dc.contributorOrduz-Peralta, Sergio
dc.contributorHoyos-Madrigal, Bibian
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorBiología Funcional
dc.creatorBedoya-Cardona, Johann Evelio
dc.date.accessioned2020-05-21T21:43:10Z
dc.date.available2020-05-21T21:43:10Z
dc.date.created2020-05-21T21:43:10Z
dc.date.issued2019-11-29
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77546
dc.description.abstractUsing surface-active compounds to reduce the interfacial tension between hydrocarbons and water is a mechanism used in Enhanced Oil Recovery. Therefore, substances with a high surfactant activity that cause this reduction are continually being sought, and in this aspect, lipopeptides can be a cost-effective alternative. Molecular simulation techniques allow the analysis of this molecular activity in silico by representing the molecules of a system through an atomic interaction potential. According to the above, the surfactant properties of two lipopeptides produced by bacteria of the genus Bacillus, the iC15 surfactin and the iC13 kurstakin were studied, by Molecular Dynamics simulations. After selecting a suitable interaction potential to represent the molecules, simulations were made to study the effect of monomolecular films of the protonated lipopeptides on the surface tension (ST) of water, and the interfacial tension (IFT) of the hexadecane-water system. The pressure tensor method was used to calculate this tension founding that under this simulation system conditions, a saturated monolayer of iC15 suffocating reduces the ST of water to less than a half, and a similar behavior was observed for the IFT of the hexadecane-water system, checking its surfactant capacity. On the other hand, monolayers of the iC13 kurstakin present an excess of internal pressure which increases the ST of the air-water system and does not influence the IFT of the hexadecane-water, so it is not considered to be promising in Enhanced Oil Recovery.
dc.description.abstractEl empleo de compuestos con actividad surfactante para reducir la tensión interfacial entre hidrocarburos y el agua es uno de los mecanismos usados en recobro mejorado de petróleo, por ello continuamente se buscan sustancias con una alta actividad tensoactiva que ocasionen esta reducción, y en dicho aspecto los lipopéptidos pueden ser una alternativa rentable. Adicionalmente, las técnicas de simulación molecular permiten analizar este tipo de actividad molecular in silicio al representar las moléculas de un sistema mediante un potencial de interacción atómica. De acuerdo con lo anterior, mediante este trabajo se evaluaron las propiedades tensoactivas de dos lipopéptidos producidos por bacterias del género Bacillus spp., la surfactina iC15 y la kurstakina iC13 por medio de simulación por Dinámica Molecular. Luego de seleccionar un potencial de interacción adecuado para representar las moléculas se hicieron simulaciones para estudiar el efecto de películas monomoleculares de los lipopéptidos protonados en la tensión superficial (TS) del agua, y en la tensión interfacial (TIF) del sistema hexadecano-agua. Para calcular dicha tensión se usó el método del tensor de presión. Se comprobó que bajo las condiciones de simulación usadas, una monocapa saturada de la surfactina iC15 reduce la TS del agua a menos de la mitad y un comportamiento similar se observó para la TIF del sistema hexadecano-agua, comprobando así su capacidad tensoactiva. Por otra parte se observó que monocapas de la kurstakina iC13 presentan un exceso de presión interna, por lo que aumentan la TS del sistema aire-agua y no presentan un efecto en la TIF del sistema hexadecano-agua, por lo que no se considera que sea promisoria en Recobro Mejorado de Petróleo..
dc.languagespa
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisherEscuela de biociencias
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbascal, J. L., & Vega, C. (2005). A general purpose model for the condensed phases of water: TIP4P/2005. The Journal of Chemical Physics, 123(23), 234505. https://doi.org/10.1063/1.2121687
dc.relationAbderrahmani, A., Tapi, A., Nateche, F., Chollet, M., Leclère, V., Wathelet, B., … Jacques, P. (2011). Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Applied Microbiology and Biotechnology, 92(3), 571–581. https://doi.org/10.1007/s00253-011-3453-6
dc.relationAbraham, M., Hess, B., Spoel, D. van der, & Lindahl, E. (2015). GROMACS User Manual version 5.0.7. Www.Gromacs.Org. https://doi.org/10.1007/SpringerReference_28001
dc.relationAlejandre, J., & Chapela, G. A. (2010). The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions. Journal of Chemical Physics, 132(1). https://doi.org/10.1063/1.3279128
dc.relationArima, K., Kakinuma, A., & Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus Subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications, 31(3), 488–494. https://doi.org/10.1016/0006-291X(68)90503-2
dc.relationAveyard, R., & Haydon, D. A. (1965). Thermodynamic properties of aliphatic hydrocarbon/water interfaces. Transactions of the Faraday Society, 61(0), 2255–2261. https://doi.org/10.1039/tf9656102255
dc.relationBéchet, M., Caradec, T., Hussein, W., Abderrahmani, A., Chollet, M., Leclère, V., … Jacques, P. (2012). Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Applied Microbiology and Biotechnology, 95(3), 593–600. https://doi.org/10.1007/s00253-012-4181-2
dc.relationBerendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
dc.relationBerendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
dc.relationBerendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction Models for Water in Relation to Protein Hydration BT - Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, April 13–16, 1981 (B. Pullman, ed.). https://doi.org/10.1007/978-94-015-7658-1_21
dc.relationBerger, O., Edholm, O., & Jähnig, F. (1997). Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophysical Journal, 72(5), 2002–2013. https://doi.org/10.1016/S0006-3495(97)78845-3
dc.relationBest, R. B., & Mittal, J. (2010). Protein simulations with an optimized water model: Cooperative helix formation and temperature-induced unfolded state collapse. Journal of Physical Chemistry B, 114(46), 14916–14923. https://doi.org/10.1021/jp108618d
dc.relationBest, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & MacKerell, A. D. (2012). Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
dc.relationBiria, D., Maghsoudi, E., Roostaazad, R., Dadafarin, H., Lotfi, S. S., & Amoozegar, M. A. (2010). Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World Journal of Microbiology and Biotechnology, 26(5), 871–878. https://doi.org/10.1007/s11274-009-0246-5
dc.relationBonmatin, J.-M., Laprévote, O., & Peypoux, F. (2003). Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Combinatorial Chemistry & High Throughput Screening, 6(6), 541–556. https://doi.org/10.2174/138620703106298716
dc.relationBresme, F., Chacón, E., & Tarazona, P. (2010). Force-field dependence on the interfacial structure of oil-water interfaces. Molecular Physics, 108(14), 1887–1898. https://doi.org/10.1080/00268976.2010.496376
dc.relationBussi, G., Donadio, D., & Parrinello, M. (2008). Canonical sampling through velocity-rescaling. https://doi.org/10.1063/1.2408420
dc.relationCampanelli, J. R., & Wang, X. (1999). Dynamic interfacial tension of surfactant mixtures at liquid-liquid interfaces. Journal of Colloid and Interface Science, 213(2), 340–351. https://doi.org/10.1006/jcis.1999.6149
dc.relationHathout, Y., Demirev, P., Fenselau, C., Ho, Y.-P., & Ryzhov, V. (2002). Kurstakins: A New Class of Lipopeptides Isolated from Bacillus t huringiensis. Journal of Natural Products, 63(11), 1492–1496. https://doi.org/10.1021/np000169q
dc.relationGrangemard, I., Wallach, J., Maget-Dana, R., & Peypoux, F. (2001). Lichenysin: A more efficient cation chelator than surfactin. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 90(3), 199–210. https://doi.org/10.1385/ABAB:90:3:199
dc.relationGiner-Casares, J. J., Camacho, L., Martín-Romero, M. T., & Cascales, J. J. L. (2008). A DMPA langmuir monolayer study: From gas to solid phase. An atomistic description by molecular dynamics simulation. Langmuir, 24(5), 1823–1828. https://doi.org/10.1021/la7030297
dc.relationHess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
dc.relationChen, F., & Smith, P. E. (2007). Simulated surface tensions of common water models. Journal of Chemical Physics, 126(22), 126–129. https://doi.org/10.1063/1.2745718
dc.relationCooper, D. G., Macdonald, C. R., Duff, S. J. B., & Kosaric, N. (1981). Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Applied and Environmental Microbiology, 42(3), 408–412.
dc.relationDarden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics. https://doi.org/10.1063/1.464397
dc.relationde Sousa, M., Dantas, I. T., Felix, A. K. N., de Sant’ana, H. B., Melo, V. M. M., & Gonçalves, L. R. B. (2014). Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633. Brazilian Archives of Biology and Technology, 57(2), 295–301. https://doi.org/10.1590/S1516-89132014000200019
dc.relationDeleu, M., Razafindralambo, H., Popineau, Y., Jacques, P., Thonart, P., & Paquot, M. (1999). Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152(1–2), 3–10. https://doi.org/10.1016/S0927-7757(98)00627-X
dc.relationDickson, C. J., Madej, B. D., Skjevik, Å. A., Betz, R. M., Teigen, K., Gould, I. R., & Walker, R. C. (2014). Lipid14: The amber lipid force field. Journal of Chemical Theory and Computation, 10(2), 865–879. https://doi.org/10.1021/ct4010307
dc.relationDouarche, C., Allain, J. M., & Raspaud, E. (2015). Bacillus subtilis Bacteria Generate an Internal Mechanical Force within a Biofilm. Biophysical Journal, 109(10), 2195–2202. https://doi.org/10.1016/j.bpj.2015.10.004
dc.relationDror, R. O., Dirks, R. M., Grossman, J. P., Xu, H., & Shaw, D. E. (2012). Biomolecular simulation: a computational microscope for molecular biology. Annual Review of Biophysics, 41, 429–452. https://doi.org/10.1146/annurev-biophys-042910-155245
dc.relationDubois, T., Faegri, K., Perchat, S., Lemy, C., Buisson, C., Nielsen-LeRoux, C., … Lereclus, D. (2012). Necrotrophism is a Quorum-sensing-regulated lifestyle in bacillus thuringiensis. PLoS Pathogens, 8(4). https://doi.org/10.1371/journal.ppat.1002629
dc.relationEichenberger, A. P., Huang, W., Riniker, S., & Van Gunsteren, W. F. (2015). Supra-Atomic Coarse-Grained GROMOS Force Field for Aliphatic Hydrocarbons in the Liquid Phase. Journal of Chemical Theory and Computation, 11(7), 2925–2937. https://doi.org/10.1021/acs.jctc.5b00295
dc.relationGang, H., Liu, J., & Mu, B. (2015). Binding structure and kinetics of surfactin monolayer formed at the air/water interface to counterions: A molecular dynamics simulation study. Biochimica et Biophysica Acta - Biomembranes, 1848(10), 1955–1962. https://doi.org/10.1016/j.bbamem.2015.05.016
dc.relationGang, H. Z., Liu, J. F., & Mu, B. Z. (2010a). Interfacial behavior of surfactin at the decane/water interface: A molecular dynamics simulation. Journal of Physical Chemistry B, 114(46), 14947–14954. https://doi.org/10.1021/jp1057379
dc.relationGang, H. Z., Liu, J. F., & Mu, B. Z. (2010b). Molecular dynamics simulation of surfactin derivatives at the decane/water interface at low surface coverage. Journal of Physical Chemistry B, 114(8), 2728–2737. https://doi.org/10.1021/jp909202u
dc.relationHanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. https://doi.org/10.1186/1758-2946-4-17
dc.relationGang, H. Z., Liu, J. F., & Mu, B. Z. (2011). Molecular dynamics study of surfactin monolayer at the air/water interface. Journal of Physical Chemistry B, 115(44), 12770–12777. https://doi.org/10.1021/jp206350j
dc.relationHashimoto, M., Garstecki, P., Stone, H. A., & Whitesides, G. M. (2008). Interfacial instabilities in a microfluidic Hele-Shaw cell. Soft Matter, 4(7), 1403. https://doi.org/10.1039/b715867j
dc.relationHerzog, F. A., Braun, L., Schoen, I., & Vogel, V. (2016). Improved Side Chain Dynamics in MARTINI Simulations of Protein-Lipid Interfaces. Journal of Chemical Theory and Computation, 12(5), 2446–2458. https://doi.org/10.1021/acs.jctc.6b00122
dc.relationHorta, B. A. C., Fuchs, P. F. J., Van Gunsteren, W. F., & Hünenberger, P. H. (2011). New interaction parameters for oxygen compounds in the GROMOS force field: Improved pure-liquid and solvation properties for alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters. Journal of Chemical Theory and Computation, 7(4), 1016–1031. https://doi.org/10.1021/ct1006407
dc.relationHuang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
dc.relationHumphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/https://doi.org/10.1016/0263-7855(96)00018-5
dc.relationHuszcza, E., & Burczyk, B. (2003). Biosurfactant production by Bacillus coagulans. Journal of Surfactants and Detergents, 6(1), 61–64. https://doi.org/10.1007/s11743-003-0249-2
dc.relationIglesias-Fernández, J., Darré, L., Kohlmeyer, A., Thomas, R. K., Shen, H. H., & Domene, C. (2015). Surfactin at the Water/Air Interface and in Solution. Langmuir, 31(40), 11097–11104. https://doi.org/10.1021/acs.langmuir.5b02305
dc.relationJarosaw Meller. (2001). Molecular Dynamics. Encyclopedia of Life Sciences, 1–8.
dc.relationJorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001
dc.relationJoshi, S. J., Al-Wahaibi, Y. M., Al-Bahry, S. N., Elshafie, A. E., Al-Bemani, A. S., Al-Bahri, A., & Al-Mandhari, M. S. (2016). Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery. Frontiers in Microbiology, 7(November), 1–14. https://doi.org/10.3389/fmicb.2016.01853
dc.relationKakinuma, A., Sugino, H., Isono, M., Tamura, G., & Arima, K. (1969). Determination of Fatty Acid in Surfactin and Elucidation of the Total Structure of Surfactin. Agricultural and Biological Chemistry. https://doi.org/10.1080/00021369.1969.10859409
dc.relationKearns, D. B. (2011). A field guide to bacterial swarming motility. Nat Rev Micro, 8(9), 634–644. https://doi.org/10.1038/nrmicro2405.A
dc.relationLazar, I., Petrisor, I. G., & Yen, T. F. (2007). Microbial Enhanced Oil Recovery (MEOR). Petroleum Science and Technology, 25(11), 1353–1366. https://doi.org/10.1080/10916460701287714
dc.relationLennard-Jones, J. E. (1931). Cohesion. Proceedings of the Physical Society, 43(5), 461–482. https://doi.org/10.1088/0959-5309/43/5/301
dc.relationLiu, J. F., Mbadinga, S. M., Yang, S. Z., Gu, J. D., & Mu, B. Z. (2015). Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. International Journal of Molecular Sciences, 16(3), 4814–4837. https://doi.org/10.3390/ijms16034814
dc.relationLiu, Q., Lin, J., Wang, W., Huang, H., & Li, S. (2014). Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochemical Engineering Journal, 93(3), 31–37. https://doi.org/10.1016/j.bej.2014.08.023
dc.relationLong, X., He, N., He, Y., Jiang, J., & Wu, T. (2017). Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresource Technology, 241, 200–206. https://doi.org/10.1016/j.biortech.2017.05.120
dc.relationMao, Y., & Zhang, Y. (2012). Thermal conductivity , shear viscosity and specific heat of rigid water models. Chemical Physics Letters, 542, 37–41. https://doi.org/10.1016/j.cplett.2012.05.044
dc.relationMartin, M. G., & Siepmann, J. (1998). Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. The Journal of Physical Chemistry B. https://doi.org/10.1021/jp972543+
dc.relationMendoza, F. N., Lopez-Rendon, R., Lopez-Lemus, J., Cruz, J., & Alejandre, J. (2008). Surface tension of hydrocarbon chains at the liquid-vapour interface. Molecular Physics, 106(8), 1055–1059. https://doi.org/10.1080/00268970802119694
dc.relationMori, T., Miyashita, N., Im, W., Feig, M., & Sugita, Y. (2016). Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1858(7), 1635–1651. https://doi.org/10.1016/j.bbamem.2015.12.032
dc.relationNavpreet, K. W., & Cameotra, S. S. (2015). Lipopeptides: Biosynthesis and Applications. Journal of Microbial & Biochemical Technology, 07(02), 103–107. https://doi.org/10.4172/1948-5948.1000189
dc.relationNerurkar, A. S., & Anuradha S., N. (2010). Structural and Molecular Characteristics of Lichenysin and Its Relationship with Surface Activity. In R. Sen (Ed.), Biosurfactants (pp. 304–315). https://doi.org/10.1007/978-1-4419-5979-9_23
dc.relationNicolas, J. P. (2003). Molecular dynamics simulation of surfactin molecules at the water-hexane interface. Biophysical Journal, 85(3), 1377–1391. https://doi.org/10.1016/S0006-3495(03)74571-8
dc.relationNicolas, J. P., & Smit, B. (2002). Molecular dynamics simulations of the surface tension of n-hexane, n-decane and n-hexadecane. Molecular Physics, 100(15), 2471–2475. https://doi.org/10.1080/00268970210130182
dc.relationNijmeijer, M. J. P., Bakker, A. F., Bruin, C., & Sikkenk, J. H. (1988). A molecular dynamics simulation of the Lennard‐Jones liquid–vapor interface. The Journal of Chemical Physics, 89(6), 3789–3792. https://doi.org/10.1063/1.454902
dc.relationOnaizi, S. A., Nasser, M. S., & Twaiq, F. (2014). Adsorption and thermodynamics of biosurfactant, surfactin, monolayers at the air-buffered liquid interface. Colloid and Polymer Science, 292(7), 1649–1656. https://doi.org/10.1007/s00396-014-3223-y
dc.relationPatel, J., Borgohain, S., Kumar, M., Rangarajan, V., Somasundaran, P., & Sen, R. (2015). Recent developments in microbial enhanced oil recovery. Renewable and Sustainable Energy Reviews, 52, 1539–1558. https://doi.org/10.1016/j.rser.2015.07.135
dc.relationPathak, K. V., & Keharia, H. (2013). Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR). Biotech, 4, 41–48. https://doi.org/10.1007/s13205-013-0119-3
dc.relationPérez, A., Luque, F. J., & Orozco, M. (2012). Frontiers in molecular dynamics simulations of DNA. Accounts of Chemical Research. https://doi.org/10.1021/ar2001217
dc.relationPeterson, I. R. (1990). Langmuir-blodgett films. Journal of Physics D: Applied Physics, Vol. 23, pp. 379–395. https://doi.org/10.1088/0022-3727/23/4/001
dc.relationPeypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s002530051432
dc.relationPeypoux, Françoise, Guinand, M., Michel, G., Delcambe, L., Das, B. C., & Lederer, E. (1978). Structure of Iturine A, a Peptidolipid Antibiotic from Bacillus subtilis. Biochemistry, 17(19), 3992–3996. https://doi.org/10.1021/bi00612a018
dc.relationPrice, N. P. J., Rooney, A. P., Swezey, J. L., Perry, E., & Cohan, F. M. (2007). Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiology Letters, 271(1), 83–89. https://doi.org/10.1111/j.1574-6968.2007.00702.x
dc.relationPrince, L. M. (1967). A theory of aqueous emulsions I. Negative interfacial tension at the oil/water interface. Journal of Colloid And Interface Science, 23(2), 165–173. https://doi.org/10.1016/0021-9797(67)90099-9
dc.relationPwaga, S., Iluore, C., Hundseth, Ø., Juárez Perales, F., & Idrees, M. U. (2010). Comparative Study of Different EOR Methods. Trondheim, Norway.
dc.relationRobertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field. Journal of Chemical Theory and Computation, 11(7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356
dc.relationRolo, L. I., Cac, A. I., Queimada, J., & Marrucho, I. M. (2002). Surface Tension of Heptane, Decane, Hexadecane, Eicosane, and Some of Their Binary Mixtures. 1442–1445.
dc.relationRosenberg, E., & Ron, E. Z. (1999). High- and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology, 52(2), 154–162. https://doi.org/10.1007/s002530051502
dc.relationRossini, F. D. (1964). PHYSICAL PROPERTIES OF n-HEXADECANE, n-DECYLCYCLOPENTANE, 12-DECYLCYCLOHEXANE, I-HEXADECENE AND n-DECYLBENZENE’. 613(8), 440–442.
dc.relationSandoval-Perez, A., Pluhackova, K., & Böckmann, R. A. (2017). Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface. Journal of Chemical Theory and Computation, 13(5), 2310–2321. https://doi.org/10.1021/acs.jctc.7b00001
dc.relationSchuler, L. D., Daura, X., & van Gunsteren, W. F. (2001). An improved GROMOS96 Force Field for Aliphatic Hydrocarbons in the Condensed Phase. J. Comput. Chem., 22(11), 1205–1218. https://doi.org/10.1002/jcc.1078
dc.relationShe, A.-Q., Gang, H.-Z., & Mu, B.-Z. (2012). Temperature Influence on the Structure and Interfacial Properties of Surfactin Micelle: A Molecular Dynamics Simulation Study. The Journal of Physical Chemistry B, 116(42), 12735–12743. https://doi.org/10.1021/jp302413c
dc.relationShen, H. H., Thomas, R. K., Chen, C. Y., Darton, R. C., Baker, S. C., & Penfold, J. (2009). Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution: An unusual type of surfactant? Langmuir, 25(7), 4211–4218. https://doi.org/10.1021/la802913x
dc.relationSiu, S. W. I., Pluhackova, K., & Böckmann, R. A. (2012). Optimization of the OPLS-AA force field for long hydrocarbons. Journal of Chemical Theory and Computation, 8(4), 1459–1470. https://doi.org/10.1021/ct200908r
dc.relationSong, C. S., Ye, R. Q., & Mu, B. Z. (2007). Molecular behavior of a microbial lipopeptide monolayer at the air-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1–3), 82–87. https://doi.org/10.1016/j.colsurfa.2007.01.055
dc.relationSong, Z. Y., Han, H. Y., & Zhu, W. Y. (2015). Morphological variation and recovery mechanism of residual crude oil by Biosurfactant from indigenous bacteria: Macro- and pore-scale experimental investigations. Journal of Microbiology and Biotechnology. https://doi.org/10.4014/jmb.1409.09074
dc.relationTsan, P., Volpon, L., Besson, F., & Lancelin, J.-M. (2007). Structure and dynamics of surfactin studied by NMR in micellar media. Journal of the American Chemical Society, 129(7), 1968–1977. https://doi.org/10.1021/ja066117q
dc.relationUnderwood, T. R., & Greenwell, H. C. (2018). The Water-Alkane Interface at Various NaCl Salt Concentrations: A Molecular Dynamics Study of the Readily Available Force Fields. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-18633-y
dc.relationVanittanakom, N., & Loeffler, W. (1986). Fengycin - a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of Antibiotics, XXXIX(7), 888–901. https://doi.org/10.7164/antibiotics.39.888
dc.relationVega, C., & De Miguel, E. (2007). Surface tension of the most popular models of water by using the test-area simulation method. Journal of Chemical Physics, 126(15). https://doi.org/10.1063/1.2715577
dc.relationVerlet, L. (1967). Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review. https://doi.org/10.1103/PhysRev.159.98
dc.relationWang, J., Wolf, R. M., Caldwell, J. W., Kollamn, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computatational Chemistry, 25, 1157–1174.
dc.relationZarbakhsh, A., Bowers, J., & Webster, J. R. P. (2005). Width of the hexadecane-water interface: A discrepancy resolved. Langmuir, 21(25), 11596–11598. https://doi.org/10.1021/la051809y
dc.relationZou, A., Liu, J., Garamus, V. M., Yang, Y., Willumeit, R., & Mu, B. (2010). Micellization activity of the natural lipopeptide [Glui, Asp5] surfactin-C15 in aqueous solution. Journal of Physical Chemistry B, 114(8), 2712–2718. https://doi.org/10.1021/jp908675s
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleAnálisis por dinámica molecular de propiedades tensoactivas de lipopéptidos producidos por Bacillus spp. para su potencial uso en recuperación mejorada de petróleo
dc.typeOtro


Este ítem pertenece a la siguiente institución