dc.contributor | Reyes Villamil, Milton Armando | |
dc.contributor | SAC2 | |
dc.creator | Sarmiento Santiago, Cristian David | |
dc.date.accessioned | 2020-09-15T17:10:02Z | |
dc.date.available | 2020-09-15T17:10:02Z | |
dc.date.created | 2020-09-15T17:10:02Z | |
dc.date.issued | 2020-06-12 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78462 | |
dc.description.abstract | In this work, we study the notion of differential calculus associated to an associative algebra, from its origin in manifolds geometry, to some generalizations in non commutative differential geometry. In particular, we inquire the notion of differentially smoothness of an algebra, which treats about the existence of differential calculus structures that satisfies conditions relative to the Gelfand-Kirillov dimension of the base algebra, a condition of connectedness over the differential, and the existence of a volume form that allow to construct isomorphisms between the homogeneous sets of forms and the dual of these sets, such as in manifolds theory. We also study the Brzezinski's differential calculus, which is a differential calculus constructed from a finite set of skew derivations, and the Brzezinski's integral calculus, that is a pair of a cokernel and a hom-connection that induces a complex of integral forms over the Brzezinski's differential calculus. Finally, we study automorphisms and skew derivations of some 3-dimensional diffusion algebras, generalized Weyl algebras and skew polynomial algebras, which are objects having PBW bases. | |
dc.description.abstract | En este trabajo, estudiamos la noción de cálculo diferencial asociado a un álgebra asociativa, desde su origen en la geometría de variedades, hasta algunas generalizaciones en la geometría diferencial no conmutativa. En particular, investigamos la noción de álgebra diferencialmente suave, que consiste en la existencia de estructuras de cálculo diferencial que satisfacen condiciones relativas a la dimensión de Gelfand-Kirillov del álgebra base, una condición de conexidad sobre la diferencial, y la existencia de una forma de volumen que permite construir isomorfismos entre los conjuntos homogéneos de formas y el dual de estos conjuntos, tal cual como en la teoría de variedades. También estudiamos el cálculo diferencial de Brezezinski, el cual es un cálculo diferencial construido a partir de un conjunto finito de derivaciones torcidas, y el cálculo integral de Brzezinski, que consta de una pareja de un conúcleo y una conexión-hom que permite inducir un complejo de formas integrales sobre el cálculo diferencial de Brzezinski. Finalmente, estudiamos automorfismos y derivaciones torcidas de algunas álgebras de difusión, álgebras de Weyl generalizadas y álgebras polinomiales torcidas que son 3-dimensionales, las cuales son objetos que poseen bases PBW. | |
dc.language | eng | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | |
dc.publisher | Departamento de Matemáticas | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Munerah Almulhem and Tomasz Brzezinski. Skew derivations on generalized Weyl algebras. J. Algebra, 493:194–235, 2018. | |
dc.relation | Francisco Alcaraz, Srinandan Dasmahapatra, and Vladimir Rittenberg. N-species stochastic models with boundaries and quadratic algebras. J. Phys.A: Math. Gen., 31(3):845, 1998. | |
dc.relation | Viacheslav Alexandrovich Artamonov. Derivations of skew PBW-extensions. Commun. Math. Stat., 3(4):449–457, 2015. | |
dc.relation | Tomasz Brzezinski et al. On the smoothness of the noncommutative pillow and quantum teardrops. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 10:015, 2014. | |
dc.relation | Vladimir Bavula. Generalized Weyl algebras and their representations. Algebra i Analiz, 4(1):75–97, 1992. | |
dc.relation | Vladimir Bavula. Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules. Canadian Math. Soc. Conf. Proc, 14:83–107,1993. CMP 94:09. | |
dc.relation | Vladimir Bavula. Filter dimension of algebras and modules, a simplicity criterion of generalized Weyl algebras. Comm. Algebra, 24(6):1971–1992,1996. | |
dc.relation | Vladimir Bavula. Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras. Bull. Sci.Math., 120, 1996. | |
dc.relation | Tomasz Brzezinski, Laiachi El Kaoutit, and Christian Lomp. Non-commutative integral forms and twisted multi-derivations. J. Noncommut. Geom., 4:281–312, 2010. | |
dc.relation | Tomasz Brzeziński and Christian Lomp. Differential smoothness of skew polynomial rings. J. Pure Appl. Algebra, 222(9):2413–2426, 2018. | |
dc.relation | Tomasz Brzezinski and Shahn Majid. Quantum group gauge theory on quantum spaces. Comm. Math. Phys., 157(3):591–638, 1993. | |
dc.relation | Nicolas Bourbaki. Algebra I, Chapters 1-3. Springer, 1989. | |
dc.relation | Tomasz Brzeziński. Non-commutative connections of the second kind. J.Algebra Appl., 7(05):557–573, 2008. | |
dc.relation | Tomasz Brzezinski. Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two. Colloq. Math., 139:111–119, 2014. DOI:10.4064/cm139-1-6 | |
dc.relation | Tomasz Brzezinski. Circle and line bundles over generalized Weyl algebras. Algebr. Represent. Theory, 19(1):57–69, 2016 | |
dc.relation | Tomasz Brzezinski. Noncommutative differential geometry of generalized Weyl algebras. SIGMA Symmetry Integrability Geom. Methods Appl., 12, 2016. | |
dc.relation | Tomasz Brzezinski and Andrzej Sitarz. Smooth geometry of the noncommutative pillow, cones and lens spaces. J. Noncommut. Geom., 11:413 – 449,2017. | |
dc.relation | Alain Connes. Non-commutative differential geometry. Publications Mathematiques de l’IHES, 62:41–144, 1985 | |
dc.relation | Severino Coutinho. A Primer of Algebraic D-modules, volume 33. Cambridge University Press, 1995. | |
dc.relation | Bernard Derrida, Eytan Domany, and David Mukamel. An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J.Stat. Phys., 69(3-4):667–687, 1992. | |
dc.relation | Bernard Derrida, Martin R Evans, Vincent Hakim, and Vincent Pasquier. Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A: Math. Gen., 26(7):1493, 1993. | |
dc.relation | Bernard Derrida, Steven A Janowsky, Joel L Lebowitz, and Eugene R Speer. Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Stat. Phys., 73(5-6):813–842, 1993. | |
dc.relation | Georges de Rham. Differentiable manifolds: forms, currents, harmonic forms. Springer, 1984. | |
dc.relation | M Dubois-Violette. Dérivations et calcul différentiel non commutatif. Class.Quant. Grav, 6:403–408, 1988. | |
dc.relation | Michel Dubois-Violette, Richard Kerner, and John Madore. Noncommutative differential geometry of matrix algebras. J. Math. Phys., 31(2):316–322,1990 | |
dc.relation | Michel Dubois-Violette, Andreas Kriegl, Yoshiaki Maeda, and Peter Michor. Smooth*-algebras. Progress of Theoretical Physics Supplement, 144:54–78,2001 | |
dc.relation | Gene Freudenburg. Algebraic theory of locally nilpotent derivations, volume 136. Springer, 2006. | |
dc.relation | Giovanni Giachetta, Luigi Mangiarotti, and Gennadii Aleksandrovich Sardanashvili. Geometric and Algebraic Topological Methods in Quantum Mechanics. World Scientific, 2005. | |
dc.relation | Kenneth R. Goodearl and Robert Breckenridge Warfield Jr. An Introduction to Noncommutative Noetherian Rings, volume 61. Cambridge university press, 2004. | |
dc.relation | Owen Hinchcliffe. Diffusion Algebras. PhD thesis, University of Sheffield, 2005. Sheffield. | |
dc.relation | Haye Hinrichsen, Sven Sandow, and Ingo Peschel. On matrix product ground states for reaction-diffusion models. J. Phys. A: Math. Gen., 29(11):2643,1996. | |
dc.relation | Aleksei Petrovich Isaev, Pavel Nikolaevich Pyatov, and Vladimir Rittenberg. Diffusion algebras. Journal of Physics A: Mathematical and General,34(29):5815, 2001. | |
dc.relation | Humphreys James. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, 9, 1972. | |
dc.relation | Max Karoubi. Homologie cyclique et K-théorie. Société mathématique de France, 1987. | |
dc.relation | Günter R. Krause and Thomas H. Lenagan. Growth of Algebras and Gelfand-Kirillov dimension, volume 22. American Mathematical Society., 2000. | |
dc.relation | Klaus Krebs and Sven Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A: Math. Gen., 30(9):3165, 1997. | |
dc.relation | Iosif Krasilchchik, Aleksandr Michajlovič Vinogradov, and Valentin Lychagin. Geometry of jet spaces and nonlinear partial differential equations. Gordon and Breach, 1986. | |
dc.relation | Giovanni Landi. An Introduction to Noncommutative Spaces and Their Geometries, volume 51. Springer Science & Business Media, 1997. | |
dc.relation | Oswaldo Lezama, William Fajardo, Claudia Gallego, Armando Reyes, Héctor Suárez, and Herbert Venegas. Skew PBW Extensions: Ring and module theoretic properties, matrix and Grobner methods, applications. Springer, 2020. To be published. | |
dc.relation | Oswaldo Lezama and Armando Reyes. Some homological properties of skew PBW extensions. Comm. Algebra, 42(3):1200–1230, 2014. | |
dc.relation | Shahn Majid. What is a Quantum Group? Notices of the AMS, 53(1), 1995. | |
dc.relation | Joanna Meinel.Affine nilTemperley–Lieb Algebras and Generalized Weyl Algebras: Combinatorics and Representation Theory. PhD thesis, Dissertation, Bonn, 2016. | |
dc.relation | Shigeyuki Morita. Geometry of differential forms. Number 201. American Mathematical Society, 1998. | |
dc.relation | Jet Nestruev. Smooth manifolds and observables, volume 220. Springer Science & Business Media, 2003. | |
dc.relation | Øystein Ore. Theory of non-commutative polynomials. Ann. of Math. (2), pages 480–508, 1933. | |
dc.relation | Ludwig Pittner. Algebraic Foundations of Non-commutative Differential Geometry and Quantum Groups, volume 39. Springer Science & Business Media, 2009. | |
dc.relation | Pavel Nikolaevich Pyatov and Reidun Twarock. Construction of diffusion algebras. Journal of Mathematical Physics, 43(6):3268–3279, 2002. | |
dc.relation | Armando Reyes. Gelfand-Kirillov dimension of skew PBW extensions. Rev. Colombiana Mat., 47(1):95–111, 2013. | |
dc.relation | Alexander Rosenberg. Noncommutative Algebraic Geometry and Representations of Quantized Algebras, volume 330. Springer Science & Business Media, 1995. | |
dc.relation | Armando Reyes and Camilo Rodríguez. The McCoy Condition on skew Poincaré–Birkhoff–Witt extensions. Commun. Math. Stat., 2019. DOI:10.1007/s40304-019-00184-5. | |
dc.relation | Armando Reyes and Héctor Suárez. Some remarks about the cyclic homology of skew PBW extensions. Ciencia en Desarrollo, 7(2):99–107, 2016. | |
dc.relation | Armando Reyes and Héctor Suárez. σ-PBW Extensions of Skew Armendariz Rings. Adv. Appl. Clifford Algebr., 27(4):3197–3224, 2017. | |
dc.relation | Armando Reyes and Héctor Suárez. PBW bases for some 3-dimensional skew polynomial algebras. Far East J. Math. Sci. (FJMS), 101:1207–1228,03 2017. | |
dc.relation | Armando Reyes and Yésica Suárez. On the ACCP in skew Poincaré–Birkhoff–Witt extensions. Beitr. Algebra Geom., 59(4):625–643, 2018. | |
dc.relation | Armando Reyes and Héctor Suárez. Radicals and Köthe’s conjecture for skew PBW extensions. Commun. Math. Stat., 2019. DOI: 10.1007/s40304-019-00189-0. | |
dc.relation | Armando Reyes and Héctor Suárez. Skew Poincaré–Birkhoff–Witt extensions over weak zip rings. Beitr. Algebra Geom., 60(2):197–216, 2019. | |
dc.relation | Mariano Suárez-Alvarez and Quimey Vivas. Automorphisms and isomorphisms of quantum generalized Weyl algebras. J. Algebra, 424:540–552, 2015. | |
dc.relation | William F Schelter. Smooth algebras. J. Algebra, 103(2):677–685, 1986 | |
dc.relation | Andrea Solotar, Mariano Suárez-Alvarez, and Quimey Vivas. Hochschild homology and cohomology of generalized Weyl algebras: the quantum case. Annales de l’Institut Fourier, 63(3):923–956, 2013. | |
dc.relation | César Fernando Venegas Ramírez. Automorphisms for skew PBW extensions and skew quantum polynomial rings. Comm. Algebra, 43(5):1877–1897,2015. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Non-commutative differential calculus of some algebras of polynomial type having PBW bases | |
dc.type | Otro | |