, I-HEXADECENE AND n-DECYLBENZENE’. 613(8), 440–442. | |
dc.relation | Sandoval-Perez, A., Pluhackova, K., & Böckmann, R. A. (2017). Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface. Journal of Chemical Theory and Computation, 13(5), 2310–2321. https://doi.org/10.1021/acs.jctc.7b00001 | |
dc.relation | Schuler, L. D., Daura, X., & van Gunsteren, W. F. (2001). An improved GROMOS96 Force Field for Aliphatic Hydrocarbons in the Condensed Phase. J. Comput. Chem., 22(11), 1205–1218. https://doi.org/10.1002/jcc.1078 | |
dc.relation | She, A.-Q., Gang, H.-Z., & Mu, B.-Z. (2012). Temperature Influence on the Structure and Interfacial Properties of Surfactin Micelle: A Molecular Dynamics Simulation Study. The Journal of Physical Chemistry B, 116(42), 12735–12743. https://doi.org/10.1021/jp302413c | |
dc.relation | Shen, H. H., Thomas, R. K., Chen, C. Y., Darton, R. C., Baker, S. C., & Penfold, J. (2009). Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution: An unusual type of surfactant? Langmuir, 25(7), 4211–4218. https://doi.org/10.1021/la802913x | |
dc.relation | Siu, S. W. I., Pluhackova, K., & Böckmann, R. A. (2012). Optimization of the OPLS-AA force field for long hydrocarbons. Journal of Chemical Theory and Computation, 8(4), 1459–1470. https://doi.org/10.1021/ct200908r | |
dc.relation | Song, C. S., Ye, R. Q., & Mu, B. Z. (2007). Molecular behavior of a microbial lipopeptide monolayer at the air-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1–3), 82–87. https://doi.org/10.1016/j.colsurfa.2007.01.055 | |
dc.relation | Song, Z. Y., Han, H. Y., & Zhu, W. Y. (2015). Morphological variation and recovery mechanism of residual crude oil by Biosurfactant from indigenous bacteria: Macro- and pore-scale experimental investigations. Journal of Microbiology and Biotechnology. https://doi.org/10.4014/jmb.1409.09074 | |
dc.relation | Tsan, P., Volpon, L., Besson, F., & Lancelin, J.-M. (2007). Structure and dynamics of surfactin studied by NMR in micellar media. Journal of the American Chemical Society, 129(7), 1968–1977. https://doi.org/10.1021/ja066117q | |
dc.relation | Underwood, T. R., & Greenwell, H. C. (2018). The Water-Alkane Interface at Various NaCl Salt Concentrations: A Molecular Dynamics Study of the Readily Available Force Fields. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-18633-y | |
dc.relation | Vanittanakom, N., & Loeffler, W. (1986). Fengycin - a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of Antibiotics, XXXIX(7), 888–901. https://doi.org/10.7164/antibiotics.39.888 | |
dc.relation | Vega, C., & De Miguel, E. (2007). Surface tension of the most popular models of water by using the test-area simulation method. Journal of Chemical Physics, 126(15). https://doi.org/10.1063/1.2715577 | |
dc.relation | Verlet, L. (1967). Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review. https://doi.org/10.1103/PhysRev.159.98 | |
dc.relation | Wang, J., Wolf, R. M., Caldwell, J. W., Kollamn, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computatational Chemistry, 25, 1157–1174. | |
dc.relation | Zarbakhsh, A., Bowers, J., & Webster, J. R. P. (2005). Width of the hexadecane-water interface: A discrepancy resolved. Langmuir, 21(25), 11596–11598. https://doi.org/10.1021/la051809y | |
dc.relation | Zou, A., Liu, J., Garamus, V. M., Yang, Y., Willumeit, R., & Mu, B. (2010). Micellization activity of the natural lipopeptide [Glui, Asp5] surfactin-C15 in aqueous solution. Journal of Physical Chemistry B, 114(8), 2712–2718. https://doi.org/10.1021/jp908675s | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Análisis por dinámica molecular de propiedades tensoactivas de lipopéptidos producidos por Bacillus spp. para su potencial uso en recuperación mejorada de petróleo | |
dc.type | Otro | |