dc.contributor | Quintero Vélez, Alexander | |
dc.contributor | Arias Abad, Camilo | |
dc.creator | Vélez Vásquez, Sebastián | |
dc.date.accessioned | 2021-02-03T13:31:59Z | |
dc.date.available | 2021-02-03T13:31:59Z | |
dc.date.created | 2021-02-03T13:31:59Z | |
dc.date.issued | 2020-07-01 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/79048 | |
dc.description.abstract | El estudio de las propiedades topológicas de las variedades suaves desde el punto de vista de formas diferenciales y de las ecuaciones que dichas formas satisfacen es conocido como teoría de de-Rham. Invariantes topológicos de variedades tales como los grupos de cohomología y las clases características se pueden describir naturalmente en el lenguaje de de-Rham. Esta tesis trata con invariantes de tipo categórico que también pueden ser descritos en términos de formas diferenciales. Adoptamos el punto de vista de la teoría de representaciones, donde se estudian grupos mediante sus acciones lineales en espacios vectoriales. En topología, las correspondientes acciones lineales son llamadas sistemas locales infinitos, los cuales son el objeto de estudio de esta tesis. Describimos cómo varios aspectos de la teoría de de-Rham se pueden categorificar, lo que conlleva al estudio de sistemas locales. Una nueva característica que emerge en este contexto es la necesidad de reemplazar la noción de asociatividad estricta por una noción de asociatividad compatible con los métodos de teoría de homotopía. Esta nueva noción de asociatividad está codificada en las estructuras A-infinito, que son estructuras algebraicas donde la asociatividad solo se cumple salvo una secuencia infinita de homotopías. | |
dc.description.abstract | The study of topological properties of manifolds from the point of view differential forms and the equations they satisfy is known as de Rham theory.
Topological invariants of manifolds such as cohomology groups and characteristic classes can be naturally described in de Rham's language.
This thesis deals with more categorical invariants of manifolds that can also be studied via differential forms. We take the point of view of representation theory, where one studies groups via their linear actions on vector spaces. In topology, the corresponding linear actions are called infinity local systems, and are the subject of this thesis. We describe how various aspects of de Rham theory can be categorified to the study of these representations of spaces. One new aspect that emerges is the need to replace the strict notion of associativity by a version of associativity which is more compatible with the methods of homotopy theory. This is the notion of A-infinity structures, which are algebraic structures where associativity only holds up to an infinite sequence of homotopies. | |
dc.language | eng | |
dc.publisher | Medellín - Ciencias - Doctorado en Ciencias - Matemáticas | |
dc.publisher | Escuela de matemáticas | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Arias Abad, C., and Schatz, F. The A-infinity de rham theorem and integration of representations up to homotopy. International Mathematics Research Notices 2013 (07 2012). | |
dc.relation | Arias Abad, C., and Schatz, F. Higher holonomies: Comparing two constructions. Differential Geometry and its Applications 40 (04 2014). | |
dc.relation | Arias Abad, C., and Schatz, F. Flat Z-graded Connections and Loop Spaces. International Mathematics Research Notices 2018, 4 (12 2016), 961-1008. | |
dc.relation | Aschieri, P., Cantini, L., and Jurco, B. Nonabelian bundle gerbes, their differential geometry and gauge theory. Communications in Mathematical Physics 254 (12 2003). | |
dc.relation | Baez, J., and Schreiber, U. Higher gauge theory. | |
dc.relation | Ben-Zvi, D., and Nadler, D. Loop spaces and connections. Journal of Topology (02 2010). | |
dc.relation | Block, J., and Smith, A. The higher Riemann-Hilbert correspondence. Advances in
Mathematics 252 (02 2014), 382-405. | |
dc.relation | Brav, C., and Dyckerhoff, T. Relative calabi-yau structures. Compositio Mathematica 155 (06 2016). | |
dc.relation | Breen, L., and Messing, W. Differential geometry of gerbes. Advances in Mathematics 198 (12 2005), 732-846. | |
dc.relation | Chen, K.-T. Iterated path integrals. Bulletin of The American Mathematical Society 83 (09 1977). | |
dc.relation | Faria Martins, J., and Picken, R. The fundamental gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module. Differential Geometry and its Applications 29 (07 2009). | |
dc.relation | Greub, W., Halperin, S., and Vanstone, R. Connections, curvature and cohomology ii. Lie groups, principal bundles and characteristic glasses (01 1973). | |
dc.relation | Gugenheim, V. On chen's iterated integrals. Illinois Journal of Mathematics 21 (09 1977). | |
dc.relation | Holstein, J. Morita cohomology. Mathematical Proceedings of the Cambridge Philosophical Society 158 (03 2014). | |
dc.relation | Igusa, K. Iterated integrals of superconnections, 2009. | |
dc.relation | Keller, B. Introduction to A-infi nity algebras and modules, 1999. | |
dc.relation | Laurent-Gengoux, C., Stienon, M., and Xu, P. Non abelian differentiable gerbes. Advances in Mathematics 220 (03 2009), 1357-1427. | |
dc.relation | Malm, E. J. String topology and the based loop space, 2011. | |
dc.relation | Murray, M. K. Bundle gerbes. Journal of the London Mathematical Society 54, 2 (1996), 403{416. | |
dc.relation | Quillen, D. Superconnections and the chern character. Topology 24 (12 1985), 89-95. | |
dc.relation | Rivera, M., and Zeinalian, M. The colimit of an infinity-local system as a twisted tensor product, 2018. | |
dc.relation | Schommer-Pries, C. Central extensions of smooth 2-groups and a fi nite-dimensional string 2-group. Geometry & Topology 15 (11 2009). | |
dc.relation | Arias Abad, C., Quintero Vélez, A., and Vélez Vásquez, S. An A-infinity version of the poincaré lemma. Pacifi c Journal of Mathematics 302, 2 (Nov 2019), 385-412 | |
dc.relation | Schreiber, U., and Waldorf, K. Connections on non-abelian gerbes and their holonomy. Theory and Applications of Categories 28 (08 2008). | |
dc.relation | Stasheff, J. Homotopy associativity of h-spaces i. Transactions of the American Mathematical Society 108 (01 1963), 275-292. | |
dc.relation | Stasheff, J. Homotopy associativity of h-spaces ii. Transactions of the American Mathematical Society 108 (08 1963), 275. | |
dc.relation | Waldorf, K. A global perspective to connections on principal 2-bundles. Forum Mathematicum (08 2016). | |
dc.relation | Waldorf, K. Parallel transport in principal 2-bundles, 2017. | |
dc.relation | Wockel, C. Principal 2-bundles and their gauge 2-groups. Forum Mathematicum 23 (10 2009). | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Some homotopical aspects of de Rham theory | |
dc.type | Otro | |