dc.contributorReyes Villamil, Milton Armando
dc.contributorSAC2
dc.creatorSarmiento Santiago, Cristian David
dc.date.accessioned2020-09-15T17:10:02Z
dc.date.available2020-09-15T17:10:02Z
dc.date.created2020-09-15T17:10:02Z
dc.date.issued2020-06-12
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78462
dc.description.abstractIn this work, we study the notion of differential calculus associated to an associative algebra, from its origin in manifolds geometry, to some generalizations in non commutative differential geometry. In particular, we inquire the notion of differentially smoothness of an algebra, which treats about the existence of differential calculus structures that satisfies conditions relative to the Gelfand-Kirillov dimension of the base algebra, a condition of connectedness over the differential, and the existence of a volume form that allow to construct isomorphisms between the homogeneous sets of forms and the dual of these sets, such as in manifolds theory. We also study the Brzezinski's differential calculus, which is a differential calculus constructed from a finite set of skew derivations, and the Brzezinski's integral calculus, that is a pair of a cokernel and a hom-connection that induces a complex of integral forms over the Brzezinski's differential calculus. Finally, we study automorphisms and skew derivations of some 3-dimensional diffusion algebras, generalized Weyl algebras and skew polynomial algebras, which are objects having PBW bases.
dc.description.abstractEn este trabajo, estudiamos la noción de cálculo diferencial asociado a un álgebra asociativa, desde su origen en la geometría de variedades, hasta algunas generalizaciones en la geometría diferencial no conmutativa. En particular, investigamos la noción de álgebra diferencialmente suave, que consiste en la existencia de estructuras de cálculo diferencial que satisfacen condiciones relativas a la dimensión de Gelfand-Kirillov del álgebra base, una condición de conexidad sobre la diferencial, y la existencia de una forma de volumen que permite construir isomorfismos entre los conjuntos homogéneos de formas y el dual de estos conjuntos, tal cual como en la teoría de variedades. También estudiamos el cálculo diferencial de Brezezinski, el cual es un cálculo diferencial construido a partir de un conjunto finito de derivaciones torcidas, y el cálculo integral de Brzezinski, que consta de una pareja de un conúcleo y una conexión-hom que permite inducir un complejo de formas integrales sobre el cálculo diferencial de Brzezinski. Finalmente, estudiamos automorfismos y derivaciones torcidas de algunas álgebras de difusión, álgebras de Weyl generalizadas y álgebras polinomiales torcidas que son 3-dimensionales, las cuales son objetos que poseen bases PBW.
dc.languageeng
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisherDepartamento de Matemáticas
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationMunerah Almulhem and Tomasz Brzezinski. Skew derivations on generalized Weyl algebras. J. Algebra, 493:194–235, 2018.
dc.relationFrancisco Alcaraz, Srinandan Dasmahapatra, and Vladimir Rittenberg. N-species stochastic models with boundaries and quadratic algebras. J. Phys.A: Math. Gen., 31(3):845, 1998.
dc.relationViacheslav Alexandrovich Artamonov. Derivations of skew PBW-extensions. Commun. Math. Stat., 3(4):449–457, 2015.
dc.relationTomasz Brzezinski et al. On the smoothness of the noncommutative pillow and quantum teardrops. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 10:015, 2014.
dc.relationVladimir Bavula. Generalized Weyl algebras and their representations. Algebra i Analiz, 4(1):75–97, 1992.
dc.relationVladimir Bavula. Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules. Canadian Math. Soc. Conf. Proc, 14:83–107,1993. CMP 94:09.
dc.relationVladimir Bavula. Filter dimension of algebras and modules, a simplicity criterion of generalized Weyl algebras. Comm. Algebra, 24(6):1971–1992,1996.
dc.relationVladimir Bavula. Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras. Bull. Sci.Math., 120, 1996.
dc.relationTomasz Brzezinski, Laiachi El Kaoutit, and Christian Lomp. Non-commutative integral forms and twisted multi-derivations. J. Noncommut. Geom., 4:281–312, 2010.
dc.relationTomasz Brzeziński and Christian Lomp. Differential smoothness of skew polynomial rings. J. Pure Appl. Algebra, 222(9):2413–2426, 2018.
dc.relationTomasz Brzezinski and Shahn Majid. Quantum group gauge theory on quantum spaces. Comm. Math. Phys., 157(3):591–638, 1993.
dc.relationNicolas Bourbaki. Algebra I, Chapters 1-3. Springer, 1989.
dc.relationTomasz Brzeziński. Non-commutative connections of the second kind. J.Algebra Appl., 7(05):557–573, 2008.
dc.relationTomasz Brzezinski. Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two. Colloq. Math., 139:111–119, 2014. DOI:10.4064/cm139-1-6
dc.relationTomasz Brzezinski. Circle and line bundles over generalized Weyl algebras. Algebr. Represent. Theory, 19(1):57–69, 2016
dc.relationTomasz Brzezinski. Noncommutative differential geometry of generalized Weyl algebras. SIGMA Symmetry Integrability Geom. Methods Appl., 12, 2016.
dc.relationTomasz Brzezinski and Andrzej Sitarz. Smooth geometry of the noncommutative pillow, cones and lens spaces. J. Noncommut. Geom., 11:413 – 449,2017.
dc.relationAlain Connes. Non-commutative differential geometry. Publications Mathematiques de l’IHES, 62:41–144, 1985
dc.relationSeverino Coutinho. A Primer of Algebraic D-modules, volume 33. Cambridge University Press, 1995.
dc.relationBernard Derrida, Eytan Domany, and David Mukamel. An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J.Stat. Phys., 69(3-4):667–687, 1992.
dc.relationBernard Derrida, Martin R Evans, Vincent Hakim, and Vincent Pasquier. Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A: Math. Gen., 26(7):1493, 1993.
dc.relationBernard Derrida, Steven A Janowsky, Joel L Lebowitz, and Eugene R Speer. Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Stat. Phys., 73(5-6):813–842, 1993.
dc.relationGeorges de Rham. Differentiable manifolds: forms, currents, harmonic forms. Springer, 1984.
dc.relationM Dubois-Violette. Dérivations et calcul différentiel non commutatif. Class.Quant. Grav, 6:403–408, 1988.
dc.relationMichel Dubois-Violette, Richard Kerner, and John Madore. Noncommutative differential geometry of matrix algebras. J. Math. Phys., 31(2):316–322,1990
dc.relationMichel Dubois-Violette, Andreas Kriegl, Yoshiaki Maeda, and Peter Michor. Smooth*-algebras. Progress of Theoretical Physics Supplement, 144:54–78,2001
dc.relationGene Freudenburg. Algebraic theory of locally nilpotent derivations, volume 136. Springer, 2006.
dc.relationGiovanni Giachetta, Luigi Mangiarotti, and Gennadii Aleksandrovich Sardanashvili. Geometric and Algebraic Topological Methods in Quantum Mechanics. World Scientific, 2005.
dc.relationKenneth R. Goodearl and Robert Breckenridge Warfield Jr. An Introduction to Noncommutative Noetherian Rings, volume 61. Cambridge university press, 2004.
dc.relationOwen Hinchcliffe. Diffusion Algebras. PhD thesis, University of Sheffield, 2005. Sheffield.
dc.relationHaye Hinrichsen, Sven Sandow, and Ingo Peschel. On matrix product ground states for reaction-diffusion models. J. Phys. A: Math. Gen., 29(11):2643,1996.
dc.relationAleksei Petrovich Isaev, Pavel Nikolaevich Pyatov, and Vladimir Rittenberg. Diffusion algebras. Journal of Physics A: Mathematical and General,34(29):5815, 2001.
dc.relationHumphreys James. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, 9, 1972.
dc.relationMax Karoubi. Homologie cyclique et K-théorie. Société mathématique de France, 1987.
dc.relationGünter R. Krause and Thomas H. Lenagan. Growth of Algebras and Gelfand-Kirillov dimension, volume 22. American Mathematical Society., 2000.
dc.relationKlaus Krebs and Sven Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A: Math. Gen., 30(9):3165, 1997.
dc.relationIosif Krasilchchik, Aleksandr Michajlovič Vinogradov, and Valentin Lychagin. Geometry of jet spaces and nonlinear partial differential equations. Gordon and Breach, 1986.
dc.relationGiovanni Landi. An Introduction to Noncommutative Spaces and Their Geometries, volume 51. Springer Science & Business Media, 1997.
dc.relationOswaldo Lezama, William Fajardo, Claudia Gallego, Armando Reyes, Héctor Suárez, and Herbert Venegas. Skew PBW Extensions: Ring and module theoretic properties, matrix and Grobner methods, applications. Springer, 2020. To be published.
dc.relationOswaldo Lezama and Armando Reyes. Some homological properties of skew PBW extensions. Comm. Algebra, 42(3):1200–1230, 2014.
dc.relationShahn Majid. What is a Quantum Group? Notices of the AMS, 53(1), 1995.
dc.relationJoanna Meinel.Affine nilTemperley–Lieb Algebras and Generalized Weyl Algebras: Combinatorics and Representation Theory. PhD thesis, Dissertation, Bonn, 2016.
dc.relationShigeyuki Morita. Geometry of differential forms. Number 201. American Mathematical Society, 1998.
dc.relationJet Nestruev. Smooth manifolds and observables, volume 220. Springer Science & Business Media, 2003.
dc.relationØystein Ore. Theory of non-commutative polynomials. Ann. of Math. (2), pages 480–508, 1933.
dc.relationLudwig Pittner. Algebraic Foundations of Non-commutative Differential Geometry and Quantum Groups, volume 39. Springer Science & Business Media, 2009.
dc.relationPavel Nikolaevich Pyatov and Reidun Twarock. Construction of diffusion algebras. Journal of Mathematical Physics, 43(6):3268–3279, 2002.
dc.relationArmando Reyes. Gelfand-Kirillov dimension of skew PBW extensions. Rev. Colombiana Mat., 47(1):95–111, 2013.
dc.relationAlexander Rosenberg. Noncommutative Algebraic Geometry and Representations of Quantized Algebras, volume 330. Springer Science & Business Media, 1995.
dc.relationArmando Reyes and Camilo Rodríguez. The McCoy Condition on skew Poincaré–Birkhoff–Witt extensions. Commun. Math. Stat., 2019. DOI:10.1007/s40304-019-00184-5.
dc.relationArmando Reyes and Héctor Suárez. Some remarks about the cyclic homology of skew PBW extensions. Ciencia en Desarrollo, 7(2):99–107, 2016.
dc.relationArmando Reyes and Héctor Suárez. σ-PBW Extensions of Skew Armendariz Rings. Adv. Appl. Clifford Algebr., 27(4):3197–3224, 2017.
dc.relationArmando Reyes and Héctor Suárez. PBW bases for some 3-dimensional skew polynomial algebras. Far East J. Math. Sci. (FJMS), 101:1207–1228,03 2017.
dc.relationArmando Reyes and Yésica Suárez. On the ACCP in skew Poincaré–Birkhoff–Witt extensions. Beitr. Algebra Geom., 59(4):625–643, 2018.
dc.relationArmando Reyes and Héctor Suárez. Radicals and Köthe’s conjecture for skew PBW extensions. Commun. Math. Stat., 2019. DOI: 10.1007/s40304-019-00189-0.
dc.relationArmando Reyes and Héctor Suárez. Skew Poincaré–Birkhoff–Witt extensions over weak zip rings. Beitr. Algebra Geom., 60(2):197–216, 2019.
dc.relationMariano Suárez-Alvarez and Quimey Vivas. Automorphisms and isomorphisms of quantum generalized Weyl algebras. J. Algebra, 424:540–552, 2015.
dc.relationWilliam F Schelter. Smooth algebras. J. Algebra, 103(2):677–685, 1986
dc.relationAndrea Solotar, Mariano Suárez-Alvarez, and Quimey Vivas. Hochschild homology and cohomology of generalized Weyl algebras: the quantum case. Annales de l’Institut Fourier, 63(3):923–956, 2013.
dc.relationCésar Fernando Venegas Ramírez. Automorphisms for skew PBW extensions and skew quantum polynomial rings. Comm. Algebra, 43(5):1877–1897,2015.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleNon-commutative differential calculus of some algebras of polynomial type having PBW bases
dc.typeOtro


Este ítem pertenece a la siguiente institución