dc.contributorRoa Rojas, Jairo
dc.contributorGrupo de Física de Nuevos Materiales
dc.creatorVilla Hernández, Jorge Ignacio
dc.date.accessioned2021-01-25T11:48:53Z
dc.date.available2021-01-25T11:48:53Z
dc.date.created2021-01-25T11:48:53Z
dc.date.issued2020-12-09
dc.identifierVilla, J. (2020). Estudio de las propiedades estructurales, eléctricas y magnéticas en materiales tipo perovskita doble A2BB'O6 [Tesis de doctorado, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78886
dc.description.abstractMaterials belonging to the A2BWO6 and A2BVO6 families have shown interesting electrical and magnetic properties that may be applied to spintronics and fuel cell cathodes. The main motivation of this thesis is to synthesize and characterize materials with double perovskite type structure, especially the materials Sr2−xLaxNiWO6 (0 ≤ x ≤ 0, 15), Sr2FeWO6, Sr2CoWO6, LaFe0,5V0,5O3 y LaCo0,5V0,5O3, in order to evaluate its structural, morphological and magnetic properties. These materials were synthesized by means of the assisted gel combustion method, an unexplored synthesis method for this type of materials, which showed advantages over con-ventional synthesis methods such as the solid-state reaction method. The structural characteri-zations of the materials were carried out through X-ray diffraction (DRX), in some cases taking synchrotron data and implementing Rietveld refinements to the obtained diffraction patterns. The materials Sr2NiWO6 and Sr2CoWO6 crystallized in a tetragonal structure with a space group I4/m, while the material Sr2FeWO6 crystallized in a monoclinic structure with a space group P 21/n. The materials LaCo0.5V0.5O3 and LaFe0.5V0.5O3 crystallized into orthorhombic structures with space groups P nma and P nm, respectively. The morphological properties were determined through the Scanning Electron Microscopy technique (SEM), obtaining several mi-crographs, which allowed to determine average grain sizes in the range of ≈ 80 nm −270 nm for samples with granular structure. Magnetic susceptibility curves as a function of temperature and magnetization as a function of the external magnetic field applied were used to determine the magnetic properties. It was found that the antiferromagnetic response was characteristic for every material under study. However for the materials Sr2−xLaxNiWO6 and LaFe0.5V0.5O3, small ferromagnetic contributions were observed, while for the material LaCo0.5V0.5O3, a ferri-magnetic behavior is presented to temperatures below 150 K. Additionally, for the materials Sr2−xLaxNiWO6 Exchange Bias is presented, possibly associated with the Ni and W ions inter-actions that occur in the structure with different valences, as a result of the inclusion of trivalent ions of lanthanum. Thus, these results motivate research on this type of materials in order to determine their potential application as fuel cell cathodes and spintronic devices.
dc.description.abstractMateriales pertenecientes a las familias A2BWO6 y A2BVO6 han mostrado propiedades eléctricas y magnéticas interesantes, posiblemente aplicables a la espintrónica y a la implementación de cátodos de celdas de combustible. Por esto, la motivación principal de esta tesis es sintetizar y caracterizar materiales con estructura tipo perovskita doble. Específicamente, los materiales Sr2-xLaxNiWO6 (0 ≤ x ≤ 0.15), Sr2FeWO6, Sr2CoWO6, LaFe0.5V0.5O3 y LaCo0.5V0.5O3, a fin de evaluar sus propiedades estructurales, morfológicas y magnéticas. Los materiales en estudio se sintetizaron por medio del método de combustión de gel asistida, un método de síntesis inexplorado para este tipo de materiales, el cual mostró ventajas con respecto a métodos de síntesis convencionales como el método de reacción de estado sólido. Las caracterizaciones estructurales de los materiales se realizaron a través de difracción de rayos X (DRX), implementando refinamientos Rietveld a los patrones de difracción obtenidos. Se encontró que los materiales Sr2NiWO6 y Sr2CoWO6 cristalizan en una estructura tetragonal con un grupo espacial I4/m, mientras que el material Sr2FeWO6 cristaliza en una estructura monoclínica con un grupo espacial P21/n. Los materiales LaCo0.5V0.5O3 y LaFe0.5V0.5O3 cristalizan en estructuras ortorrómbicas con grupos espaciales Pnma y Pbnm, respectivamente. Las caracterizaciones morfológicas se realizaron a través de la técnica de microscopía electrónica de barrido (SEM), tomando diferentes micrografías, lo que permitió determinar tamaños de grano promedio en el rango de ≈ 80 nm - 270 nm para las muestras que presentan estructura granular. La caracterización magnética de los materiales se realizó a través de curvas de susceptibilidad magnética DC en función de la temperatura y magnetización en función del campo magnético externo aplicado. La respuesta antiferromagnética es característica para todos los materiales en estudio, sin embargo se pueden observar pequeñas contribuciones ferromagnéticas para los materiales Sr2-xLaxNiWO6 y LaFe0.5V0.5O3, mientras que para el material LaCo0.5V0.5O3 se presenta un comportamiento ferrimagnético para temperaturas menores a 150 K. Adicionalmente, se evidencia Exchange Bias para los materiales Sr2-xLaxNiWO6 posiblemente asociado a la interacción de los iones de Ni y W que se presentan en la estructura con diferentes valencias, como resultado de la inclusión de iones trivalentes de lantano. Estos resultados motivan la investigación en este tipo de materiales con el fin de determinar su potencial aplicación como cátodos de celdas de combustible y dispositivos espintrónicos.
dc.languagespa
dc.publisherBogotá - Ciencias - Doctorado en Ciencias - Física
dc.publisherDepartamento de Física
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationD. G. Schlom, L. Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen. A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 91(8):2429–2454, 2008.
dc.relationM. E. Lines and A. M. Glass. Principles and Applications of Ferroelectrics and Related Materials. Oxford University Press, 1977.
dc.relationW. Thompson. The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. ® www.jstor.org. The Royal Society, XIX, 1857.
dc.relationNobelPrize.Org. The Nobel Prize in Physics 2007. https://www.nobelprize.org/prizes/physics/2007/summary/, 2020.
dc.relationK. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 395(6703):677–680, 1998.
dc.relationS. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintronics: A spin-based electronics vision for the future. Science, 294(5546):1488–1495, 2001.
dc.relationX. Marti, I. Fina, and T. Jungwirth. Prospect for antiferromagnetic spintronics. IEEE Transactions on Magnetics, 51(4):5–8, 2015.
dc.relationM. C. Viola, M. J. Martínez-Lope, J. A. Alonso, P. Velasco, J. L. Martínez, J. C. Pedregosa, R. E. Carbonio, and M. T. Fernández-Díaz. Induction of colossal magnetoresistance in the double perovskite Sr2CoMoO6. Chemistry of Materials, 14(2):812–818, 2002.
dc.relationM. Bonilla, D. A. Landínez Téllez, J. Arbey Rodríguez, J. Albino Aguiar, and J. Roa-Rojas. Study of half-metallic behavior in Sr2CoWO6 perovskite by ab initio DFT calculations. Journal of Magnetism and Magnetic Materials, 320(14):397–399, 2008.
dc.relationC. A. López, M. C. Viola, and J. C. Pedregosa. B-site cation partial substitution by La3+ doping in the Sr2CoWO6 double perovskite: A XRPD structural study. Journal of the Argentine Chemical Society, 97:226–233, 2009.
dc.relationA. Aguadero, C. de la Calle, J. A. Alonso, D. Pérez-Coll, M. J. Escudero, and L. Daza. Structure, thermal stability and electrical properties of Ca(V0.5Mo0.5)O3 as solid oxide fuel cell anode. Journal of Power Sources, 192(1):78–83, 2009.
dc.relationJ. Androulakis, N. Katsarakis, and J. Giapintzakis. Realization of La2MnVO6 search for half-metallic antiferromagnetism? Solid State Communications, 124:77–81, 2002.
dc.relationH. Van Leuken and R. A. De Groot. Half-metallic antiferromagnets. Physical Review Letters, 74(7):1171–1173, 1995.
dc.relationL. Karvonen, A. Weidenka, and P. Tomes. Materials for Energy Efficiency Thermoelectrics, Thin Films, and Phosphors. Mater. Matt., 6(4), 2011.
dc.relationJ. M. Rondinelli and C. J. Fennie. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Advanced Materials, 24(15):1961–1968, 2012.
dc.relationP. J. Ryan, J. W. Kim, T. Birol, P. Thompson, J. H. Lee, X. Ke, P. S. Normile, E. Karapetrova, P. Schiffer, S. D. Brown, C. J. Fennie, and D. G. Schlom. Reversible control of magnetic interactions by electric field in a single-phase material. Nature Communications, 4:1–8, 2013.
dc.relationG. Goldschmidt. Geochemistry. Oxford University Press, 1958.
dc.relationY. Teraoka, M. D. Wei, and S. Kagawa. Double perovskites containing hexavalent molybdenum and tungsten: Synthesis, structural investigation and proposal of a fitness factor to discriminate the crystal symmetry. Journal of Materials Chemistry, 8(11):2323–2325, 1998.
dc.relationB. Noheda, J. Gonzalo, L. Cross, R. Guo, and S. Park. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure. Physical Review B - Condensed Matter and Materials Physics, 61(13):8687–8695, 2000.
dc.relationA. M. Glazer. The classification of tilted octahedra in perovskites. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(11):3384–3392, 1972.
dc.relationA. M. Glazer. Simple ways of determining perovskite structures. Acta Crystallographica Section A, 31(6):756–762, 1975.
dc.relationP. M. Woodward. Octahedral Tilting in Perovskites. I. Geometrical Considerations. Acta Crystallographica Section B: Structural Science, 53(1):32–43, 1997.
dc.relationR. H. Mitchell. Perovskites: Modern and ancient. Almaz Press, Canada, 2002.
dc.relationA. M. Glazer and Ishida Koichi. Cation displacements and octahedral tilts in NaNbO3 Part I-Determination from x-ray difference reflections. Ferroelectrics, 6(1):219–224, 1973.
dc.relationC. J. Howard and H. T. Stokes. Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Crystallographica Section B: Structural Science, 54:782–789, 1998.
dc.relationJ. S. Forrester, R. O. Piltz, E. H. Kizi, and G. J. McIntyre. Temperature-induced phase transitions in the giant-piezoelectric-effect material PZN-4.5 % PT. J. Phys.: Condens. Matter: Condensed Matter, 13:L825–LL833, 2001.
dc.relationC. J. Howard, V. Luca, and K. S. Knight. High-temperature phase transitions in tungsten trioxide-the last word? Journal of Physics Condensed Matter, 14(3):377–387, 2002.
dc.relationK. S. Aleksandrov. Mechanisms of the Ferroelectric and Structural Phase Transitions. Structural Distortions in Perovskites. Ferroelectrics, 20(1):61–67, 1978.
dc.relationH. T. Stokes, E. H. Kisi, D. M. Hatch, and C. J. Howard. Group-Theoretical Analysis of Octahedral Tilting in Ferroelectric Perovskites. Acta Crystallographica Section B: Structural Science, 58(6):934–938, 2002.
dc.relationE. Y. Tsymbal and I. Zutic. Handbook of Spin Transport and Magnetism. Chapman and Hall/CRC, 2012.
dc.relationN. A. Spalding. Magnetic materials. Fundamentals and applications. Cambridge University Press, New York, United States of America, 2 edition, 2011.
dc.relationB. Sanyal and O. Eriksson. Advanced Functional Materials: A Perspective from Theory and Experiment. Elsevier, 1 edition, 2012.
dc.relationR. J. D. Tilley. Understanding Solids. The Science of Materials. JohnWiley & Sons Ltd, 2013.
dc.relationL. E. Smart and E. A. Moore. Solid State Chemistry: An Introduction. Taylor & Francis, Bacon Raton, USA, 1992.
dc.relationA. R. West. Solid State Chemistry and its Applications. John Wiley & Sons Ltd., 1984.
dc.relationM. T. Weller. Inorganic Materials Chemistry. Oxford University Press, New York, United States of America, 1996.
dc.relationC. Zener. Interaction between the d shells in the transition metals. Physical Review, 81(4):440–444, 1951.
dc.relationC. Zener. Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Physical Review, 82(3), 1951.
dc.relationA. K. Kundu. Magnetic Perovskites. Synthesis, structure and physical properties. Number 2016. Springer US, 2016.
dc.relationJ. I. Villa and J. E. Rodr´ıguez. Structural, transport and thermoelectric properties of Nb-doped CaLaMnO perovskite. Physica B: Condensed Matter, 455, 2014.
dc.relationC. A. Triana-E. Investigación Teórico-Experimental de Propiedades Físicas de los Nuevos Materiales Multifuncionales AMXFe8O19 (A:Sr-Ba-Ca; M:Co-Mn; X:Ti-Zr). PhD thesis, Universidad Nacional de Colombia, 2013.
dc.relationA. K. Kundu. Magnetic perovskites. Synthesis, structure and physical properties. Springer US, 2016.
dc.relationR. Chang. Química General. McGraw-Hill, 7a edition, 2002.
dc.relationD. J. Griffiths. Introduction to Electrodynamics. Prentice-Hall, 1981.
dc.relationD. Wolfram and S. Ellialtioglu. Electronic and optical properties of d-band perovskites. Cambridge University Press, 2006.
dc.relationP. A. Cox. Transition metal oxides: An introduction to their electronic structure and properties. Oxford University Press, 1992.
dc.relationS. Maekawa, T. Tohyama, S. E. Barnes, S. Ishihara, W. Koshibae, and G. Khaliullin. Physics of Transition Metal Oxides. Springer US, 2003.
dc.relationD. Serrate, J. M. De Teresa, and M. R. Ibarra. Double perovskites with ferromagnetism above room temperature. Journal of Physics Condensed Matter, 19(2):0–86, 2007.
dc.relationC. Herring. Effect of change of scale on sintering phenomena. Journal of Applied Physics, 21(4):301–303, 1950.
dc.relationS. L. Kang. Sintering. Densification, grain growth and microstructure. Elsevier, 2 edition, 2005.
dc.relationA. I. Shcherbakov. Theory of dissolution of binary alloys and the Tamman rule. Protection of Metals, 41(1):30–35, 2005.
dc.relationD. Saavedra. Estudio de las Propiedades Estructurales y Magnéticas de Perovskitas Complejas Bi(1-x)Nd(x)Fe(0,7)Mn(0,3)O3. PhD thesis, Universidad Nacional de Colombia, 2018.
dc.relationK. C. Patil and T. Mimani. Preparation and properties of nanocrystalline magnetic oxides. Mag. Soc. India Bull., 22:21–26, 2000.
dc.relationT. V. Anuradha, S. Ranganathan, T. Mimani, and K. C. Patil. Combustion Synthesis of Nanostructured Barium Titanate. Current Opinion in Solid State and Materials Science, 44(3):2237–2241, 2001.
dc.relationC. Y. Wang, X. Bai, S. M. Liu, and L. H. Liu. Synthesis of cobalt-aluminum spinels via EDTA chelating precursors. Journal of Materials Science, 39(20):6191–6201, 2004.
dc.relationZ. Yongqing, Y. Zihua, D. Shiwen, Q. Mande, and Z. Jian. Synthesis and characterization of Y2O3:Eu nanopowder via EDTA complexing sol-gel process. Materials Letters, 57(19):2901–2906, 2003.
dc.relationD. Zhou, G. Huang, X. Chen, J. Xu, and S. Gong. Synthesis of LaAlO3 via ethylenediaminetetraacetic acid precursor. Materials Chemistry and Physics, 84(1):33–36, 2004.
dc.relationG. Schwarzenbach. Complexometric Titrations. Journal of Chemical Education, 35(5):267, 1958.
dc.relationD. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch. Fundamentos de Qu´ımica Anal´ıtica. Thomson, México, 8 edition, 2005.
dc.relationB. D. Cullity. Elements of X-ray diffraction. Addison-Wesley, USA, 2 edition, 1978.
dc.relationI. C. Madsen, N. V. Y. Scarlett, and A. Kern. Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction. Zeitschrift fur Kristallographie, 226(12):944–955, 2011.
dc.relationH. M. Rietveld. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2):65–71, 2002.
dc.relationR. A. Young. The Rietveld method. Oxford University Press, Oxford, New York, 2 edition, 2002.
dc.relationB. H. Toby and R. B. Von Dreele. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2):544–549, 2013.
dc.relationG. Artioli, P. Ballirano, G. Cruciani, and A. Guagliardi. Quantitative phase analysis using the Rietveld method: towards a procedure for checking the reliability and quality of the results. Periodico di Mineralogia, 88:147–151, 2019.
dc.relationA. C. Larson and R. B. Von Dreele. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR, 748:86–748, 2004.
dc.relationB. H. Toby. R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 21(01):67–70, 2008.
dc.relationR. B. Von Dreele. Powder Diffraction Analysis with GSAS-II. International Henry Moseley School and Workshop on X-ray Science, pages 18–19, 2012.
dc.relationG. A. Pérez and H. D. Colorado. Difracción de rayos X y el método Rietveld. Universidad del Valle, Cali, Colombia, 2015.
dc.relationK. Momma and F. Izumi. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Phys. Crystallogr, 41:653, 2008.
dc.relationK. Momma and F. Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6):1272–1276, 2011.
dc.relationJ. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy. Scanning Electron Microscopy and X-Ray Microanalysis. Springer US, 2018.
dc.relationA. Ul-Hamid. A Beginners’ Guide to Scanning Electron Microscopy. Springer US, 2018.
dc.relationS. Amelinckx, D. V. Dyck, J. V. Landuyt, and G. V. Tendeloo. Electron microscopy. Principles and fundamentals. VCH, Weinheim, 1997.
dc.relationF. R. Laffir, A. W. Wren, and M. R. Towler. Influence of morphology and processing on XPS characterization of SrO-Ca-ZnO-SiO2 glass. Journal of Materials Science, 45(11):3102–3105, 2010.
dc.relationG. DiGiuseppe, V. Boddapati, and H. Mothikhana. XPS Studies of LSCF Interfaces after Cell Testing. Advances in Materials Science and Engineering, 2018:1–6, 2018.
dc.relationT. Wu, G. Wu, and X. H. Chen. Effect of disorder on transport and electronic structure in LaCo1-xNixO3 system. Solid State Communications, 145(5-6):293–298, 2008.
dc.relationR. M. Eisberg. Fundamentos de Física Moderna, 1983.
dc.relationC. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg. Handbook of X-ray electron spectroscopy, 1979.
dc.relationJ. Amthauer and Al. Et. Mössbauer spectroscopy: Basic principles. Spectroscopic Methods in Mineralogy. EMU Notes in Mineralogy, 6:345–367, 2004.
dc.relationN. N. Greenwood and T. C. Gibb. Mössbauer Spectroscopy. Chapman and Hall Ltd, 1971.
dc.relationR. A. Brand. WinNormos for Igor. Laboratorium für Angewandte Physik Universität Duisburg, 2009.
dc.relationQuantum Desing. Physical Property Measurement System Vibrating Sample Magnetometer (VSM) Option, User’s Manual Part. Quantum Desing, 4 edition, 2008.
dc.relationT. Ferreira and W. Rasband. ImageJ User Guide User Guide ImageJ. Image J Enterprise, 2 edition, 2012.
dc.relationJ. F. Moulder, W. F. Stickle, and P.E. Sobol. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Inc., MN, USA., 1995.
dc.relationJ. Zhang, J. P. Tu, X. H. Xia, Y. Qiao, and Y. Lu. An all-solid-state electrochromic device based on NiO/WO 3 complementary structure and solid hybrid polyelectrolyte. Solar Energy Materials and Solar Cells, 93(10):1840–1845, 2009.
dc.relationG. F. Cai, X. L. Wang, D. Zhou, J. Zhang, Q. Xiong, C. D. Gu, and J. P. Tu. Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region. RSC Advances, 3(19):6896–6905, 2013.
dc.relationT. Kung Ng and D. M. Hercules. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy. Journal of Physical Chemistry, 80(19):2094–2102, 1976.
dc.relationJ. Clarke and A. I. Braginski. The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems, I. Wiley-VCH Verlag GmbH and Co. KGaA, 2004.
dc.relationJ. A. Cuervo-Farfán, C. A. Vargas Parra, D. S. F. Viana, F. P. Milton, D. García, D. A. Téllez Landínez, and J. Roa-Rojas. Structural, magnetic, dielectric and optical properties of the Eu2Bi2Fe4O12 bismuth-based low-temperature biferroic. Journal of Materials Science: Materials in Electronics, 29(24):20942–20951, 2018.
dc.relationD. Iwanaga, Y. Inaguma, and M. Itoh. Structure and Magnetic Properties of Sr2NiAO6 (A = W, Te). Materials Research Bulletin, 35:449–457, 2000.
dc.relationS. Z. Tian, J. C. Zhao, C. D. Qiao, X. L. Ji, and B. Z. Jiang. Structure and properties of the ordered double perovskites Sr2MWO6 (M = Co, Ni) by sol-gel route. Materials Letters, 60(21-22):2747–2750, 2006.
dc.relationN. W. Ashcroft and N. D. Mermin. Solid State Physics. Saunders College Publishing, USA, college ed edition, 1976.
dc.relationJ. R. Jesus, F. Garcia, J. G. S. Duque, and C. T. Meneses. Study of exchange bias in single-phase Dy0.2Nd0.8CrO3. Journal of Alloys and Compounds, 779:577–581, 2019.
dc.relationV. Skumryev, S. Stoyanov, J. Zhang, G. Hadjipanayis, D. Givord, and J. Nogu´es. Beating the superparamagnetic limit with exchange bias. Nature, 423(June):19–22, 2003.
dc.relationJ. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró. Exchange bias in nanostructures. Physics Reports, 422(3):65–117, 2005.
dc.relationD. A. Thompson and J. S. Best. The future of magnetic data storage technology. IBM Journal of Research and Development, 44(3):311–322, 2010.
dc.relationR. C. Sahoo, S. K. Giri, P. Dasgupta, A. Poddar, and T. K. Nath. Exchange bias effect in ferromagnetic LaSrCoMnO6 double perovskite: Consequence of spin glass-like ordering at low temperature. Journal of Alloys and Compounds, 658:1003–1009, 2016.
dc.relationT. S. Chan, R. S. Liu, G. Y. Guo, S. F. Hu, J. G. Lin, J. M. Chen, and C. R. Chang. Effects of B-site transition metal on the properties of double perovskites Sr2 FeMO6 (M = Mo, W): B 4d-5d system. Solid State Communications, 133(4):265–270, 2005.
dc.relationM. Retuerto, F. Jiménez-Villacorta, M. J. Martínez-Lope, Y. Huttel, E. Roman, M. T. Fernández-Díaz, and J. A. Alonso. Study of the valence state and electronic structure in Sr2FeMO6 (M = W, Mo, Re and Sb) double perovskites. Physical Chemistry Chemical Physics, 12(41):13616–13625, 2010.
dc.relationP. W. Stephens. Phenomenological model of anisotropic peak broadening in powder dif-fraction. Journal of Applied Crystallography, 32(2):281–289, 1999.
dc.relationY. A. Alsabah, A. A. Elbadawi, E. M. Mustafa, and M. A. Siddig. The Effect of Replacement of Zn2+ Cation with Ni2+ Cation on the Structural Properties of Ba2Zn1-xNixWO6 Double Perovskite Oxides. Journal of Materials Science and chemical engineering, 4:61–70, 2016.
dc.relationM. Iranmanesh, M. Lingg, M. Stir, and J. Hulliger. Sol gel and ceramic synthesis of Sr2FeMo1-xWxO6 (0<x<1) double perovskites series. RSC Advances, 6:42069–42075, 2016.
dc.relationO. Ortiz, J. Roa-Rojas, J. A. Aguiar, and David A. Landinez Tellez. Evaluation of Sr2YSbO6 as a new substrate for YBa2Cu3O7-d superconductor thin films. Mod. Phys. Lett. B, 18:1035–1042, 2004.
dc.relationM. T. Anderson, K. B. Greenwood, G. A. Taylor, and K. R. Poeppelmeier. B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 22(3):197–233, 1993.
dc.relationA. K. Azad, S. A. Ivanov, S. G. Eriksson, J. Eriksen, H. Rundl¨of, R. Mathieu, and P. Sved-lindh. Nuclear and magnetic structure of Ca2MnWO6: A neutron powder diffraction study. Materials Research Bulletin, 36(13-14):2485–2496, 2001.
dc.relationD. Sánchez, J. A. Alonso, M. García-Hernández, M. J. Martínez-Lope, and M. T. Casais. Hole doping effects in Sr2FeMo1-xWxO 6 (0 < x < 1) double perovskites: A neutron diffraction study. Journal of Physics Condensed Matter, 17(23):3673–3688, 2005.
dc.relationN. Fairley. CasaXPS Version 2.3.19PR1.0, volume Copyright. Neal Fairley. Casa Software Ltd., 2009.
dc.relationF. De Groot and A. Kotani. Core level spectroscopy of solids. CRC Press, Taylor & Francis Group, Boca Raton, London, NY, 2008.
dc.relationM. Deepa, D. P. Singh, S. M. Shivaprasad, and S. A. Agnihotry. A comparison of electro-chromic properties of sol-gel derived amorphous and nanocrystalline tungsten oxide films. Current Applied Physics, 7(2):220–229, 2007.
dc.relationA. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36(12):1564–1574, 2004.
dc.relationE. Z. Kurmaev, A. V. Postnikov, H. M. Palmer, and C. Greaves. Electronic structure of FeCr2S4 and Fe0.5Cu0.5Cr2S4. J. Phys.: Condens. Matter, 12:5411–5421, 2000.
dc.relationM. Raekers, K. Kuepper, H. Hesse, I. Balasz, I. G. Deac, S. Constantinescu, E. Burzo, M. Valeanu, and M. Neumann. Investigation of chemical and grain boundary effects in highly ordered Sr2FeMoO6: XPS and Mössbauer studies. Journal of Optoelectronics and Advanced Materials, 8(2):455–460, 2006.
dc.relationC. Ruby, B. Humbert, and J. Fusy. Surface and interface properties of epitaxial iron oxide thin films deposited on MgO(001) studied by XPS and Raman spectroscopy. Surface and Interface Analysis, 29(6):377–380, 2000.
dc.relationT. Yamashita and P. Hayes. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials. Applied Surface Science, 254(8):2441–2449, 2008.
dc.relationW. Lisowski, A. H. J. van den Berg, G. A. M. Kip, and L. J. Hanekamp. Characterization of tungsten tips for STM by SEM/AES/XPS. Fresenius’ Journal of Analytical Chemistry, 341(3-4):196–199, 1991.
dc.relationL. Srisombat, S. Ananta, B. Singhana, T. Randall Lee, and R. Yimnirun. Chemical investigation of Fe3+/Nb5+-doped barium titanate ceramics. Ceramics International, 39(SUPPL.1):S591–S594, 2013.
dc.relationP. Gütlich, C. Schöder, and V. Schünemann. Mössbauer spectroscopy - An indispensable tool in solid state research. Spectroscopic Europe, 24(4):21–32, 2014.
dc.relationH. Kawanaka, I. Hase, S. Toyama, and Y. Nishihara. Electronic state of Fe in double perovskite oxide Sr2FeWO6. Journal of the Physical Society of Japan, 68(9):2890–2893, 1999.
dc.relationM. C. Viola, M. J. Martínez-Lope, J. A. Alonso, J. L. Martínez, J. M. De Paoli, S. Pagola, J. C. Pedregosa, M. T. Fernández-Díaz, and R. E. Carbonio. Structure and magnetic properties of Sr2CoWO6: An ordered double perovskite containing Co2+(HS) with un-quenched orbital magnetic moment. Chemistry of Materials, 15(8):1655–1663, 2003.
dc.relationC. A. López, M. C. Viola, J. C. Pedregosa, R. E. Carbonio, R. D. Sánchez, and M. T. Fernández-Díaz. La3+ doping of the Sr2CoWO6 double perovskite: A structural and magnetic study. Journal of Solid State Chemistry, 181(11):3095–3102, 2008.
dc.relationP. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, and L. Marks. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Techn. Universität Wien., Viena, 2001.
dc.relationJ. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18):3865–3868, 1996.
dc.relationV. Kumar, S. Kr, T. P. Sharma, and V. Singh. Band gap determination in thick films from reflectance measurement. Optical Materials, 12:115–119, 1999.
dc.relationA. Aguadero, C. De La Calle, D. Pérez-Coll, and J. A. Alonso. Study of the crystal structure, thermal stability and conductivity of Sr(V0.5Mo0.5)O3+δ as SOFC material. Fuel Cells, 11(1):44–50, 2011.
dc.relationK. Nishimura, I. Yamada, K. Oka, Y. Shimakawa, and M. Azuma. High-pressure synthesis of BaVO3: A new cubic perovskite. Journal of Physics and Chemistry of Solids, 75(6):710–712, 2014.
dc.relationV. C. Fuertes, M. C. Blanco, D. G. Franco, S. Ceppi, R. D. Sánchez, M. T. Fernández-Díaz, G. Tirao, and R. E. Carbonio. A new LaCo0.71(1)V0.29(1)O2.97(3) perovskite containing vanadium in octahedral sites: Synthesis and structural and magnetic characterization. Dalton Transactions, 44(23):10721–10727, 2015.
dc.relationD. Gatteschi, R. Sessoli, and J. Villain. Molecular nanomagnets. Oxford University Press, Oxford, New York, 2011.
dc.relationK. L. Holman, Q. Huang, T. Klimczuk, K. Trzebiatowski, J. W.G. Bos, E. Morosan, J. W. Lynn, and R. J. Cava. Synthesis and properties of the double perovskites La2NiVO6, La2CoVO6, and La2CoTiO6. Journal of Solid State Chemistry, 180(1):75–83, 2007.
dc.relationR. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A, 32:751, 1976.
dc.relationR. Dronskowski. Computational chemistry of solid state materials. WILEY-VCH Verlag GmbH & Co, Germany, 2005.
dc.relationJ. A. Mydosh. Spin glasses: an experimental introduction. Taylor & Francis, London, 1993.
dc.relationB. Aslibeiki, P. Kameli, and H. Salamati. Reentrant spin-glass behavior in La0.8Sr0.2Mn1-xTixO3 manganites. Solid State Communications, 149(31-32):1274–1277, 2009.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstudio de las propiedades estructurales, eléctricas y magnéticas en materiales de tipo perovskita A2BB'O6
dc.typeOtro


Este ítem pertenece a la siguiente institución