dc.contributorOsorio Hernández, Robinson
dc.contributorOsorio Saraz, Jairo Alexander
dc.contributorIngeniería de Biosistemas
dc.contributorGesa: Grupo de Estudios en Sostenibilidad Ambiental
dc.creatorCortés Tovar, Giovanni Andrés
dc.date.accessioned2022-08-29T18:07:21Z
dc.date.available2022-08-29T18:07:21Z
dc.date.created2022-08-29T18:07:21Z
dc.date.issued2022-06-28
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82174
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn esta tesis se contribuye al entendimiento de las condiciones microclimaticas adecuadas al interior de las instalaciones agroindustriales para la producción Azúcar de Caña no Centrifugada, en inglés: Non-centrifugal Cane Sugar (NCS), conocida en Colombia como “Panela” en regiones tropicales, utilizando las estrategias del diseño bioclimático en la envolvente, garantizando condiciones de confort térmico para los trabajadores y optimizando el uso de la energía para el funcionamiento de la edificación, que se logra a través de la combustión del bagazo, obteniendo como resultado menos emisión de CO2, lo cual contribuye a la disminución de la huella de carbono y por ende la protección del medio ambiente. A partir de la simulación Dinámica de Fluidos Computacional (CFD) y Simulación Energética de Edificios (BES) se describió el comportamiento fluidodinámico e higrotérmico dentro de la edificación, se modelaron doce tratamientos analizando el efecto de las aberturas en las paredes y en la ventana cenital, junto con el uso de tres tipos de materiales de cubierta. Además, se determinaron los índices de confort térmico: temperatura efectiva y el índice de temperatura del globo y bulbo húmedo en inglés: Wet Bulb Globe Temperatures (WBGT), así como el confort térmico adaptativo en cada tratamiento. Posteriormente se simuló la ventilación natural para un modelo de la instalación con el equipo de la mesa de agua. Con esta investigación se realizan aportes en el área del diseño y análisis bioclimático de envolventes de instalaciones agroindustriales por medio de herramientas de simulación computacional enfocadas en optimizar el microambiente al interior de la edificación, mejorando el bienestar del trabajador y las condiciones de eficiencia energética del proceso de producción.
dc.description.abstractThis thesis contributes to the understanding of the appropriate microclimatic conditions within the agroindustrial facilities for the production of Non Centrifuged Cane Sugar (ACNC), known in Colombia as "Panela" in tropical regions, using bioclimatic design strategies in the envelope, ensuring thermal comfort conditions for workers and optimizing the use of energy for the operation of the building that is achieved through the combustion of bagasse, resulting in lower CO2 emissions contributing to the reduction of the carbon footprint and therefore to the protection of the environment. From Computational Fluid Dynamics (CFD) and Building Energy Simulation (BES), the fluid dynamic and hygrothermal behavior inside the building is described, twelve treatments were modeled analyzing the effect of the openings. on the walls and in the zenithal window, together with the use of three types of roofing materials, in addition, the thermal comfort indexes were determined: effective temperature and WBGT, and the adaptive thermal comfort model in each treatment. Subsequently, natural ventilation was simulated for a scale model of the installation with the water table equipment. With this research, contributions are made in the field of bioclimatic design and analysis of agroindustrial facility envelopes by means of computational simulation tools focused on optimizing the microenvironment inside the building, improving the worker's well-being and the energy efficiency conditions of the production process.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Artes - Maestría en Construcción
dc.publisherFacultad de Artes
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAhmed, A., Ge, T., Peng, J., Yan, W.-C., Tee, B. T., & You, S. (2022). Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy and Buildings, 256, 111755. https://doi.org/10.1016/j.enbuild.2021.111755
dc.relationAhmed, T., Kumar, P., & Mottet, L. (2021). Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality. Renewable and Sustainable Energy Reviews, 138(May 2020), 110669. https://doi.org/10.1016/j.rser.2020.110669
dc.relationAlarcón, A. L., Palacios, L. M., Osorio, C., César Narváez, P., Heredia, F. J., Orjuela, A., & Hernanz, D. (2021). Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, 340(August 2020), 128183. https://doi.org/10.1016/j.foodchem.2020.128183
dc.relationAlsharif, R., Arashpour, M., Chang, V., & Zhou, J. (2021). A review of building parameters’ roles in conserving energy versus maintaining comfort. Journal of Building Engineering, 35(December 2020), 102087. https://doi.org/10.1016/j.jobe.2020.102087
dc.relationAltan, H., Hajibandeh, M., Tabet Aoul, K. A., & Deep, A. (2016). Passive Design. In M. Noguchi (Ed.), ZEMCH: Toward the Delivery of Zero Energy Mass Custom Homes (pp. 209–236). Springer International Publishing. https://doi.org/10.1007/978-3-319-31967-4_8
dc.relationAmaro, A. L. N., Junior, T. Y., Yanagi, S. de N. M., Ferraz, G. A. E. S., & Campos, A. T. (2018). Climate change and rural workers thermal comfort: Historical and future impacts. Engenharia Agricola, 38(2), 173–179. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n2p173-179/2018
dc.relationAmerican Society of Heating Refrigerating and Air Conditioning Engineers - ASHRAE Standard 55. (2017). Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE 55-2017.
dc.relationAndrade, M., Johanna, M., Torres, G., & Nelson, E. (2020). La panela del Catatumbo , una alternativa agroindustrial con perfil Internacional. Revista Espacios, 41(25), 159–170. http://sistemasblandosxd.revistaespacios.com/a20v41n25/a20v41n25p13.pdf
dc.relationBjerg, B., Cascone, G., Lee, I. B., Bartzanas, T., Norton, T., Hong, S. W., Seo, I. H., Banhazi, T., Liberati, P., Marucci, A., & Zhang, G. (2013). Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling. Biosystems Engineering, 116(3), 259–275. https://doi.org/10.1016/j.biosystemseng.2013.06.012
dc.relationBuriol, G. A., Estefanel, V., Righi, E. Z., & Bressan, V. C. (2015a). Conforto térmico para os seres humanos nas condições de ambiente natural em Santa Maria, RS, Brasil. Ciencia Rural, 45(2), 223–230. https://doi.org/10.1590/0103-8478cr20131537
dc.relationBuriol, G. A., Estefanel, V., Righi, E. Z., & Bressan, V. C. (2015b). Conforto térmico para os seres humanos nas condições de ambiente natural em Santa Maria, RS, Brasil. Ciência Rural, 45, 223–230.
dc.relationCamara, T., Kamsu-Foguem, B., Diourte, B., Maiga, A. I., & Habbadi, A. (2017). Management and assessment of performance risks for bioclimatic buildings. Journal of Cleaner Production, 147, 654–667. https://doi.org/10.1016/j.jclepro.2017.01.063
dc.relationCarlucci, S., & Pagliano, L. (2012). A review of indices for the long-term evaluation of the general thermal comfort conditions in buildings. Energy and Buildings, 53, 194–205. https://doi.org/10.1016/j.enbuild.2012.06.015
dc.relationCastillo, J., & Orozco, A. (2010). Evaluación de un método de cálculo para estimar la carga de trabajo en trabajadores expuestos a condiciones térmicas extremas. Salud de Los Trabajadores, 18, 17–33. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-01382010000100003&nrm=iso
dc.relationChen Austin, M., Castillo, M., De Mendes Da Silva, Á., & Mora, D. (2020). Numerical Assessment of Bioclimatic Architecture Strategies for Buildings Design in Tropical Climates: A Case of Study in Panama. E3S Web of Conferences, 197, 1–10. https://doi.org/10.1051/e3sconf/202019702006
dc.relationChong, A., Gu, Y., & Jia, H. (2021). Calibrating building energy simulation models: A review of the basics to guide future work. Energy and Buildings, 253, 111533. https://doi.org/10.1016/j.enbuild.2021.111533
dc.relationCoakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 123–141. https://doi.org/10.1016/j.rser.2014.05.007
dc.relationDacanal, C., Luz, S. do N., Turco, S. H. N., & Vasconcelos, O. C. d. M. (2018). Diagnosis and recommendations for the bioclimatic design of grape packing houses in hot and dry climate. Engenharia Agricola, 38(1), 1–6. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n1p1-6/2018
dc.relationDe Dear, R. J., Akimoto, T., Arens, E. A., Brager, G., Candido, C., Cheong, K. W. D., Li, B., Nishihara, N., Sekhar, S. C., Tanabe, S., Toftum, J., Zhang, H., & Zhu, Y. (2013). Progress in thermal comfort research over the last twenty years. Indoor Air, 23(6), 442–461. https://doi.org/10.1111/ina.12046
dc.relationde Oliveira, C. C., Rupp, R. F., & Ghisi, E. (2021). Influence of environmental variables on thermal comfort and air quality perception in office buildings in the humid subtropical climate zone of Brazil. Energy and Buildings, 243, 110982. https://doi.org/10.1016/j.enbuild.2021.110982
dc.relationDhaka, S., Mathur, J., & Garg, V. (2014). Effect of building envelope on thermal environmental conditions of a naturally ventilated building block in tropical climate. Building Services Engineering Research and Technology, 35(3), 280–295. https://doi.org/10.1177/0143624413490177
dc.relationDianat, I., Vahedi, A., & Dehnavi, S. (2016). Association between objective and subjective assessments of environmental ergonomic factors in manufacturing plants. International Journal of Industrial Ergonomics, 54, 26–31. https://doi.org/10.1016/j.ergon.2015.12.004
dc.relationEl-Darwish, I., & Gomaa, M. (2017). Retrofitting strategy for building envelopes to achieve energy efficiency. Alexandria Engineering Journal, 56(4), 579–589. https://doi.org/10.1016/j.aej.2017.05.011
dc.relationEli, L. G., Krelling, A. F., Olinger, M. S., Melo, A. P., & Lamberts, R. (2021). Thermal performance of residential building with mixed-mode and passive cooling strategies: The Brazilian context. Energy and Buildings, 244, 111047. https://doi.org/10.1016/j.enbuild.2021.111047
dc.relationElshafei, G., Vilcekova, S., Zelenakova, M., & Negm, A. M. (2021). Towards an adaptation of efficient passive design for thermal comfort buildings. Sustainability (Switzerland), 13(17), 1–23. https://doi.org/10.3390/su13179570
dc.relationEnander, A. E. (1989). Effects of thermal stress on human performance. Scandinavian Journal of Work, Environment & Health, 15, 27–33. http://www.jstor.org/stable/40965606
dc.relationEsteves, D., Silva, J., Martins, L., Teixeira, J., & Teixeira, S. (2021). Building Energy Performance: Comparison Between EnergyPlus and Other Certified Tools. In O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, & C. M. Torre (Eds.), Computational Science and Its Applications -- ICCSA 2021 (pp. 493–503). Springer International Publishing.
dc.relationFAO - Food and Agriculture Organization. (1994). Sugar crops and sweeteners and derived products. https://www.fao.org/es/faodef/fdef03e.htm
dc.relationGaitani, N., Mihalakakou, G., & Santamouris, M. (2007). On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Building and Environment, 42(1), 317–324. https://doi.org/10.1016/j.buildenv.2005.08.018
dc.relationGan, G. (2013). CFD Simulation for Sustainable Building Design. In R. Yao (Ed.), Design and Management of Sustainable Built Environments (pp. 253–277). Springer London. https://doi.org/10.1007/978-1-4471-4781-7_13
dc.relationGarcía, H. R. (2013). Guía Constructiva para trapiches con 100 kg/h de capacidad. https://doi.org/10.13140/RG.2.2.32052.86406
dc.relationGarcía, H. R., Albarracín, L. C., Toscano LaTorre, A., Santana, N., & Insuasty, O. (2007). Guía tecnológica para el manejo integral del sistema productivo de la caña panelera. Produmedios.
dc.relationGarcía, H. R., & Cortés, G. (2010). Hornillas para la producción de panela. Cursos sobre producción de Panela en: Mariquita, Tolima; Sandoná, Nariño; Angostura, Antioquia; Isnos, Huila; Nocaima, Cundinamarca. https://www.researchgate.net/publication/306375186_Hornillas_para_la_produccion_de_panela#:~:text=El horno usado en la,azúcares%2C hasta el “punto de
dc.relationGarcía, J. M., Narváez, P. C., Heredia, F. J., Orjuela, Á., & Osorio, C. (2017). Physicochemical and sensory (aroma and colour) characterisation of a non-centrifugal cane sugar (“panela”) beverage. Food Chemistry, 228, 7–13. https://doi.org/10.1016/j.foodchem.2017.01.134
dc.relationGordillo, G., & García, H. R. (1992). Manual para el diseño y operación de hornillas paneleras. Convenio de investigación y divulgación para el mejoramiento de la industria panelera ICA – HOLANDA CIMPA.
dc.relationGou, Z., Gamage, W., Lau, S. S. Y., & Lau, S. S. Y. (2018). An investigation of thermal comfort and adaptive behaviors in naturally ventilated residential buildings in tropical climates: A pilot study. Buildings, 8(1). https://doi.org/10.3390/buildings8010005
dc.relationGungor, S., Cetin, M., & Adiguzel, F. (2021). Calculation of comfortable thermal conditions for Mersin urban city planning in Turkey. Air Quality, Atmosphere and Health, 14(4), 515–522. https://doi.org/10.1007/s11869-020-00955-y
dc.relationGutiérrez-Mosquera, L. F., Arias-Giraldo, S., & Ceballos-Peñaloza, A. M. (2018a). Actualidad del sistema productivo tradicional de panela en Colombia: análisis de mejoras y alternativas tecnológicas. Ingeniería Y Competitividad, 20(1), 107. https://doi.org/10.25100/iyc.v20i1.6190
dc.relationGutiérrez-Mosquera, L. F., Arias-Giraldo, S., & Ceballos-Peñaloza, A. M. (2018b). Energy and Productivity Yield Assessment of a Traditional Furnace for Noncentrifugal Brown Sugar (Panela) Production. International Journal of Chemical Engineering, 2018. https://doi.org/10.1155/2018/6841975
dc.relationHarkouss, F., Fardoun, F., & Biwole, P. H. (2018). Passive design optimization of low energy buildings in different climates. Energy, 165, 591–613. https://doi.org/10.1016/j.energy.2018.09.019
dc.relationHe, Y., Liu, X. H., Zhang, H. L., Zheng, W., Zhao, F. Y., Aurel Schnabel, M., & Mei, Y. (2021). Hybrid framework for rapid evaluation of wind environment around buildings through parametric design, CFD simulation, image processing and machine learning. Sustainable Cities and Society, 73(April). https://doi.org/10.1016/j.scs.2021.103092
dc.relationHellwig, R. T., Teli, D., Schweiker, M., Choi, J. H., Lee, M. C. J., Mora, R., Rawal, R., Wang, Z., & Al-Atrash, F. (2019). A framework for adopting adaptive thermal comfort principles in design and operation of buildings. Energy and Buildings, 205, 109476. https://doi.org/10.1016/j.enbuild.2019.109476
dc.relationHolstov, A., Farmer, G., & Bridgens, B. (2017). Sustainable materialisation of responsive architecture. Sustainability (Switzerland), 9(3). https://doi.org/10.3390/su9030435
dc.relationIsmail, A. R., Rani, M., Mohd Makhbul, Z., Mohd Nor, J., & Rahman, M. (2009). A Study of Relationship Between WGBT and Relative Humidity to Worker of Performance. Journal of World Academy of Science, Engineering and Technology (WASET), 51, 209–214.
dc.relationKiki, G., Kouchadé, C., Houngan, A., Zannou-Tchoko, S. J., & André, P. (2020). Evaluation of thermal comfort in an office building in the humid tropical climate of Benin. Building and Environment, 185(September). https://doi.org/10.1016/j.buildenv.2020.107277
dc.relationKini, P. G., Garg, N. K., & Kamath, K. (2017). To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate. IOP Conference Series: Earth and Environmental Science, 73(1), 0–6. https://doi.org/10.1088/1755-1315/73/1/012031
dc.relationKralikova, R., Sokolova, H., & Wessely, E. (2014). Thermal environment evaluation according to indices in industrial workplaces. Procedia Engineering, 69, 158–167. https://doi.org/10.1016/j.proeng.2014.02.216
dc.relationKükrer, E., & Eskin, N. (2021). Effect of design and operational strategies on thermal comfort and productivity in a multipurpose school building. Journal of Building Engineering, 44(April). https://doi.org/10.1016/j.jobe.2021.102697
dc.relationKumar, P., & Sharma, A. (2021). Assessing the monthly heat stress risk to society using thermal comfort indices in the hot semi-arid climate of India. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.06.292
dc.relationLamberts, R., Xavier, A. A., & Goulart, S. (2011). Conforto e Stress Térmico. Laboratório de Eficiência Energética em Edificações Santa Catarina: Departamento de Engenharia Cívil, Centro Tecnológico, Universidade Federal de Santa Catarina. http://www.labeee.ufsc.br/antigo/arquivos/publicacoes/Apconforto.pdf
dc.relationLatha, P. K., Darshana, Y., & Venugopal, V. (2015). Role of building material in thermal comfort in tropical climates - A review. Journal of Building Engineering, 3, 104–113. https://doi.org/10.1016/j.jobe.2015.06.003
dc.relationManzano-Agugliaro, F., Montoya, F. G., Sabio-Ortega, A., & García-Cruz, A. (2015). Review of bioclimatic architecture strategies for achieving thermal comfort. Renewable and Sustainable Energy Reviews, 49, 736–755. https://doi.org/10.1016/j.rser.2015.04.095
dc.relationMarchante González, G., & González Santos, A. I. (2020). Evaluación del confort y disconfort térmico. Ingeniería Electrónica, Automática y Comunicaciones, 41(3), 21–40.
dc.relationMeggers, F. (2015). Hidden Surface Effects: Radiant Temperature as an Urban and Architectural Comfort Culprit. In S. T. Rassia & P. M. Pardalos (Eds.), Future City Architecture for Optimal Living (pp. 201–220). Springer International Publishing. https://doi.org/10.1007/978-3-319-15030-7_11
dc.relationMinisterio de Agricultura y Desarrollo Rural de Colombia. (2019). Cadena Agroindustrial de la panela Dirección de Cadenas Agrícolas y Forestales. https://sioc.minagricultura.gov.co/Panela/Documentos/2019-12-30%20Cifras%20Sectoriales.pdf.
dc.relationMinisterio de la Protección Social de Colombia. (2016). Resolución Numero 779 de 2006, del 17 de marzo. Por la cual se establece el reglamento técnico sobre los requisitos sanitarios que se deben cumplir en la producción y comercialización de la panela para consumo humano y se dictan otras disposiciones. Diario Oficial de la Republica de Colombia N° 46.223 del 17 de marzo de 2006.
dc.relationMinisterio de Trabajo y Seguridad Social de Colombia. (1979). Resolución 2400 de 1979. Por el cual se establecen disposiciones sobre vivienda, higiene y seguridad industrial en los establecimientos de trabajo. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=53565
dc.relationMinistério do Trabalho e Emprego. (2013). Portaria SEPRT n.o 1.359, de 09 de dezembro de 2019 que altera a Norma Regulamentadora 15 - ANEXO 3 - Limites de tolerância para exposição ao calor. https://www.gov.br/trabalho-e-previdencia/pt-br/search?SearchableText=nr 15-anexo-03
dc.relationMirrahimi, S., Mohamed, M. F., Haw, L. C., Ibrahim, N. L. N., Yusoff, W. F. M., & Aflaki, A. (2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate. Renewable and Sustainable Energy Reviews, 53, 1508–1519. https://doi.org/10.1016/j.rser.2015.09.055
dc.relationNaboni, E., Lee, D. S. H., & Fabbri, K. (2017). Thermal Comfort-CFD maps for Architectural Interior Design. Procedia Engineering, 180, 110–117. https://doi.org/10.1016/j.proeng.2017.04.170
dc.relationNasrollahzadeh, N. (2021). Comprehensive building envelope optimization: Improving energy, daylight, and thermal comfort performance of the dwelling unit. Journal of Building Engineering, 44(October), 103418. https://doi.org/10.1016/j.jobe.2021.103418
dc.relationNedel, A. S., Alonso, M. F., de Freitas, R. A. P., da Costa Trassante, F., da Silva, H. N., De Bortolli, E., de Medeiros, M. A. F., Hallal, P. C., & Vianna, J. C. T. (2021). Analysis of indoor human thermal comfort in Pelotas municipality, extreme southern Brazil. International Journal of Biometeorology, 65(3), 419–428. https://doi.org/10.1007/s00484-020-02015-7
dc.relationNorton, T., Grant, J., Fallon, R., & Sun, D. W. (2009). Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics. Biosystems Engineering, 103(1), 78–99. https://doi.org/10.1016/j.biosystemseng.2009.02.007
dc.relationPajek, L., & Košir, M. (2021). Exploring climate-change impacts on energy efficiency and overheating vulnerability of bioclimatic residential buildings under central european climate. Sustainability (Switzerland), 13(12). https://doi.org/10.3390/su13126791
dc.relationPereira, F. O. R., & Toledo, A. M. (2004). Analogical Visualization of Natural Ventilation in Buildings due to Wind Action. Plea2004 - The 21 Conference on Passive and Low Energy Architecture, Eindhoven, The Netherlands, 19 - 22 September 2004.
dc.relationPiña, E. (2018). Prototipo de vivienda vertical social sustentable, enfoque en resistencia al cambio climático. Revista INVI, 33(92), 213–237.
dc.relationPina, E. A., Lozano, M. A., & Serra, L. M. (2021). Assessing the influence of legal constraints on the integration of renewable energy technologies in polygeneration systems for buildings. Renewable and Sustainable Energy Reviews, 149(May), 111382. https://doi.org/10.1016/j.rser.2021.111382
dc.relationPrada Forero, L., Sánchez Castro, Z., García Bernal, H., & Rojas Ávila, H. (2012). Hornillas paneleras Ward-CIMPA: Validación de los modelos matemáticos de diseño Corpoica-UIS. Fuentes: El Reventón Energético, 10(2), 6.
dc.relationRamírez Gil, J. G. (2017). Characterization of traditional production systems of sugarcane for panela and some prospects for improving their sustainability. Revista Facultad Nacional de Agronomia Medellin, 70(1), 8045–8055. https://doi.org/10.15446/rfna.v70n1.61763
dc.relationRashad, M., Khordehgah, N., Żabnieńska-Góra, A., Ahmad, L., & Jouhara, H. (2021). The utilisation of useful ambient energy in residential dwellings to improve thermal comfort and reduce energy consumption. International Journal of Thermofluids, 9. https://doi.org/10.1016/j.ijft.2020.100059
dc.relationRibeiro, P. V. S., & Bittencourt, L. S. (2016). Contribuição da mesa d’agua na análise da geometria de sheds extratores e captadores de ar para ventilação natural. ENTAC 2016 - XVI ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, Desafios e Perspectivas da Internacionalização da Construção, São Paulo, Brasil, 21 a 23 de Setembro de 2016.
dc.relationRossi, M. M., Vale, F. I., Shimomura, A. P. R., & Chvatal, K. M. S. (2019). A mesa d’ água como ferramenta de apoio para a caracterização de um modelo genérico a ser ensaiado em túnel de vent. Revista IPT| Tecnologia e Inovação, 2(10), 70–80.
dc.relationSalazar, L. L., & Alves da Silva, J. L. (2019). A mesa d ’ água como método de análise e entendimento para os conceitos de ventilação natural. IV SIMPAC: Simpósio de pessoas, arquitetura e cidade, São Paulo(SP) UAM, Brasil, 23 a 25 de Outubro de 2019. https//www.even3.com.br/anais/artigos_ivsimpac/212479-A-MESA-DAGUA-COMO-METODO-DE-ANALISE-E-ENTENDIMENTO-PARA-OS-CONCEITOS-DE-VENTILACAO-NATURAL%3E. Acesso em: 27/10/2021 15:25
dc.relationSemahi, S., Zemmouri, N., Singh, M. K., & Attia, S. (2019). Comparative bioclimatic approach for comfort and passive heating and cooling strategies in Algeria. Building and Environment, 161(July), 106271. https://doi.org/10.1016/j.buildenv.2019.106271
dc.relationShan, X., Luo, N., Sun, K., Hong, T., Lee, Y. K., & Lu, W. Z. (2020). Coupling CFD and building energy modelling to optimize the operation of a large open office space for occupant comfort. Sustainable Cities and Society, 60(September 2019), 102257. https://doi.org/10.1016/j.scs.2020.102257
dc.relationShin, M., & Haberl, J. S. (2022). A procedure for automating thermal zoning for building energy simulation. Journal of Building Engineering, 46(December 2021), 103780. https://doi.org/10.1016/j.jobe.2021.103780
dc.relationTaleghani, M., Tenpierik, M., Kurvers, S., & Van Den Dobbelsteen, A. (2013). A review into thermal comfort in buildings. Renewable and Sustainable Energy Reviews, 26, 201–215. https://doi.org/10.1016/j.rser.2013.05.050
dc.relationTang, L., Ai, Z., Song, C., Zhang, G., & Liu, Z. (2021). A strategy to maximally utilize outdoor air for indoor thermal environment. Energies, 14(13), 1–13. https://doi.org/10.3390/en14133987
dc.relationTaylor, M., Brown, N. C., & Rim, D. (2021). Optimizing thermal comfort and energy use for learning environments. Energy and Buildings, 248, 111181. https://doi.org/10.1016/j.enbuild.2021.111181
dc.relationTeixeira, L., Talaia, M., & Meles, B. (2018). Assessment of thermal comfort in a Portuguese metalworking industry. Occupational Ergonomics, 13(S1), S59–S70. https://doi.org/10.3233/OER-170254
dc.relationToledo, A. M., & Pereira, F. O. R. (2003). Potencial da Mesa d’ água para a visualização analógica da ventilação natural em edifícios. ENCAC 2003 - ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, Curitiba, Porto Alegre, Brasil, 5 a 7 de novembro de 2003.
dc.relationTorres, H. A., & Osorio, R. (2020). Evaluación de las condiciones de secado del bagazo usado como combustible en trapiche panelero en el municipio de Nocaima Cundinamarca. I Congreso Colombiano de Estudiantes de Ingeniería Agrícola CEIA 2020 - Innovación y Desarrollo Avanzando Hacia Una Agricultura Sostenible. Congreso dirigido por la Asociación Colombiana de Estudiantes de Ingeniería Agrícola - ACEIA, Bogotá.
dc.relationTsitoura, M., Michailidou, M., & Tsoutsos, T. (2017). A bioclimatic outdoor design tool in urban open space design. Energy and Buildings, 153, 368–381. https://doi.org/10.1016/j.enbuild.2017.07.079
dc.relationVellei, M., Herrera, M., Fosas, D., & Natarajan, S. (2017). The influence of relative humidity on adaptive thermal comfort. Building and Environment, 124, 171–185. https://doi.org/10.1016/j.buildenv.2017.08.005
dc.relationVolverás-Mambuscay, B., González-Chavarro, C. F., Huertas, B., Kopp-Sanabria, E., & Ramírez-Durán, J. (2020). Effect of the organic and mineral fertilizer on the performance of sugarcane yield in Nariño, Colombia. Agronomy Mesoamerican, 31(3), 547–565. https://doi.org/10.15517/AM.V31I3.37334
dc.relationXie, J., Li, H., Li, C., Zhang, J., & Luo, M. (2020). Review on occupant-centric thermal comfort sensing, predicting, and controlling. Energy and Buildings, 226, 110392. https://doi.org/10.1016/j.enbuild.2020.110392
dc.relationYang, X., Zhao, L., Bruse, M., & Meng, Q. (2012). An integrated simulation method for building energy performance assessment in urban environments. Energy and Buildings, 54, 243–251. https://doi.org/10.1016/j.enbuild.2012.07.042
dc.relationYasmeen, S., Liu, H., Wu, Y., & Li, B. (2020). Physiological responses of acclimatized construction workers during different work patterns in a hot and humid subtropical area of China. Journal of Building Engineering, 30(February), 101281. https://doi.org/10.1016/j.jobe.2020.101281
dc.relationYuan, C., & Ng, E. (2014). Practical application of CFD on environmentally sensitive architectural design at high density cities: A case study in Hong Kong. Urban Climate, 8, 57–77. https://doi.org/10.1016/j.uclim.2013.12.001
dc.relationYüksel, A., Arıcı, M., Krajčík, M., Civan, M., & Karabay, H. (2021). A review on thermal comfort, indoor air quality and energy consumption in temples. Journal of Building Engineering, 35(November 2020). https://doi.org/10.1016/j.jobe.2020.102013
dc.relationZhai, Z. J., & Chen, Q. Y. (2005). Performance of coupled building energy and CFD simulations. Energy and Buildings, 37(4), 333–344. https://doi.org/10.1016/j.enbuild.2004.07.001
dc.relationZhang, R., Zhang, Y., Lam, K. P., & Archer, D. H. (2010). A prototype mesh generation tool for CFD simulations in architecture domain. Building and Environment, 45(10), 2253–2262. https://doi.org/10.1016/j.buildenv.2010.04.007
dc.relationZhang, X., Weerasuriya, A. U., Wang, J., Li, C. Y., Chen, Z., Tse, K. T., & Hang, J. (2022). Cross-ventilation of a generic building with various configurations of external and internal openings. Building and Environment, 207(PA), 108447. https://doi.org/10.1016/j.buildenv.2021.108447
dc.relationZhong, W., Zhang, T., & Tamura, T. (2019). CFD simulation of convective heat transfer on vernacular sustainable architecture: Validation and application of methodology. Sustainability (Switzerland), 11(15). https://doi.org/10.3390/su11154231
dc.relationZoras, S., Veranoudis, S., & Dimoudi, A. (2017). Micro- climate adaptation of whole building energy simulation in large complexes. Energy and Buildings, 150, 81–89. https://doi.org/10.1016/j.enbuild.2017.05.060
dc.relationZr, D. L., & Mochtar, S. (2013). Application of Bioclimatic Parameter as Sustainability Approach on Multi-story Building Design in Tropical Area. Procedia Environmental Sciences, 17, 822–830. https://doi.org/10.1016/j.proenv.2013.02.100
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados al autor, 2022
dc.titlePropuesta constructiva a partir del análisis bioclimático de la envolvente de plantas agroindustriales para la producción de panela
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución