Colombia | Otro
dc.contributorOrduz Peralta, Sergio
dc.contributorBiología Funcional
dc.creatorGiraldo Hincapie, Paula Andrea
dc.date.accessioned2021-03-02T15:01:32Z
dc.date.available2021-03-02T15:01:32Z
dc.date.created2021-03-02T15:01:32Z
dc.date.issued2020-02-01
dc.identifierGiraldo-Hincapie P.A.(2020) Diseño y evaluación de péptidos insecticidas para el control de Aedes aegypti (tesis doctoral) Universidad Nacional de colombia, Medellín, Colombia
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79336
dc.description.abstractAs a consequence of the development of insecticide resistance in Aedes aegypti, there is a need to find new molecules to control it. Bioactive peptides are considered promising natural products due to their broad spectrum of antimicrobial and insecticidal activity. Previous work has shown the potential of alpha-helix protein fragments as insecticides. In this work, using in silico prediction methods were designed peptides with oral insecticidal activity for Ae. aegypti larvae, from the design of analogs of the insecticidal peptide BTM-P1 and the search for other segments alpha-helix present in domain I of Cry and Cyt toxins from Bacillus thuringiensis. Three BTM-P1-like peptides and a 16 amino acid segment were found in the Cyt2Aa toxin, called CBYH3, with insecticidal potential and no or reduced hemolytic activity. Molecular dynamics also validated the toroidal pore formation mechanism of BTM-P1 on a simplified eukaryotic membrane model. The cellular damage caused by BTM-P1 and CBYH3 and their association to the mitochondria and peritrophic matrix was observed in the mosquito gut using the immunogold technique.
dc.description.abstractComo consecuencia del desarrollo de resistencia a insecticidas en Ae. aegypti, existe la necesidad de encontrar nuevas moléculas para su control. Los péptidos bioactivos son considerados como productos naturales promisorios debido a su amplio espectro de actividad como antimicrobianos e insecticidas. Trabajos previos han demostrado el potencial de fragmentos de proteínas de conformación alfa-hélice, como insecticidas. De acuerdo con lo anterior, en este trabajo, utilizando métodos de predicción in silico, se estudiaron péptidos con actividad insecticida vía oral para larvas de Aedes aegypti, a partir del diseño de análogos del péptido insecticida BTM-P1 y de la búsqueda de otros segmentos alfa-hélice presentes en dominio I de las toxinas Cry y Cyt de Bacillus thuringiensis. Se encontraron tres péptidos análogos a BTM-P1 y un segmento de 16 aminoácidos en la toxina Cyt2Aa, denominado CBYH3, con potencial insecticida y actividad hemolítica nula o reducida. También se validó por dinámica molecular el mecanismo formación de poros toroidales de BTM-P1 sobre un modelo simplificado de membrana eucariota y se observó el daño celular causado por BTM-P1 y CBYH3 y su aparente asociación con mitocondrias y la matriz peritrofica en el intestino de los mosquitos utilizando la técnica de inmunolocalización immunogold.
dc.languagespa
dc.publisherMedellín - Ciencias - Doctorado en Biotecnología
dc.publisherEscuela de biociencias
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationEspinal MA, Andrus JK, Jauregui B, Waterman SH, Morens DM, Santos JI, et al. Emerging and reemerging Aedes-transmitted Arbovirus infections in the Region of the Americas: Implications for Health Policy. Am J Public Health. 2019;109: 387–392. doi:10.2105/AJPH.2018.304849
dc.relationWilder-Smith A, Gubler DJ, Weaver SC, Monath TP, Heymann DL, Scott TW. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis. 2017;17: e101–e106. doi:10.1016/S1473-3099(16)30518-7
dc.relationLeta S, Beyene TJ, De Clercq EM, Amenu K, Revie CW, Kraemer MUG. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2018;67: 25–35. doi:10.1016/j.ijid.2017.11.026
dc.relationMurhekar M, Joshua V, Kanagasabai K, Shete V, Ravi M, Ramachandran R, et al. Epidemiology of dengue fever in India, based on laboratory surveillance data, 2014–2017. Int J Infect Dis. 2019;84: S10–S14. doi:10.1016/j.ijid.2019.01.004
dc.relationDu S, Liu Y, Liu J, Zhao J, Champagne C, Tong L, et al. Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nat Commun. 2019;10. doi:10.1038/s41467-019-09256-0
dc.relationBrisola C, Contigiani M, Miranda R. Emergent and reemergent Arboviruses in South America and the Caribbean: Why so many and why now? J Med Entomol. 2017;54: 509–532. doi:10.1093/jme/tjw209
dc.relationRomeo-Aznar V, Paul R, Telle O, Pascual M. Mosquito-borne transmission in urban landscapes: the missing link between vector abundance and human density. Proc R Soc B Biol Sci. 2018;285. doi:10.1098/rspb.2018.0826
dc.relationJansen S, Heitmann A, Lühken R, Jöst H, Helms M, Vapalahti O, et al. Experimental transmission of Zika virus by Aedes japonicus japonicus from southwestern Germany. Emerg Microbes Infect. 2018;7: 1–6. doi:10.1038/s41426-018-0195-x
dc.relationAcosta-Ampudia Y, Monsalve DM, Rodríguez Y, Pacheco Y, Anaya J-M, Ramírez-Santana C. Mayaro: an emerging viral threat? Emerg Microbes Infect. 2018;7. doi:10.1038/s41426-018-0163-5
dc.relationRyan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis. 2019;13: e0007213. doi:10.1371/journal.pntd.0007213
dc.relationKraemer MUG, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4: 854. doi:10.1038/s41564-019-0376-y
dc.relationrganización Mundial de la Salud (OMS). Vacunas y vacunación contra la fiebre amarilla. Documento de posición, junio de 2013. 2013 Jun pp. 269–284. Report No.: 27. Disponible: https://www.who.int/immunization/PP_yellow_fever_ES.pdf?ua=1
dc.relationBarnett ED. Yellow Fever: Epidemiology and Prevention. Clin Infect Dis. 2007;44: 850–856. doi:10.1086/511869
dc.relationOrganización Mundial de la Salud (OMS). Vacuna contra el dengue. Documento de posición, septiembre de 2018. 2018 Sep pp. 457–476. Disponible: https://www.who.int/immunization/policy/position_papers/PP_dengue_2018_SP.pdf?ua=1
dc.relationPrompetchara E, Ketloy C, Thomas SJ, Kiat Ruxrungtham. Dengue vaccine: Global development update. Asian Pac J Allergy Immunol. 2019; 1–8. doi:10.12932/AP-100518-0309
dc.relationL’Azou M, Moureau A, Sarti E, Nealon J, Zambrano B, Wartel TA, et al. Symptomatic Dengue in children in 10 Asian and Latin American countries. N Engl J Med. 2016;374: 1155–1166. doi:10.1056/NEJMoa1503877
dc.relationMelo T. ¿Por qué el sistema de salud colombiano no tiene la vacuna contra el dengue? In: RCN Radio [Internet]. 23 Jul 2019 [cited 27 Jul 2019]. Disponible: https://www.rcnradio.com/salud/por-que-el-sistema-de-salud-colombiano-no-tiene-la-vacuna-contra-el-dengue
dc.relationBarrett ADT. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation. NPJ Vaccines. 2018;3. doi:10.1038/s41541-018-0061-9
dc.relationPowers AM. Vaccine and Therapeutic Options To Control Chikungunya Virus. Clin Microbiol Rev. 2017;31: e00104-16. doi:10.1128/CMR.00104-16
dc.relationKrauer F, Riesen M, Reveiz L, Oladapo OT, Martínez-Vega R, Porgo TV, et al. Zika Virus Infection as a cause of congenital brain abnormalities and Guillain–Barré syndrome: systematic review. PLoS Med. 2017;14. doi:10.1371/journal.pmed.1002203
dc.relationLequime S, Lambrechts L. Vertical transmission of arboviruses in mosquitoes: A historical perspective. Infect Genet Evol. 2014;28: 681–690. doi:10.1016/j.meegid.2014.07.025
dc.relationLe Coupanec A, Tchankouo-Nguetcheu S, Roux P, Khun H, Huerre M, Morales-Vargas R, et al. Co-Infection of Mosquitoes with Chikungunya and Dengue viruses reveals modulation of the replication of both viruses in midguts and salivary glands of Aedes aegypti mosquitoes. Int J Mol Sci. 2017;18. doi:10.3390/ijms18081708
dc.relationOrganización Mundial de la Salud (OMS). Respuesta mundial para el control de vectores 2017 - 2030. Organización Mundial de la Salud OMS; 2017 p. 53. Report No.: Version 5.4. Disponible: https://www.who.int/malaria/areas/vector_control/Draft-WHO-GVCR-2017-2030-esp.pdf
dc.relationMoyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11: e0005625. doi:10.1371/journal.pntd.0005625
dc.relationAtencia MC, Pérez MDJ, Jaramillo MC, Caldera SM, Cochero S, Bejarano EE. First report of the F1534C mutation associated with cross-resistance to DDT and pyrethroids in Aedes aegypti from Colombia. Biomed Rev Inst Nac Salud. 2016;36: 432–437. doi:10.7705/biomedica.v36i3.2834
dc.relationvan den Berg H, Zaim M, Yadav RS, Soares A, Ameneshewa B, Mnzava A, et al. Global trends in the use of insecticides to control vector-borne diseases. Environ Health Perspect. 2012;120: 577–582. doi:10.1289/ehp.1104340
dc.relationSarwar M. Indoor risks of pesticide uses are significantly linked to hazards of the family members. Lee A, editor. Cogent Med. 2016;3: 1155373. doi:10.1080/2331205X.2016.1155373
dc.relationSánchez-Bayo F. Insecticides mode of action in relation to their toxicity to non-target organisms. J Environ Anal Toxicol. 2012;s4: 2–9. doi:10.4172/2161-0525.S4-002
dc.relationKatagi T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Rev Environ Contam Toxicol. 2010;204: 1–132. doi:10.1007/978-1-4419-1440-8_1
dc.relationInstituto Nacional de Salud. Informe Red de Vigilancia de la Resistencia a Insecticidas de uso en salud pública en Colombia, 2018. Bogotá, Colombia; 2018 pp. 1–19. Disponible: https://www.ins.gov.co/Direcciones/Vigilancia/Paginas/Transmisibles.aspx
dc.relationBelinato TA, Valle D. The impact of selection with Diflubenzuron, a chitin synthesis inhibitor, on the fitness of two Brazilian Aedes aegypti field populations. PLoS ONE. 2015;10. doi:10.1371/journal.pone.0130719
dc.relationMarcombe S, Farajollahi A, Healy SP, Clark GG, Fonseca DM. Insecticide resistance status of United States populations of Aedes albopictus and mechanisms Involved. PLoS ONE. 2014;9. doi:10.1371/journal.pone.0101992
dc.relationBrelsfoard CL, Mains JW, Mulligan S, Cornel A, Holeman J, Kluh S, et al. Aedes aegypti males as vehicles for insecticide delivery. Insects. 2019;10: 230. doi:10.3390/insects10080230
dc.relationCarvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, Alphey L, et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis. 2015;9. doi:10.1371/journal.pntd.0003864
dc.relationKittayapong P, Kaeothaisong N, Ninphanomchai S, Limohpasmanee W. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasit Vectors. 2018;11: 73–83. doi:10.1186/s13071-018-3214-9
dc.relationFraser JE, De Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, et al. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog. 2017;13. doi:10.1371/journal.ppat.1006751
dc.relationKulkarni A, Yu W, Jiang J, Sanchez C, Karna AK, Martinez KJL, et al. Wolbachia pipientis occurs in Aedes aegypti populations in New Mexico and Florida, USA. Ecol Evol. 2019;9: 6148–6156. doi:10.1002/ece3.5198
dc.relationAliota MT, Peinado SA, Velez ID, Osorio JE. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti. Sci Rep. 2016;6: 28792. doi:10.1038/srep28792
dc.relationFrentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, et al. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis. 2014;8: e2688. doi:10.1371/journal.pntd.0002688
dc.relationFrentiu FD, Robinson J, Young PR, McGraw EA, O’Neill SL. Wolbachia-Mediated Resistance to Dengue Virus Infection and Death at the Cellular Level. PLOS ONE. 2010;5: e13398. doi:10.1371/journal.pone.0013398
dc.relationZabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci. 2004;101: 15042–15045. doi:10.1073/pnas.0403853101
dc.relationOkamoto KW, Gould F, Lloyd AL. Integrating transgenic vector manipulation with clinical interventions to manage vector-borne diseases. PLoS Comput Biol. 2016;12. doi:10.1371/journal.pcbi.1004695
dc.relationOrganización Panamericana de la Salud. Evaluación de las estrategias innovadoras para el control de Aedes aegypti: desafíos para su introducción y evaluación del impacto. Washington D.C; 2019.
dc.relationWindley MJ, Herzig V, Dziemborowicz SA, Hardy MC, King GF, Nicholson GM. Spider-venom peptides as bioinsecticides. Toxins. 2012;4: 191–227. doi:10.3390/toxins4030191
dc.relationPatel S, Akhtar N. Antimicrobial peptides (AMPs): The quintessential ‘offense and defense’ molecules are more than antimicrobials. Biomed Pharmacother. 2017;95: 1276–1283. doi:10.1016/j.biopha.2017.09.042
dc.relationChen C, Zhang Y, Hou Z, Cui X, Zhao Y, Xu H. Rational design of short peptide-based hydrogels with MMP-2 responsiveness for controlled anticancer peptide delivery. Biomacromolecules. 2017;18: 3563–3571. doi:10.1021/acs.biomac.7b00911
dc.relationFjell CD, Hiss JA, Hancock REW, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 2012;11: 37–51. doi:10.1038/nrd3591
dc.relationKhara JS, Lim FK, Wang Y, Ke X-Y, Voo ZX, Yang YY, et al. Designing α-helical peptides with enhanced synergism and selectivity against Mycobacterium smegmatis : discerning the role of hydrophobicity and helicity. Acta Biomater. 2015;28: 99–108. doi:10.1016/j.actbio.2015.09.015
dc.relationMeisel H. Multifunctional peptides encrypted in milk proteins. BioFactors. 2004;21: 55–61. doi:10.1002/biof.552210111
dc.relationTaniguchi M, Ochiai A. Characterization and production of multifunctional cationic peptides derived from rice proteins. Biosci Biotechnol Biochem. 2017;81: 634–650. doi:10.1080/09168451.2016.1277944
dc.relationFindlay F, Proudfoot L, Stevens C, Barlow PG. Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections. Pathog Glob Health. 2016;110: 137–147. doi:10.1080/20477724.2016.1195036
dc.relationMobergslien A, Peng Q, Vasovic V, Sioud M. Cancer cell-binding peptide fused Fc domain activates immune effector cells and blocks tumor growth. Oncotarget. 2016;7: 75940–75953. doi:10.18632/oncotarget.12445
dc.relationGray BP, Brown KC. Combinatorial Peptide libraries: mining for cell-binding peptides. Chem Rev. 2014;114: 1020–1081. doi:10.1021/cr400166n
dc.relationNadal A, Montero M, Company N, Badosa E, Messeguer J, Montesinos L, et al. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness. BMC Plant Biol. 2012;12: 159. doi:10.1186/1471-2229-12-159
dc.relationWang Y, Zhao S, Bai L, Fan J, Liu E. Expression systems and species used for transgenic animal bioreactors. BioMed Res Int. 2013;2013. doi:10.1155/2013/580463
dc.relationFosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20: 122–128. doi:10.1016/j.drudis.2014.10.003
dc.relationGiguère S, Laviolette F, Marchand M, Tremblay D, Moineau S, Liang X, et al. Machine learning assisted design of highly active peptides for drug discovery. PLOS Comput Biol. 2015;11: e1004074. doi:10.1371/journal.pcbi.1004074
dc.relationUhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, et al. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteomics. 2014;4: 58–69. doi:10.1016/j.euprot.2014.05.003
dc.relationLe C-F, Fang C-M, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother. 2017;61. doi:10.1128/AAC.02340-16
dc.relationLi Z, Ding H, Ma Y. Interaction of peptides with cell membranes: insights from molecular modeling. J Phys Condens Matter. 2016;28: 083001. doi:10.1088/0953-8984/28/8/083001
dc.relationLohner K, Blondelle S. Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the Design of novel peptide antibiotics. Comb Chem High Throughput Screen. 2005;8: 241–256. doi:10.2174/1386207053764576
dc.relationZhe Wang. APD3: the antimicrobial peptide database as a tool for research and education Nucleic Acids Research | Oxford Academic. [cited 2 Mar 2019]. Disponible: https://academic.oup.com/nar/article/44/D1/D1087/2503090
dc.relationGould A, Camarero JA. Cyclotides: Overview and biotechnological applications. Chembiochem Eur J Chem Biol. 2017;18: 1350–1363. doi:10.1002/cbic.201700153
dc.relationZhang J, Hua Z, Huang Z, Chen Q, Long Q, Craik DJ, et al. Two Blast-independent tools, CyPerl and CyExcel, for harvesting hundreds of novel cyclotides and analogues from plant genomes and protein databases. Planta. 2015;241: 929–940. doi:10.1007/s00425-014-2229-5
dc.relationPranting M, Loov C, Burman R, Goransson U, Andersson DI. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother. 2010;65: 1964–1971. doi:10.1093/jac/dkq220
dc.relationColgrave ML, Kotze AC, Huang Y-H, O’Grady J, Simonsen SM, Craik DJ. Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep. Biochemistry. 2008;47: 5581–5589. doi:10.1021/bi800223y
dc.relationJennings C, West J, Waine C, Craik D, Anderson M. Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci. 2001;98: 10614–10619. doi:10.1073/pnas.191366898
dc.relationPinto MFS, Fensterseifer ICM, Migliolo L, Sousa DA, de Capdville G, Arboleda-Valencia JW, et al. Identification and structural characterization of novel cyclotide with activity against an insect pest of sugarcane. J Biol Chem. 2012;287: 134–147. doi:10.1074/jbc.M111.294009
dc.relationBarbeta BL, Marshall AT, Gillon AD, Craik DJ, Anderson MA. Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proc Natl Acad Sci. 2008;105: 1221–1225. doi:10.1073/pnas.0710338104
dc.relationKamimori H, Hall K, Craik DJ, Aguilar M-I. Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. Anal Biochem. 2005;337: 149–153. doi:10.1016/j.ab.2004.10.028
dc.relationDawaliby R, Trubbia C, Delporte C, Noyon C, Ruysschaert J-M, Van Antwerpen P, et al. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J Biol Chem. 2016;291: 3658–3667. doi:10.1074/jbc.M115.706523
dc.relationAntcheva N, Guida F, Tossi A. Defensins. Handbook of Biologically Active Peptides. Elsevier; 2013. pp. 101–118. doi:10.1016/B978-0-12-385095-9.00018-X
dc.relationChen K-C, Lin C-Y, Kuan C-C, Sung H-Y, Chen C-S. A Novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against Bruchid. J Agric Food Chem. 2002;50: 7258–7263. doi:10.1021/jf020527q
dc.relationChen J-J, Chen G-H, Hsu H-C, Li S-S, Chen C-S. Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris. J Agric Food Chem. 2004;52: 2256–2261. doi:10.1021/jf030662i
dc.relationLay FT, Schirra HJ, Scanlon MJ, Anderson MA, Craik DJ. The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP. J Mol Biol. 2003;325: 175–188. doi:10.1016/S0022-2836(02)01103-8
dc.relationHerzig V, De Araujo AD, Greenwood KP, Chin YK-Y, Windley MJ, Chong Y, et al. evaluation of chemical strategies for improving the stability and oral toxicity of insecticidal peptides. Biomedicines. 2018;6: 90. doi:10.3390/biomedicines6030090
dc.relationDenecke S, Swevers L, Douris V, Vontas J. How do oral insecticidal compounds cross the insect midgut epithelium? Insect Biochem Mol Biol. 2018;103: 22–35. doi:10.1016/j.ibmb.2018.10.005
dc.relationKuhn-Nentwig L, Müller J, Schaller J, Walz A, Dathe M, Nentwig W. Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei(Ctenidae). J Biol Chem. 2002;277: 11208–11216. doi:10.1074/jbc.M111099200
dc.relationFennell JF, Shipman WH, Cole LJ. Antibacterial action of a bee venom fraction (melittin) against a penicillin-resistant staphylococcus and other microorganisms. USNRDL-TR-67-101. Res Dev Tech Rep U S Nav Radiol Def Lab San Franc. 1967; 1–13. doi:10.21236/ad0658324
dc.relationPonti D, Mangoni ML, Mignogna G, Simmaco M, Barra D. An amphibian antimicrobial peptide variant expressed in Nicotiana tabacum confers resistance to phytopathogens. Biochem J. 2003;370: 121–127. doi:10.1042/BJ20021444
dc.relationOrivel J, Redeker V, Caer J-PL, Krier F, Revol-Junelles A-M, Longeon A, et al. Ponericins, new antibacterial and insecticidal peptides from the venom of the Ant Pachycondyla goeldii. J Biol Chem. 2001;276: 17823–17829. doi:10.1074/jbc.M100216200
dc.relationHughes SR, Dowd PF, Hector RE, Panavas T, Sterner DE, Qureshi N, et al. Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a coproduct in an ethanologenic Saccharomyces cerevisiae strain. J Pept Sci. 2008;14: 1039–1050. doi:10.1002/psc.1040
dc.relationGao B, Zhu S. Mesobuthus venom-derived antimicrobial peptides possess intrinsic multifunctionality and differential potential as drugs. Front Microbiol. 2018;9: 320–320. doi:10.3389/fmicb.2018.00320
dc.relationVassilevski AA, Kozlov SA, Samsonova OV, Egorova NS, Karpunin DV, Pluzhnikov KA, et al. Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem J. 2008;411: 687–696. doi:10.1042/BJ20071123
dc.relationLemeshko VV, Orduz S. Electrical hypothesis of toxicity of the Cry toxins for mosquito larvae. Biosci Rep. 2013;33. doi:10.1042/BSR20120101
dc.relationFernández-Chapa D, Ramírez-Villalobos J, Galán-Wong L. Toxic potential of Bacillus thuringiensis : an overview. In: Jia Y, editor. Protecting Rice Grains in the Post-Genomic Era. IntechOpen; 2019. doi:10.5772/intechopen.85756
dc.relationBravo A, Gill SS, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007;49: 423. doi:10.1016/j.toxicon.2006.11.022
dc.relationUjváry I. Chapter 3 - Pest Control Agents from Natural Products. In: Krieger R, editor. Hayes’ Handbook of Pesticide Toxicology (Third Edition). New York: Academic Press; 2010. pp. 119–229. doi:10.1016/B978-0-12-374367-1.00003-3
dc.relationBen-Dov E. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins. 2014;6: 1222–1243.
dc.relationSuter T, Crespo MM, de Oliveira MF, de Oliveira TSA, de Melo-Santos MAV, de Oliveira CMF, et al. Insecticide susceptibility of Aedes albopictus and Ae. aegypti from Brazil and the Swiss-Italian border region. Parasit Vectors. 2017;10: 431. doi:10.1186/s13071-017-2364-5
dc.relationreau G, Stalinski R, David J-P, Després L. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Mem Inst Oswaldo Cruz. 2013;108: 894–900. doi:10.1590/0074-0276130155
dc.relationParis M, Tetreau G, Laurent F, Lelu M, Despres L, David J-P. Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Pest Manag Sci. 2011;67: 122–128. doi:10.1002/ps.2046
dc.relationSaleh MS, El-Meniawi FA, Kelada NL, Zahran HM. Resistance development in mosquito larvae Culex pipiens to the bacterial agent Bacillus thuringiensis var. israelensis. J Appl Entomol. 2003;127: 29–32. doi:10.1046/j.1439-0418.2003.00703.x
dc.relationYu S, Ji C, Zhu X, Xue J, Wang L, Wang Y. Impact of Bacillus sphaericus exposure on Anopheles dirus’s fecundity and resistance development. Parasitol Res. 2017;116: 859–864. doi:10.1007/s00436-016-5358-x
dc.relationHuang J, Guan Z, Wan L, Zou T, Sun M. Crystal structure of Cry6Aa: A novel nematicidal ClyA-type α-pore-forming toxin from Bacillus thuringiensis. Biochem Biophys Res Commun. 2016;478: 307–313. doi:10.1016/j.bbrc.2016.07.002
dc.relationPalma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis Toxins: An overview of their biocidal activity. Toxins. 2014;6: 3296–3325. doi:10.3390/toxins6123296
dc.relationJurat Fuentes JL, Crickmore N. Specificity determinants for Cry insecticidal proteins: insights from their mode of action. J Invertebr Pathol. 2017;142: 5–10. doi:10.1016/j.jip.2016.07.018
dc.relationVazquez-Padron RI, Riva G de la, Agüero G, Silva Y, Pham SM, Soberón M, et al. Cryptic endotoxic nature of Bacillus thuringiensis Cry1Ab insecticidal crystal protein. FEBS Lett. 2004;570: 30–36. doi:10.1016/j.febslet.2004.06.021
dc.relationYudina TG, Konukhova AV, Revina LP, Kostina LI, Zalunin IA, Chestukhina GG. Antibacterial activity of Cry- and Cyt-proteins from Bacillus thuringiensis ssp. israelensis. Can J Microbiol. 2003;49: 37–44. doi:10.1139/w03-007
dc.relationYudina TG, Brioukhanov AL, Zalunin IA, Revina LP, Shestakov AI, Voyushina NE, et al. Antimicrobial activity of different proteins and their fragments from Bacillus thuringiensis parasporal crystals against clostridia and archaea. Anaerobe. 2007;13: 6–13. doi:10.1016/j.anaerobe.2006.09.006
dc.relationPuntheeranurak† T, Uawithya P, Potvin L, Angsuthanasombat C, Schwartz J. Ion channels formed in planar lipid bilayers by the dipteran-specific Cry4B Bacillus thuringiensis toxin and its α1–α5 fragment. Mol Membr Biol. 2004;21: 67–74. doi:10.1080/09687680310001625792
dc.relationTorrent M, Tommaso PD, Pulido D, Nogués MV, Notredame C, Boix E, et al. AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics. 2012;28. doi:10.1093/bioinformatics/btr604
dc.relationSegura C, Guzmán F, Salazar LM, Patarroyo ME, Orduz S, Lemeshko V. BTM-P1 polycationic peptide biological activity and 3D-dimensional structure. Biochem Biophys Res Commun. 2007;353. doi:10.1016/j.bbrc.2006.12.113
dc.relationArias M, Orduz S, Lemeshko VV. Potential-dependent permeabilization of plasma membrane by the peptide BTM-P1 derived from the Cry11Bb1 protoxin. Biochim Biophys Acta BBA - Biomembr. 2009;1788. doi:10.1016/j.bbamem.2008.12.009
dc.relationTedford HW, Steinbaugh BA, Bao L, Tait BD, Tempczyk-Russell A, Smith W, et al. In silico screening for compounds that match the pharmacophore of omega-hexatoxin-Hv1a leads to discovery and optimization of a novel class of insecticides. Pestic Biochem Physiol. 2013;106: 124–140. doi:10.1016/j.pestbp.2013.01.009
dc.relationHincapié O, Giraldo P, Orduz S. In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus. Antonie Van Leeuwenhoek. 2018;111: 1871–1882. doi:10.1007/s10482-018-1080-2
dc.relationSánchez‐Acosta YA, Castillo Vargas JA, Ramírez Quintero KJ, Orduz Peralta S, Camargo Rodríguez DO. Peptide derivatives of dermaseptin S4 in fresh bovine semen for bacterial contamination control: Physicochemical and structural characterization, antibacterial potency, and effects on red blood and sperm cells. Reprod Domest Anim. 2020;55: 905–914. doi:10.1111/rda.13701
dc.relationLata S, Sharma B, Raghava G. Analysis and prediction of antibacterial peptides. BMC Bioinformatics. 2007;8: 263. doi:10.1186/1471-2105-8-263
dc.relationLin Y, Cai Y, Liu J, Lin C, Liu X. An advanced approach to identify antimicrobial peptides and their function types for penaeus through machine learning strategies. BMC Bioinformatics. 2019;20: 291. doi:10.1186/s12859-019-2766-9
dc.relationPushpanathan M, Pooja S, Gunasekaran P, Rajendhran J. Critical Evaluation and compilation of physicochemical determinants and membrane interactions of MMGP1 antifungal peptide. Mol Pharm. 2016;13: 1656–1667. doi:10.1021/acs.molpharmaceut.6b00086
dc.relationWaghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3 : a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2016;44: D1094–D1097. doi:10.1093/nar/gkv1051
dc.relationChaudhary K, Kumar R, Singh S, Tuknait A, Gautam A, Mathur D, et al. A web server and mobile App for computing hemolytic potency of peptides. Sci Rep. 2016;6. doi:10.1038/srep22843
dc.relationTyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, et al. CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res. 2015;43: D837–D843. doi:10.1093/nar/gku892
dc.relationHe Y, Lazaridis T. Activity determinants of helical antimicrobial peptides: A large-scale computational Study. PLOS ONE. 2013;8: e66440. doi:10.1371/journal.pone.0066440
dc.relationYin LM, Edwards MA, Li J, Yip CM, Deber CM. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem. 2012;287: 7738–7745. doi:10.1074/jbc.M111.303602
dc.relationShahane G, Ding W, Palaiokostas M, Orsi M. Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations. J Mol Model. 2019;25: 76. doi:10.1007/s00894-019-3964-0
dc.relationSchramm CA, Hannigan BT, Donald JE, Keasar C, Saven JG, DeGrado WF, et al. Knowledge-based potential for positioning membrane-associated structures and assessing residue-specific energetic contributions. Structure. 2012;20: 924–935. doi:10.1016/j.str.2012.03.016
dc.relationSengupta D, Leontiadou H, Mark AE, Marrink S-J. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta BBA - Biomembr. 2008;1778: 2308–2317. doi:10.1016/j.bbamem.2008.06.007
dc.relationBalatti G, Ambroggio E, Fidelio G, Martini F, Pickholz MP. Differential interaction of antimicrobial peptides with lipid structures studied by coarse-grained molecular dynamics simulations. Molecules. 2017;22: 1775. doi:doi:10.3390/molecules22101775
dc.relationBond PJ, Parton DL, Clark JF, Sansom MSP. Coarse-grained simulations of the membrane-active antimicrobial peptide Maculatin 1.1. Biophys J. 2008;95: 3802–3815. doi:10.1529/biophysj.108.128686
dc.relationDathe M, Nikolenko H, Klose J, Bienert M. Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides. Biochemistry. 2004;43: 9140–9150. doi:10.1021/bi035948v
dc.relationJa F, Wang J, Peng J, Zhao P, Kong Z, Wang K, et al. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin. 2017;49: 916–925. doi:10.1093/abbs/gmx091
dc.relationKim AH, Greathouse DV. Lactoferricin peptides: The Importance of methyl-tryptophan and glutamine for structure and activity. Biophys J. 2016;110: 252a. doi:10.1016/j.bpj.2015.11.1387
dc.relationStrandberg E, Tiltak D, Ieronimo M, Kanithasen N, Wadhwani P, Ulrich A. Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic alpha-helical peptides. Pure Appl Chem. 2007;79: 717–728.
dc.relationKim YS, Cha HJ. Disperse distribution of cationic amino acids on hydrophilic surface of helical wheel enhances antimicrobial peptide activity. Biotechnol Bioeng. 2010;107: 216–223. doi:10.1002/bit.22810
dc.relationWiradharma N, Sng MYS, Khan M, Ong Z-Y, Yang Y-Y. Rationally designed α-helical broad-spectrum antimicrobial peptides with idealized facial amphiphilicity. Macromol Rapid Commun. 2013;34: 74–80. doi:10.1002/marc.201200534
dc.relationMonzón de Souza B, Perez do Santos M, Gomes P, Baptista N, Guerino R, Bueno N, et al. Structure–activity relationship of mastoparan analogs: Effects of the number and positioning of Lys residues on secondary structure, interaction with membrane-mimetic systems and biological activity | Elsevier Enhanced Reader. Peptides. 2015: 164–174.
dc.relationHamamoto K, Kida Y, Zhang Y, Shimizu T, Kuwano K. Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol Immunol. 2002;46: 741–749. doi:10.1111/j.1348-0421.2002.tb02759.x
dc.relationShai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta BBA - Biomembr. 1999;1462: 55–70. doi:10.1016/S0005-2736(99)00200-X
dc.relationGasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy Server. In: Walker JM, editor. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press; 2005. pp. 571–607. doi:10.1385/1-59259-890-0:571
dc.relationSchechter I, Berger A. Reprint of “On the Size of the Active Site in Proteases. I. Papain.” Biochem Biophys Res Commun. 2012;425: 497–502. doi:10.1016/j.bbrc.2012.08.015
dc.relationSchechter I, Berger A. On the active site of proteases. III. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun. 1968;32: 898–902. doi:10.1016/0006-291X(68)90326-4
dc.relationKeil B. Specificity of Proteolysis. Berlin Heidelberg: Springer-Verlag; 1992. doi:10.1007/978-3-642-48380-6
dc.relationyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GPS. In Silico models for designing and discovering novel anticancer peptides. Sci Rep. 2013;3: 2984. doi:10.1038/srep02984
dc.relationCase D., Ben-Shalom I., Brozell, S., Cerutti, C., Cheatham C., Cruzeiro VW., et al. Amber18. San Francisco: University of California; Disponible: http://ambermd.org/AmberMD.php
dc.relationSimmerling C, Strockbine B, Roitberg AE. All-atom structure prediction and folding simulations of a stable protein. J Am Chem Soc. 2002;124: 11258–11259. doi:10.1021/ja0273851
dc.relationReisser S, Strandberg E, Steinbrecher T, Ulrich AS. 3D Hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides. Biophys J. 2014;106: 2385–2394. doi:10.1016/j.bpj.2014.04.020
dc.relationHumphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14: 33–38. doi:10.1016/0263-7855(96)00018-5
dc.relationRampersad SN. Multiple Applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors. 2012;12: 12347–12360. doi:10.3390/s120912347
dc.relationFinney DJ. Probit analysis. 3d ed. Cambridge [Eng.]: University Press; 1971.
dc.relationBounous DI, Campagnoli RP, Brown J. Comparison of MTT colorimetric assay and tritiated thymidine uptake for lymphocyte proliferation assays using chicken splenocytes. Avian Dis. 1992;36: 1022. doi:10.2307/1591566
dc.relationMesquita-Rodrigues C, Saboia-Vahia L, Cuervo P, Masini d’Avila Levy C, Alves Honorio N, Domont GB, et al. Expression of trypsin-like serine peptidases in pre-imaginal stages of Aedes aegypti (Diptera: Culicidae). Arch Insect Biochem Physiol. 2011;76: 223–235. doi:10.1002/arch.20412
dc.relationSaboia-Vahia L, Borges-Veloso A, Mesquita-Rodrigues C, Cuervo P, Dias-Lopes G, Britto C, et al. Trypsin-like serine peptidase profiles in the egg, larval, and pupal stages of Aedes albopictus. Parasit Vectors. 2013;6: 50. doi:10.1186/1756-3305-6-50
dc.relationSajna T, Shiji T, Meethal K. Effect of serine protease inhibitors on gut protease activity of Aedes albopictus fourth instar larvae. Int J Mosq Res. 2019;6: 06–09.
dc.relationOlsen JV, Ong S-E, Mann M. Trypsin Cleaves Exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics. 2004;3: 608–614. doi:10.1074/mcp.T400003-MCP200
dc.relationJin Y, Hammer J, Pate M, Zhang Y, Zhu F, Zmuda E, et al. Antimicrobial Activities and structures of two linear cationic peptide families with various amphipathic β-Sheet and α-helical potentials. Antimicrob Agents Chemother. 2005;49: 4957–4964. doi:10.1128/AAC.49.12.4957-4964.2005
dc.relationHuang W, Seo J, Willingham SB, Czyzewski AM, Gonzalgo ML, Weissman IL, et al. Learning from host-defense peptides: cationic, amphipathic peptoids with potent anticancer activity. PLOS ONE. 2014;9: e90397. doi:10.1371/journal.pone.0090397
dc.relationZhang S-K, Song J, Gong F, Li S-B, Chang H-Y, Xie H-M, et al. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep. 2016;6: 27394. doi:10.1038/srep27394
dc.relationHarvey WR, Okech BA, Linser PJ, Becnel JJ, Ahearn GA, Sterling KM. H(+) V-ATPase-energized transporters in brush border membrane vesicles from whole larvae of Aedes aegypti. J Insect Physiol. 2010;56: 1377–1389. doi:10.1016/j.jinsphys.2010.04.017
dc.relationJuretić D, Sonavane Y, Ilić N, Gajski G, Goić-Barišić I, Tonkić M, et al. Designed peptide with a flexible central motif from ranatuerins adapts its conformation to bacterial membranes. Biochim Biophys Acta BBA - Biomembr. 2018;1860: 2655–2668. doi:10.1016/j.bbamem.2018.10.005
dc.relationBacalum M, Radu M. Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept. Int J Pept Res Ther. 2015;21: 47–55. doi:10.1007/s10989-014-9430-z
dc.relationZaczyńska E, Kocięba M, Śliwińska E, Zimecki M. Bovine lactoferrin enhances proliferation of human peripheral blood lymphocytes and induces cytokine production in whole blood cultures. Adv Clin Exp Med Off Organ Wroclaw Med Univ. 2014;23: 871–876. doi:10.17219/acem/30168
dc.relationSchluesener HJ, Radermacher S, Melms A, Jung S. Leukocytic antimicrobial peptides kill autoimmune T cells. J Neuroimmunol. 1993;47: 199–202. doi:10.1016/0165-5728(93)90030-3
dc.relationHuang Y, He L, Li G, Zhai N, Jiang H, Chen Y. Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell. 2014;5: 631–642. doi:10.1007/s13238-014-0061-0
dc.relationHollmann A, Martínez M, Noguera ME, Augusto MT, Disalvo A, Santos NC, et al. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide–membrane interactions of three related antimicrobial peptides. Colloids Surf B Biointerfaces. 2016;141: 528–536. doi:10.1016/j.colsurfb.2016.02.003
dc.relationBertelsen K, Dorosz J, Hansen SK, Nielsen NC, Vosegaard T. Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy. PLOS ONE. 2012;7: e47745. doi:10.1371/journal.pone.0047745
dc.relationFitton JE. Physicochemical studies on delta haemolysin, a staphylococcal cytolytic polypeptide. FEBS Lett. 1981;130: 257–260. doi:10.1016/0014-5793(81)81133-7
dc.relationChen CH, Starr CG, Troendle E, Wiedman G, Wimley WC, Ulmschneider JP, et al. Simulation-guided rational de Novo design of a small pore-forming antimicrobial Peptide. J Am Chem Soc. 2019;41: 4839–4848. doi:10.1021/jacs.8b11939
dc.relationXiang N, Lyu Y, Zhu X, Bhunia AK, Narsimhan G. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin. Peptides. 2016;85: 27–40. doi:10.1016/j.peptides.2016.09.004
dc.relationUlmschneider JP, Ulmschneider MB. Molecular Dynamics simulations are redefining our view of peptides interacting with biological membranes. Acc Chem Res. 2018;51: 1106–1116. doi:10.1021/acs.accounts.7b00613
dc.relationHolm C, Gompper G, Dill KA. Preface: Special topic on coarse graining of macromolecules, biopolymers, and membranes. J Chem Phys. 2015;143: 242901. doi:10.1063/1.4938430
dc.relationCatte A, Wilson MR, Walker M, Oganesyan VS. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study. Soft Matter. 2018;14: 2796–2807. doi:10.1039/C7SM02152F
dc.relationTomcala A. Lipidome LC/MS Analysis in the Insect adaptation and development studies. Tesis doctoral, University of South Bohemia. 2009. Disponible: https://theses.cz/id/guhr9y/downloadPraceContent_adipIdno_5026?lang=en
dc.relationMejia EM, Hatch GM. Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr. 2016;48: 99–112. doi:10.1007/s10863-015-9601-4
dc.relationMatsuzaki K, Sugishita K, Fujii N, Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, Magainin 2. Biochemistry. 1995;34: 3423–3429. doi:10.1021/bi00010a034
dc.relationZasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84: 5449–5453. doi:10.1073/pnas.84.15.5449
dc.relationRollins-Smith LA. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta BBA - Biomembr. 2009;1788: 1593–1599. doi:10.1016/j.bbamem.2009.03.008
dc.relationTamba Y, Yamazaki M. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. J Phys Chem B. 2009;113: 4846–4852. doi:10.1021/jp8109622
dc.relationChen L, Li X, Gao L, Fang W. Theoretical insight into the relationship between the structures of antimicrobial peptides and their actions on bacterial membranes. J Phys Chem B. 2015;119: 850–860. doi:10.1021/jp505497k
dc.relationBerendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91: 43–56. doi:10.1016/0010-4655(95)00042-E
dc.relationMarrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI Force Field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111: 7812–7824. doi:10.1021/jp071097f
dc.relationesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ. Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol. 2010;6. doi:10.1371/journal.pcbi.1000810
dc.relationDe Jong DH, Baoukina S, Ingólfsson HI, Marrink SJ. Martini straight: Boosting performance using a shorter cutoff and GPUs. Comput Phys Commun. 2016;199: 1–7. doi:10.1016/j.cpc.2015.09.014
dc.relationMartínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30: 2157–2164. doi:10.1002/jcc.21224
dc.relationRaghuraman H, Chattopadhyay A. Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys J. 2004;87: 2419–2432. doi:10.1529/biophysj.104.043596
dc.relationHincha DK, Crowe JH. The lytic activity of the bee venom peptide melittin is strongly reduced by the presence of negatively charged phospholipids or chloroplast galactolipids in the membranes of phosphatidylcholine large unilamellar vesicles. Biochim Biophys Acta BBA - Biomembr. 1996;1284: 162–170. doi:10.1016/S0005-2736(96)00122-8
dc.relationMatsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta BBA - Biomembr. 2009;1788: 1687–1692. doi:10.1016/j.bbamem.2008.09.013
dc.relationLudtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. Membrane pores induced by magainin. Biochemistry. 1996;35: 13723–13728. doi:10.1021/bi9620621
dc.relationWoo H-J, Wallqvist A. Spontaneous Buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide magainin 2: A coarse-grained simulation Study. J Phys Chem B. 2011;115: 8122–8129. doi:10.1021/jp2023023
dc.relationLeontiadou H, Mark AE, Marrink SJ. Antimicrobial peptides in action. J Am Chem Soc. 2006;128: 12156–12161. doi:10.1021/ja062927q
dc.relationSu J, Marrink SJ, Melo MN. Localization preference of antimicrobial peptides on liquid-disordered membrane domains. Front Cell Dev Biol. 2020;8. doi:10.3389/fcell.2020.00350
dc.relationZasloff M, Martin B, Chen HC. Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci U S A. 1988;85: 910–913.
dc.relationZinser E, Paltauf F, Daum G. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol. 1993;175: 2853–2858.
dc.relationGwadz RW, Kaslow D, Lee JY, Maloy WL, Zasloff M, Miller LH. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun. 1989;57: 2628–2633.
dc.relationTran PN, Brown SHJ, Rug M, Ridgway MC, Mitchell TW, Maier AG. Changes in lipid composition during sexual development of the malaria parasite Plasmodium falciparum. Malar J. 2016;15. doi:10.1186/s12936-016-1130-z
dc.relationGibbs BF, Zougman A, Masse R, Mulligan C. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int. 2004;37: 123–131. doi:10.1016/j.foodres.2003.09.010
dc.relationAmaral AC, Silva ON, Mundim NCCR, de Carvalho MJA, Migliolo L, Leite JRSA, et al. Predicting antimicrobial peptides from eukaryotic genomes: in silico strategies to develop antibiotics. Peptides. 2012;37: 301–308. doi:10.1016/j.peptides.2012.07.021
dc.relationLee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus. 2017;7. doi:10.1098/rsfs.2016.0153
dc.relationLee EY, Fulan BM, Wong GCL, Ferguson AL. Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proc Natl Acad Sci. 2016;113: 13588–13593. doi:10.1073/pnas.1609893113
dc.relationWaterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2. A multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25: 1189–1191. doi:10.1093/bioinformatics/btp033
dc.relationMüller AT, Gabernet G, Hiss JA, Schneider G. modlAMP: Python for antimicrobial peptides. Valencia A, editor. Bioinformatics. 2017;33: 2753–2755. doi:10.1093/bioinformatics/btx285
dc.relationSilva-Zacarin ECM, Chauzat MP, Zeggane S, Drajnudel P, Schurr F, Faucon JP, et al. Protocol for optimization of histological, histochemical and immunohistochemical analyses of larval tissues: application in histopathology of honey bee. A. Méndez-Vilas. Current microscopy contributions to advances in science and technology. A. Méndez-Vilas. 2012. p. 8.
dc.relationRinaldi AC, Mangoni ML, Rufo A, Luzi C, Barra D, Zhao H, et al. Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem J. 2002;368: 91–100. doi:10.1042/BJ20020806
dc.relationWang R-Q, Geng J, Sheng W-J, Liu X-J, Jiang M, Zhen Y-S. The ionophore antibiotic gramicidin A inhibits pancreatic cancer stem cells associated with CD47 down-regulation. Cancer Cell Int. 2019;19. doi:10.1186/s12935-019-0862-6
dc.relationLemos AB de, Adam FC, Moura KRS de, Moraes LB de, Silva OS da. Histological and histochemical characterization of the midgut of healthy Aedes aegypti Larvae. Annu Res Rev Biol. 2018; 1–15. doi:10.9734/ARRB/2018/37443
dc.relationMerzendorfer H, Kelkenberg M, Muthukrishnan S. Peritrophic Matrices. In: Cohen E, Moussian B, editors. Extracellular composite matrices in arthropods. Cham: Springer International Publishing; 2016. pp. 255–324. doi:10.1007/978-3-319-40740-1_8
dc.relationTellam RL. The peritrophic matrix. In: Lehane MJ, Billingsley PF, editors. Biology of the insect midgut. Dordrecht: Springer Netherlands; 1996. pp. 86–114. doi:10.1007/978-94-009-1519-0_4
dc.relationEdwards MJ, Jacobs-Lorena M. Permeability and disruption of the peritrophic matrix and caecal membrane from Aedes aegypti and Anopheles gambiae mosquito larvae. J Insect Physiol. 2000;46: 1313–1320. doi:10.1016/S0022-1910(00)00053-6
dc.relationCosta M, Pinheiro D, Serrão J, Pereira M. Morphological changes in the midgut of Aedes aegypti L. (Diptera: Culicidae) larvae following exposure to an Annona coriacea (Magnoliales: Annonaceae) extract. Neotrop Entomol. 2012;41: 311–314. doi:10.1007/s13744-012-0050-z
dc.relationPerumalsamy H, Kim J-R, Oh SM, Jung JW, Ahn Y-J, Kwon HW. Novel Histopathological and molecular effects of natural compound pellitorine on larval midgut epithelium and anal gills of Aedes aegypti. Dimopoulos G, editor. PLoS ONE. 2013;8: e80226. doi:10.1371/journal.pone.0080226
dc.relationProcópio TF, Fernandes KM, Pontual EV, Ximenes RM, Oliveira ARC de, Souza C de S, et al. Schinus terebinthifolius leaf extract causes midgut damage, interfering with survival and development of Aedes aegypti Larvae. PLOS ONE. 2015;10: e0126612. doi:10.1371/journal.pone.0126612
dc.relationSilva VC, Pinheiro NL, Scherer PO, Falcão SS, Ribeiro VR, Mendes RMM, et al. Histology and ultrastructure of Aedes albopictus larval midgut infected with Bacillus thuringiensis var. israelensis. Microsc Res Tech. 2008;71: 663–668. doi:10.1002/jemt.20605
dc.relationThomas WE, Ellar DJ. Mechanism of action of Bacillus thuringiensis var. israelensis insecticidal δ-endotoxin. FEBS Lett. 1983;154: 362–368. doi:10.1016/0014-5793(83)80183-5
dc.relationButko P. Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol. 2003;69: 2415–2422. doi:10.1128/AEM.69.5.2415-2422.2003
dc.relationManceva SD, Pusztai-Carey M, Butko P. Effect of pH and ionic strength on the cytolytic toxin Cyt1A: a fluorescence spectroscopy study. Biochim Biophys Acta BBA - Proteins Proteomics. 2004;1699: 123–130. doi:10.1016/j.bbapap.2004.02.004
dc.relationSoberón M, López-Díaz JA, Bravo A. Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Peptides. 2013;41: 87–93. doi:10.1016/j.peptides.2012.05.023
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleDiseño y evaluación de péptidos insecticidas para el control de Aedes aegypti
dc.typeOtro


Este ítem pertenece a la siguiente institución