dc.contributorGutiérrez Álvarez, Luis Felipe
dc.contributorCruz Guerrero, Alma Elizabeth
dc.creatorMarín Martínez, Andrés Felipe
dc.date.accessioned2020-08-26T03:32:34Z
dc.date.available2020-08-26T03:32:34Z
dc.date.created2020-08-26T03:32:34Z
dc.date.issued2019-11-25
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78229
dc.description.abstractThe aim of this study was to evaluate the inclusion of oat oligosaccharides in the formulation of fresh cheeses. In the first instance, two extraction methods of these compounds were evaluated. The first one was a conventional method (hot aqueous extraction), and the second one was an ultrasound assisted extraction method, under different time (15 and 30 minutes) and temperature (20 °C, 55 °C and uncontrolled temperature) conditions. The application of ultrasound for 30 minutes at 55 °C displayed the highest extraction yield (4.29 ± 0.70%), whereas conventional method displayed the lowest (1.64 ± 0.17%). Conversely, the conventional method presented the greatest total sugars content in its extract (80.83 ± 8.27%). Once β-glucans were obtained, its inclusion at concentrations of 0.25, 0.50 y 0.75% in cuajada-type fresh cheese was evaluated. The addition of 0.25% of oligosaccharides displayed higher cuajada-type cheese yield associated with an increase in moisture content, as well as higher oligosaccharides retention in the cheese. The other two concentrations (0.50 and 0.75%) showed an evident thermodynamic incompatibility between these oligosaccharides and caseins, which affected milk coagulation, and the physicochemical properties of cuajada-type fresh cheeses. Finally, the addition of oligosaccharides at 0 and 0.25%, and the inclusion of Lactobacillus casei subsp. rhamnosus were evaluated in panela-type fresh cheese during storage at 4 °C (1, 7, 14 and 21 days). Viability of probiotic in both cheeses was above 106 CFU/g of cheese during storage, which supports the idea of panela-type cheese as a suitable vehicle for probiotics release. Additionally, stability of both cheeses under storage conditions of 4 °C and vacuum packaging were guaranteed for 21 days at least.
dc.description.abstractEsta investigación tuvo como objetivo la evaluación de la inclusión de oligosacáridos de avena en la formulación de quesos frescos. Para ello, se evaluó la extracción de estos compuestos por dos métodos, uno convencional (extracción acuosa en caliente), y otro con aplicación de ultrasonido bajo diferentes condiciones de tiempo (15 y 30 minutos) y temperatura (20 °C, 55 °C y sin control de temperatura). La aplicación de ultrasonido durante 30 minutos a 55 °C presentó el mayor rendimiento de extracción (4.29 ± 0.70%), mientras el método convencional obtuvo el menor rendimiento (1.64 ± 0.17%). Por el contrario, el extracto obtenido con el método convencional presentó el mayor contenido de azúcares totales (80.83 ± 8.27%). Una vez extraídos los β-glucanos, se evaluó su inclusión en concentraciones de 0.25, 0.50 y 0.75% en un queso fresco tipo cuajada. Con la adición al 0.25% se presentó un mayor rendimiento quesero asociado a un mayor contenido de humedad, así como una mayor retención de oligosacáridos en la cuajada (56.56 ± 8.83%). Con las dos mayores concentraciones (0.50 y 0.75%) de oligosacáridos, se evidenció la incompatibilidad de los β-glucanos con las caseínas, lo que afectó tanto la coagulación de la leche como las propiedades fisicoquímicas de las cuajadas. Por último, se evaluó la adición de oligosacáridos (0 y 0.25%), y la inclusión de Lactobacillus casei subsp. rhamnosus en un queso fresco tipo panela durante el almacenamiento (días 1, 7, 14 y 21) a 4 °C. La viabilidad del probiótico en ambos quesos estuvo por encima de 106 UFC/g de queso durante todo el almacenamiento, lo cual hace al queso tipo panela un buen alimento para la provisión de estos microorganismos benéficos para el ser humano. Finalmente, se garantizó una estabilidad de por lo menos 21 días de los quesos refrigerados a 4 °C y empacados al vacío.
dc.languagespa
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAhmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., and Ahmed, Z. (2010). Extraction and characterization of β-d-glucan from oat for industrial utilization. International Journal of Biological Macromolecules, 46(3), 304–309. https://doi.org/10.1016/j.ijbiomac.2010.01.002
dc.relationAhmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., and Dilshad, S. M. R. (2012). Beta glucan: A valuable functional ingredient in foods. Critical Reviews in Food Science and Nutrition, 52(3), 201–212. https://doi.org/10.1080/10408398.2010.499806
dc.relationAhmadi, E., Alizadeh-Navaei, R., and Mohammad Sadegh Rezai. (2015). Efficacy of probiotic use in acute rotavirus diarrhea in children: A systematic review and meta-analysis. Caspian Journal of Internal Medicine, 6(4), 187–195.
dc.relationAktas-Akyildiz, E., Sibakov, J., Nappa, M., Hyt€onen, E., Koksel, H., and Poutanen, K. (2018). Extraction of soluble b -glucan from oat and barley fractions: Process efficiency and dispersion stability. Journal of Cereal Science, 81, 60–68. https://doi.org/10.1016/j.jcs.2018.03.007
dc.relationAl-Sheraji, S. H., Ismail, A., Manap, M. Y., Mustafa, S., Yusof, R. M., and Hassan, F. A. (2013). Prebiotics as functional foods: A review. Journal of Functional Foods, 5(4), 1542–1553. https://doi.org/10.1016/j.jff.2013.08.009
dc.relationAliasgharzadeh, A., Dehghan, P., Gargari, B. P., and Asghari-Jafarabadi, M. (2015). Resistant dextrin, as a prebiotic, improves insulin resistance and inflammation in women with type 2 diabetes: a randomised controlled clinical trial. British Journal of Nutrition, 113(2), 321–330. https://doi.org/DOI: 10.1017/S0007114514003675
dc.relationAlnemr, T. M., El-Razek, A. M. A., Hasan, H. M. A., and Massoud, M. (2013). Improving of Karish cheese by using enhanced technological texturizing inulin. Alexandria Journal of Agricultural Research, 58, 173–181.
dc.relationAlvarez Avendaño, C. M., and Gutiérrez Álvarez, L. F. (2009). Determinación de la vida útil del queso campesino por medio de nariz electrónica. [recurso electrónico]. Retrieved from http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000397147&lang=es&site=eds-live
dc.relationAngelov, A., Yaneva-Marinova, T., and Gotcheva, V. (2018). Oats as a matrix of choice for developing fermented functional beverages. Journal of Food Science and Technology, pp. 1–10. https://doi.org/10.1007/s13197-018-3186-y
dc.relationAntza, C., Stabouli, S., and Kotsis, V. (2018). Gut microbiota in kidney disease and hypertension. Pharmacological Research, 130, 198–203. https://doi.org/10.1016/j.phrs.2018.02.028
dc.relationAnukam, K. C., Osazuwa, E. O., Osadolor, H. B., Bruce, A. W., and Reid, G. (2008). Yogurt Containing Probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 Helps Resolve Moderate Diarrhea and Increases CD4 Count in HIV/AIDS Patients. Journal of Clinical Gastroenterology, 42(3), 239–243.
dc.relationAOAC. (2000). Official Methods of Analysis. Gaithersburg, MD.: Association of Official Analytical Chemists Int.
dc.relationAparicio, A., and Ortega, R. M. (2015). Efectos del consumo del beta-glucano de la avena sobre el colesterol sanguíneo: una revisión. Revista Española de Nutrición Humana y Dietética, 20(2), 127–139. https://doi.org/10.14306/renhyd.20.2.183
dc.relationArce-Méndez, R. J., Thompson-Vicente, E., and Calderón-Villaplana, S. (2015). Incorporación de la proteína del suero lácteo en un queso fresco. Agronomía Mesoamericana, 27(1), 61–71. https://doi.org/10.15517/am.v27i1.21878
dc.relationArteaga-Márquez, M., Mendoza-Corvis, F., Montes-Guzmán, M., and Ruiz-Sánchez, O. (2016). Efectos del Bifidobacterium animalis y dos cepas de Lactococcus lactis en el queso costeño. Corpoica Ciencia YTecnología Agropecuaria, 17(3), 391–402. https://doi.org/http://dx.doi.org/10.21930/rcta.vol17_num3_art:515
dc.relationAsociación Latinoamericana de Diabetes. (2017). Prevención de enfermedades metabólicas en Latinoamérica: Un reto de estos tiempos. Revista ALAD, 7(2), 54–56. Retrieved from http://www.revistaalad.com
dc.relationAydinol, P., and Ozcan, T. (2018). Production of reduced-fat Labneh cheese with inulin and β-glucan fibre-based fat replacer. International Journal of Dairy Technology, 71(2), 362–371. https://doi.org/10.1111/1471-0307.12456
dc.relationBaghdadi, F., Aminifar, M., Farhoodi, M., and Aliabadi, S. S. (2018). Changes in the structure of brined cheese modified with basil seed gum based on protein-polysaccharide interactions. Journal of Agricultural Science and Technology, 20(4), 695–708.
dc.relationBenedetti, S., Sinelli, N., Buratti, S., and Riva, M. (2005). Shelf Life of Crescenza Cheese as Measured by Electronic Nose. Journal of Dairy Science, 88(9), 3044–3051. https://doi.org/https://doi.org/10.3168/jds.S0022-0302(05)72985-4
dc.relationBenito-Román, Ó., Alonso, E., and Cocero, M. J. (2013). Ultrasound-assisted extraction of β-glucans from barley. LWT - Food Science and Technology, 50(1), 57–63. https://doi.org/10.1016/j.lwt.2012.07.006
dc.relationBenjamin, O., Rytwo, G., Davidovich-Pinhas, M., and Shpigelman, A. (2018). Utilization of polysaccharides to modify salt release and texture of a fresh semi hard model cheese. Food Hydrocolloids, 75, 95–106. https://doi.org/10.1016/j.foodhyd.2017.08.033
dc.relationBottari, B., Felis, G. E., Salvetti, E., Castioni, A., Campedelli, I., Torriani, S., … Gatti, M. (2017). Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay. Microbiology, 163(7), 950–960. https://doi.org/https://doi.org/10.1099/mic.0.000497
dc.relationBourne, M. (2002). Food Texture and Viscosity (2nd ed.). https://doi.org/10.1007/978-3-319-14346-0
dc.relationBrennan, C. S., and Cleary, L. J. (2005). The potential use of cereal (1-3,1-4)-b-D-glucans as functional food ingredients. Journal of Cereal Science 42, 42, 1–13. https://doi.org/10.1016/j.jcs.2005.01.002
dc.relationBrownlee, I. A. (2011). The physiological roles of dietary fibre. Food Hydrocolloids, 25(2), 238–250. https://doi.org/10.1016/j.foodhyd.2009.11.013
dc.relationCagno, R. Di, Pasquale, I. De, Angelis, M. De, Buchin, S., Rizzello, C. G., and Gobbetti, M. (2014). Use of microparticulated whey protein concentrate , and adjunct cultures for making low-fat Italian Caciotta-type cheese. Journal of Dairy Science, 97(1), 72–84. https://doi.org/http://dx.doi.org/ 10.3168/jds.2013-7078
dc.relationCaprita, R., Caprita, A., Cretescu, I., and Nicu, V. (2014). Evaluation of Some Physicochemical Properties of Milk Caused by Acidification. Animal Science and Biotechnologies, 47(2), 137–141.
dc.relationCastro, A. C. (2014). Efecto de la adición de un dextrano sobre las caracteristicas fisicoquímicas, sensoriales y funcionales de queso de pasta hilada semigraso (Universidad Nacional de Colombia). Retrieved from http://bdigital.unal.edu.co/46582/1/38212476.2014.pdf
dc.relationCerqueira, M. A., Sousa-gallagher, M. J., Macedo, I., Rodriguez-aguilera, R., Souza, B. W. S., Teixeira, J. A., and Vicente, A. A. (2010). Use of galactomannan edible coating application and storage temperature for prolonging shelf-life of ‘‘ Regional ” cheese. Journal of Food Engineering, 97(1), 87–94. https://doi.org/10.1016/j.jfoodeng.2009.09.019
dc.relationChen, C., Wang, L., Wang, R., Luo, X., Li, Y., Li, J., … Chen, Z. (2018). Ultrasound-assisted extraction from defatted oat (Avena sativa L.) bran to simultaneously enhance phenolic compounds and β-glucan contents: compositional and kinetic studies. Journal of Food Engineering, 222, 1–10. https://doi.org/10.1016/j.jfoodeng.2017.11.002
dc.relationChen, Y., Li, R., Chang, Q., Dong, Z., Yang, H., and Xu, C. (2019). Lactobacillus bulgaricus or Lactobacillus rhamnosus Suppresses NF-κB Signaling Pathway and Protects against AFB₁-Induced Hepatitis: A Novel Potential Preventive Strategy for Aflatoxicosis? Toxins, 11(1), 17. https://doi.org/10.3390/toxins11010017
dc.relationCiudad-Mulero, M., Fernández-Ruiz, V., Matallana-González, M. C., and Morales, P. B. T. (2019). Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. In Advances in Food and Nutrition Research. https://doi.org/https://doi.org/10.1016/bs.afnr.2019.02.002
dc.relationClemens, R., and Van Klinken, B. J. W. (2014). Oats, more than just a whole grain: An introduction. British Journal of Nutrition, 112(2014), S1–S3. https://doi.org/10.1017/S0007114514002712
dc.relationCodex-Alimentarius. (2013). NORMA GENERAL DEL CODEX PARA EL QUESO. 1–5.
dc.relationCorredig, M., Sharafbafi, N., and Kristo, E. (2011). Polysaccharide-protein interactions in dairy matrices, control and design of structures. Food Hydrocolloids, 25, 1833–1841. https://doi.org/10.1016/j.foodhyd.2011.05.014
dc.relationCrane, S. L., Prescott, K., Wickens, L., Westcott, J., Jung, H., Currie, P., … Siebers, L. (2008). Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon‐γ and breast milk transforming growth factor‐β and immunoglobin A detection. Clinical and Experimental Allergy, 38, 1606–1614.
dc.relationCruz-Guerrero, A., Hernández-Sánchez, H., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., and Figueroa-González, I. (2014). Commercial probiotic bacteria and prebiotic carbohydrates: A fundamental study on prebiotics uptake, antimicrobials production and inhibition of pathogens. Journal of the Science of Food and Agriculture, 94(11), 2246–2252. https://doi.org/10.1002/jsfa.6549
dc.relationDahl, W. J., and Stewart, M. L. (2015). Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. Journal of the Academy of Nutrition and Dietetics, 115(11), 1861–1870. https://doi.org/https://doi.org/10.1016/j.jand.2015.09.003
dc.relationDaou, C., and Zhang, H. (2012). Oat Beta-Glucan : Its Role in Health Promotion and Prevention of Diseases. Comprehensive Reviews in Food Science and Food Safety, 11, 355–365. https://doi.org/10.1111/j.1541-4337.2012.00189.x
dc.relationde Moraes, G. M. D., dos Santos, K. M. O., de Barcelos, S. C., Lopes, S. A., and do Egito, A. S. (2018). Potentially probiotic goat cheese produced with autochthonous adjunct culture of Lactobacillus mucosae: Microbiological, physicochemical and sensory attributes. LWT - Food Science and Technology, 94, 57–63. https://doi.org/https://doi.org/10.1016/j.lwt.2018.04.028
dc.relationDelcour, J. A., Aman, P., Courtin, C. M., Hamaker, B. R., and Verbeke, K. (2016). Prebiotics, Fermentable Dietary Fiber, and Health Claims. Advances in Nutrition, 7(1), 1–4. https://doi.org/10.3945/an.115.010546
dc.relationDelzenne, N. M., Olivares, M., Neyrinck, A. M., Beaumont, M., Larsen, T. M., Benítez-páez, A., … Sanz, Y. (2019). Nutritional interest of dietary fiber and prebiotics in obesity: lessons from the MyNewGut consortium. Clinical Nutrition. https://doi.org/10.1016/j.clnu.2019.03.002
dc.relationDong, J. L., Yu, X., Dong, L. E., and Shen, R. L. (2017). In vitro fermentation of oat β-glucan and hydrolysates by fecal microbiota and selected probiotic strains. Journal of the Science of Food and Agriculture, 97(12), 4198–4203. https://doi.org/10.1002/jsfa.8292
dc.relationDurán, S., and Angarita, L. (2016). Efecto del β-glucano de avena sobre el índice glicémico y carga glicémica de un suplemento nutricional edulcorado con sucralosa en adultos sanos: Un ensayo clínico aleatorizado. Archivos Venezolanos de Farmacologia y Terapeutica, 25(4), 77–85.
dc.relationEscobar, M. C., Van Tassell, M. L., Martínez-Bustos, F., Singh, M., Castaño-Tostado, E., Amaya-Llano, S. L., and Miller, M. J. (2012). Characterization of a Panela cheese with added probiotics and fava bean starch. Journal of Dairy Science, 95(6), 2779–2787. https://doi.org/10.3168/jds.2011-4655
dc.relationEspinosa-Montesinos, D. A. (2018). Detoxificación de leche contaminada con aflatoxinas. Univesidad Autónoma Metropolitana-Unidad Iztapalapa.
dc.relationFAO/WHO. (2001). Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Retrieved from ftp://ftp.fao.org/es/esn/food/%0Aprobioreport_en.pdf%0A
dc.relationFDA, F. and D. A. (2016). Scientific Evaluation of the Evidence on the Beneficial Physiological Effects of Isolated or Synthetic Non-Digestible Carbohydrates Submitted as a Citizen Petition; Draft Guidance for Industry; Availability. Retrieved from https://www.fda.gov/food/food-labeling-nutrition/questions-and-answers-dietary-fiber#define_dietary_fiber
dc.relationFEDEGAN, F. C. de G. (2019). ¿Cómo está el consumo de quesos en Colombia? Retrieved from https://www.fedegan.org.co/noticias/como-esta-el-consumo-de-quesos-en-colombia
dc.relationFernández, M., Hudson, J. A., Korpela, R., and De Los Reyes-Gavilán, C. G. (2015). Impact on human health of microorganisms present in fermented dairy products: An overview. BioMed Research International, 2015. https://doi.org/10.1155/2015/412714
dc.relationFigueroa-González, I., Quijano, G., Ramírez, G., and Cruz-Guerrero, A. (2011). Probiotics and prebiotics-perspectives and challenges. Journal of the Science of Food and Agriculture, 91(8), 1341–1348. https://doi.org/10.1002/jsfa.4367
dc.relationFigueroa, I., Cruz-Guerrero, A., and Quijano, G. (2011). The Benefits of Probiotics on Human Health. Journal of Microbial & Biochemical Technology, s1(01), 1–6. https://doi.org/10.4172/1948-5948.S1-003
dc.relationFox, P., Guinee, T., Cogan, T., and McSweeney, P. (2017). Fundamentals of Cheese Science. In Fundamentals of Cheese Science, Second Edition. https://doi.org/10.1007/978-1-4899-7681-9
dc.relationFuller, S., Beck, E., Salman, H., and Tapsell, L. (2016). New Horizons for the Study of Dietary Fiber and Health: A Review. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 71(1), 1–12. https://doi.org/10.1007/s11130-016-0529-6
dc.relationGibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., … Reid, G. (2017). CONSENSUS The International Scientific Association and scope of prebiotics. Nature Publishing Group, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
dc.relationGomes da Cruz, A., Buriti, F. C. A., Batista de Souza, C. H., Fonseca, J. A., and Isay, S. M. (2009). Probiotic cheese: Health benefits, technological and stability aspects. Trends in Food Science and Technology, 20(8), 344–354. https://doi.org/10.1016/j.tifs.2009.05.001
dc.relationGonzález-Córdova, A. F., Yescas, C., and Ortiz-Estrada, Á. M. (2016). Invited review : Artisanal Mexican cheeses Invited review: Artisanal Mexican cheeses. Journal of Dairy Science, 99(5), 3250–3262. https://doi.org/10.3168/jds.2015-10103
dc.relationGray, J. (2006). Fibra dietética. Bruselas: ILSI Europe.
dc.relationGuerra-Martínez, J. A., Montejano, J. G., and Martín-del-Campo, S. T. (2012). Evaluation of proteolytic and physicochemical changes during storage of fresh Panela cheese from Queretaro, Mexico and its impact in texture. CyTA – Journal of Food, 10(4), 296–305. https://doi.org/10.1080/19476337.2011.653791
dc.relationGuzmán, L. E., Tejada T, C., and de la Ossa M., Y. J. (2015). Análisis comparativo de perfiles de textura de quesos frescos de leche de cabra y vaca. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 13(1), 139. https://doi.org/10.18684/bsaa(13)139-147
dc.relationHayes, M., Coakley, M., and O’Sullivan, O. (2006). Cheese as a delivery vehicle for probiotics and biogenic substances. Australian Journal of Dairy, 61, 132–141.
dc.relationHosny, A., Mohammed, M., Aguilar-pérez, C. F., Ayala-burgos, A. J., Bottini-luzardo, M. B., Solorio-sánchez, F. J., and Ku-vera, J. C. (2016). Evaluation of milk composition and fresh soft cheese from an intensive silvopastoral system in the tropics. Dairy Science and Technology, 96, 159–172. https://doi.org/10.1007/s13594-015-0251-4
dc.relationHussain, P. R., Rather, S. A., and Suradkar, P. P. (2018). Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa) β- glucan. Radiation Physics and Chemistry, 144, 218–230. https://doi.org/10.1016/j.radphyschem.2017.08.018
dc.relationICONTEC, I. C. de N. T. y C. (2009). NTC-Norma Técnica Colombiana 750. Productos Lácteos. Queso.
dc.relationJiménez, J., Flores-Nájera, A., Cruz-Guerrero, A. E., and García-Garibay, M. (2009). Use of an exopolysaccharide-producing strain of Streptococcus thermophilus in the manufacture of Mexican Panela cheese. LWT - Food Science and Technology, 42(9), 1508–1512. https://doi.org/10.1016/j.lwt.2009.04.009
dc.relationJuan, B., Zamora, A., and Quintana, F. (2013). Effect of inulin addition on the sensorial properties of reduced-fat fresh cheese. International Journal of Dairy Technology, 66(4), 478–483. https://doi.org/10.1111/1471-0307.12057
dc.relationKamal, R. M., Alnakip, M. E., Abd, S. F., Aal, E., and Bayoumi, M. A. (2018). Bio-controlling capability of probiotic strain Lactobacillus rhamnosus against some common foodborne pathogens in yoghurt. International Dairy Journal, 85, 1–7. https://doi.org/10.1016/j.idairyj.2018.04.007
dc.relationKarimi, R., Azizi, M. H., Ghasemlou, M., and Vaziri, M. (2015). Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydrate Polymers, 119, 85–100. https://doi.org/10.1016/j.carbpol.2014.11.029
dc.relationKavas, G., Oysun, G., Kinik, O., and Uysal, H. (2004). Effect of some fat replacers on Chemical, Physical and sensory attributes of low-fat white pickled cheese. Food Chemistry, 88, 381–388. https://doi.org/10.1016/j.foodchem.2004.01.054
dc.relationKerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., and Das, G. (2018). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 1–13. https://doi.org/10.1016/j.jfda.2018.01.002
dc.relationKhangwal, I., and Shukla, P. (2019). Potential prebiotics and their transmission mechanisms : Recent approaches. Journal of Food and Drug Analysis. https://doi.org/10.1016/j.jfda.2019.02.003
dc.relationKoirala, R., Taverniti, V., Balzaretti, S., Ricci, G., Fortina, M. G., and Guglielmetti, S. (2015). Melting curve analysis of a groEL PCR fragment for the rapid genotyping of strains belonging to the Lactobacillus casei group of species. Microbiological Research, 173, 50–58. https://doi.org/https://doi.org/10.1016/j.micres.2015.01.001
dc.relationKurtuldu, O., and Ozcan, T. (2018). Effect of β-glucan on the properties of probiotic set yoghurt with Bifidobacterium animalis subsp. lactis strain Bb-12. International Journal of Dairy Technology, 71, 157–166. https://doi.org/10.1111/1471-0307.12414
dc.relationLadjevardi, Z. S., Yarmand, M. S., Emam-Djomeh, Z., and Niasari-Naslaji, A. (2016). Physicochemical properties and viability of probiotic bacteria of functional synbiotic camel yogurt affected by oat β-glucan during storage. Journal of Agricultural Science and Technology, 18(5), 1233–1246.
dc.relationLazzi, C., Turroni, S., Mancini, A., Sgarbi, E., Neviani, E., Brigidi, P., and Gatti, M. (2014). Transcriptomic clues to understand the growth of Lactobacillus rhamnosus in cheese. BMC Microbiology, 14(1), 1–14. https://doi.org/10.1186/1471-2180-14-28
dc.relationLiu, L., Chen, P., Zhao, W., Li, X., Wang, H., and Qu, X. (2017). Effect of microencapsulation with the Maillard reaction products of whey proteins and isomaltooligosaccharide on the survival rate of Lactobacillus rhamnosus in white brined cheese. Food Control, 79, 44–49. https://doi.org/10.1016/j.foodcont.2017.03.016
dc.relationLiu, L., Qu, X., Xia, Q., Wang, H., Chen, P., Li, X., … Yang, W. (2018). Effect of Lactobacillus rhamnosus on the antioxidant activity of Cheddar cheese during ripening and under simulated gastrointestinal digestion. LWT - Food Science and Technology, 95(600), 99–106. https://doi.org/10.1016/j.lwt.2018.04.053
dc.relationLópez, A. L., Ruz, J. M., and Barriga, D. (2015). Determinaciones analíticas en queso. Instituto de Investigación y Formación Agraria y Pesquera, 1–26.
dc.relationMaphosa, Y., and Jideani, V. A. (2016). Dietary fiber extraction for human nutrition — A review. Food Reviews International, 32(1), 98–115.
dc.relationMayta-Hancco, J., Trujillo, A.-J., Zamora, A., and Juan, B. (2019). Effect of ultra-high pressure homogenisation of cream on the physicochemical and sensorial characteristics of fat-reduced starter-free fresh cheeses. LWT - Food Science and Technology, 110, 292–298. https://doi.org/https://doi.org/10.1016/j.lwt.2019.04.096
dc.relationMendis, M., and Simsek, S. (2013). Arabinoxylans and human health. Food Hydrocolloids, 42(2), 239–243. https://doi.org/10.1016/j.foodhyd.2013.07.022
dc.relationMinisterio de Salud, de C. (1989). Resolución 01804.
dc.relationMinisterio de Salud y Protección Social, I. (1998). Manual de técnicas de análisis para control de calidad microbiológica de alimentos para consumo humano. Bogotá D.C.
dc.relationMohanty, D., Misra, S., Mohapatra, S., and Sahu, P. S. (2018). Prebiotics and synbiotics : Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008
dc.relationMontorsi, F., Gandaglia, G., Salonia, A., and Gratzke, C. (2016). Effectiveness of a Combination of Cranberries , Lactobacillus rhamnosus , and Vitamin C for the Management of Recurrent Urinary Tract Infections in Women : Results of a Pilot Study. European Urology, 70(6), 912–915. https://doi.org/10.1016/j.eururo.2016.05.042
dc.relationNielsen, S. S. (2010). Food Analysis. [electronic resource]. In Springer eBooks. Retrieved from http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000780727&lang=es&site=eds-live
dc.relationNingtyas, D. W., Bhandari, B., Bansal, N., and Prakash, S. (2018). Texture and lubrication properties of functional cream cheese: Effect of β-glucan and phytosterol. Journal of Texture Studies, 49(1), 11–22. https://doi.org/10.1111/jtxs.12282
dc.relationNovoa, C., and Rodríguez, A. (1995). Manual de elaboración de quesos colombianos. Suplemento Banco Ganadero.
dc.relationOchoa-Flores, A. A., Hernández-Becerra, J. A., López-Hernández, E., and García-Galindo, S. (2013). Rendimiento, firmeza y aceptación sensorial de queso panela adicionado con estabilizantes. Universidad y Ciencia Trópico Húmedo, 29(3), 277–286.
dc.relationPanda, S. H., Das, S., Bal, P., Panda, S. K., Goli, J. K., and Mohanty, N. (2018). Characterization of novel folate producing Lactobacillus rhamnosus and its appliance in fortification of ragi ( Eleusine coracana) gruel. Food Bioscience, 21, 100–106. https://doi.org/10.1016/j.fbio.2017.12.006
dc.relationPatel, S. (2015). Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. Journal of Functional Foods, 14, 255–269. https://doi.org/10.1016/j.jff.2015.02.010
dc.relationPeshev, D., and Ende, W. Van Den. (2014). Fructans : Prebiotics and immunomodulators. Journal of Functional Foods, 8, 348–357. https://doi.org/10.1016/j.jff.2014.04.005
dc.relationPiazzon-Gomes, J., Prudêncio, S. H., and Silva, R. S. dos S. F. da. (2010). Queijo tipo minas frescal com derivados de soja : características físicas , químicas e sensoriais. Ciência e Tecnologia de Alimentos, 30(1), 77–85.
dc.relationPitino, I., Randazzo, C. L., Cross, K. L., Parker, M. L., Bisignano, C., Wickham, M. S. J., … Caggia, C. (2012). Survival of Lactobacillus rhamnosus strains inoculated in cheese matrix during simulated human digestion. Food Microbiology, 31(1), 57–63. https://doi.org/10.1016/j.fm.2012.02.013
dc.relationPortafolio. (2019). Consumo de queso sigue creciendo en Colombia. Retrieved from https://www.portafolio.co/negocios/consumo-de-queso-sigue-creciendo-en-colombia-530645
dc.relationRamírez-López, C., and Vélez-Ruíz, J. F. (2012). Quesos frescos : propiedades , métodos de determinación y factores que afectan su calidad. 6(2), 131–148.
dc.relationRasane, P., Jha, A., and Sabikhi, L. (2015). Nutritional advantages of oats and opportunities for its processing as value added foods - a review. Journal of Food Science and Technology, 52(2), 662–675. https://doi.org/10.1007/s13197-013-1072-1
dc.relationRascón, M. P., Huerta-vera, K., Pascual-pineda, L. A., Contreras-oliva, A., and Flores-andrade, E. (2018). Osmotic dehydration assisted impregnation of Lactobacillus rhamnosus in banana and effect of water activity on the storage stability of probiotic in the freeze-dried product. LWT - Food Science and Technology, 92, 490–496. https://doi.org/10.1016/j.lwt.2018.02.074
dc.relationRebello, C. J., Neil, C. E. O., and Greenway, F. L. (2016). Dietary fiber and satiety : the effects of oats on satiety. Emerging Science, 74(2), 131–147. https://doi.org/10.1093/nutrit/nuv063
dc.relationSAGARPA. (2017). Panorama de la leche en México. Retrieved from http://infosiap.siap.gob.mx/opt/boletlech/B_leche_ junio2017.pdf
dc.relationSaier Jr., M. H., and Mansour, N. M. (2006). Probiotics and Prebiotics in Human Health. Journal of Molecular Microbiology and Biotechnology, 10(1), 22–25. https://doi.org/10.1159/000090345
dc.relationSalvetti, E., Torriani, S., and Felis, G. E. (2012). The Genus Lactobacillus : A Taxonomic Update. Probiotics & Antimicrobial Proteins, 4, 217–226. https://doi.org/10.1007/s12602-012-9117-8
dc.relationSaraiva, B. R., Carolina, A., Vital, P., Anto, F., Caroline, J., Ribas, R., … Pintro, M. (2019). Effect of yerba mate ( Ilex paraguariensis A . St . -Hil .) addition on the functional and technological characteristics of fresh cheese. Journal of Food Science and Technology, 56(3), 1256–1265. https://doi.org/10.1007/s13197-019-03589-w
dc.relationShah, A., Gani, A., Masoodi, F. A., Wani, S. M., and Ashwar, B. A. (2017). Structural, rheological and nutraceutical potential of β-glucan from barley and oat. Bioactive Carbohydrates and Dietary Fibre, 10, 10–16. https://doi.org/10.1016/j.bcdf.2017.03.001
dc.relationShahid, M., Rajoka, R., Siddiq, M., Haobin, Z., Zhu, J., Yan, L., … Shi, J. (2017). Identification , characterization , and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT - Food Science and Technology, 84, 271–280. https://doi.org/10.1016/j.lwt.2017.05.055
dc.relationShao, L., Wu, Z., Zhang, H., Chen, W., Ai, L., and Guo, B. (2014). Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydrate Polymers, 107, 51–56. https://doi.org/10.1016/j.carbpol.2014.02.037
dc.relationSharafbafi, N., Tosh, S. M., Alexander, M., and Corredig, M. (2014). Phase behaviour, rheological properties, and microstructure of oat β-glucan-milk mixtures. Food Hydrocolloids, 41, 274–280. https://doi.org/10.1016/j.foodhyd.2014.03.030
dc.relationShen, R. L., Dang, X. Y., Dong, J. L., and Hu, X. Z. (2012). Effects of oat β-glucan and barley β-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats. Journal of Agricultural and Food Chemistry, 60(45), 11301–11308. https://doi.org/10.1021/jf302824h
dc.relationSichetti, M., De Marco, S., Pagiotti, R., Traina, G., and Pietrella, D. (2018). Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum). Nutrition, 53, 95–102. https://doi.org/https://doi.org/10.1016/j.nut.2018.02.005
dc.relationSlavin, J. (2013). Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients , Vol. 5. https://doi.org/10.3390/nu5041417
dc.relationSolanki, D., and Hati, S. (2018). Considering the potential of Lactobacillus rhamnosus for producing Angiotensin I-Converting Enzyme ( ACE ) inhibitory peptides in fermented camel milk ( Indian breed ). Food Bioscience, 23, 16–22. https://doi.org/10.1016/j.fbio.2018.03.004
dc.relationSolieri, L., Vero, L. De, and Tagliazucchi, D. (2018). Peptidomic study of casein proteolysis in bovine milk by Lactobacillus casei PRA205 and Lactobacillus rhamnosus PRA331. International Dairy Journal, 85, 237–246. https://doi.org/10.1016/j.idairyj.2018.06.010
dc.relationSourki, A. H., Koocheki, A., and Elahi, M. (2017). Ultrasound-assisted extraction of β -D-glucan from Hull-less barley : Assessment of physicochemical and functional properties. International Journal of Biological Macromolecules, 95, 462–475. https://doi.org/10.1016/j.ijbiomac.2016.10.111
dc.relationTabares, A., and Feria, P. (2009). La cuajada, aspectos técnicos y nutricionales. In Despertar lechero.
dc.relationTemelli, F. (1997). Extraction and Functional Properties of Barley beta-Glucan as Affected by. Journal of Food Science, 62(6), 1194–1198. https://doi.org/10.1111/j.1365-2621.1997.tb12242.x
dc.relationTorres, D. P. M., Goncalves, P. F., Teixeira, J. A., and Rodrigues, L. R. (2010). Galacto-Oligosaccharides : Production , Properties , Applications , and Significance as Prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9, 438–454. https://doi.org/10.1111/j.1541-4337.2010.00119.x
dc.relationTripathi, M. K., and Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241. https://doi.org/https://doi.org/10.1016/j.jff.2014.04.030
dc.relationTudorica, C., Jones, T. E. R., Kuri, V., and Brennan, C. S. (2004). The effects of refined barley β‐glucan on the physico‐structural properties of low‐fat dairy products: curd yield, microstructure, texture and rheology. Journal of the Science of Food and Agriculture, 84(10), 1159–1169. https://doi.org/10.1002/jsfa.1789
dc.relationTunick, M. H., and Hekken, D. L. V. A. N. (2009). Rheology and texture of commercial queso fresco cheeses made from raw and pasteurized milk. Journal of Food Quality, 33(2010), 204–215. https://doi.org/10.1111/j.1745-4557.2010.00331.x
dc.relationVasquez-Orejarena, E., Simons, C. T., Litchfield, J. H., and Alvarez, V. B. (2018). Functional Properties of a High Protein Beverage Stabilized with Oat-β-Glucan. Journal of Food Science, 83(5), 1360–1365. https://doi.org/10.1111/1750-3841.14119
dc.relationVinícius, G., Pereira, D. M., Coelho, B. D. O., Irineudo, A., Júnior, M., Thomaz-soccol, V., and Soccol, C. R. (2018). How to select a probiotic ? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003
dc.relationVolikakis, P., Biliaderis, C. G., Vamvakas, C., and Zerfiridis, G. K. (2004). Effects of a commercial oat-b-glucan concentrate on the chemical, physico-chemical and sensory attributes of a low-fat white-brined cheese product. Food Research International, 37(1), 83–94. https://doi.org/https://doi.org/10.1016/j.foodres.2003.07.007
dc.relationVulevic, J., Drakoularakou, A., Yaqoob, P., Tzortzis, G., and Gibson, G. R. (2008). Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. The American Journal of Clinical Nutrition, 88(5), 1438–1446. https://doi.org/10.3945/ajcn.2008.26242
dc.relationWang, L. F., and Rhim, J. W. (2016). Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT - Food Science and Technology, 74, 338–345. https://doi.org/10.1016/j.lwt.2016.07.066
dc.relationWilson, B., and Whelan, K. (2017). Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology, 32(S1), 64–68. https://doi.org/10.1111/jgh.13700
dc.relationWu, C., Chen, P., Lee, Y., Ko, J., and Lue, K. (2016). Effects of immunomodulatory supplementation with Lactobacillus rhamnosus on airway inflammation in a mouse asthma model. Journal of Microbiology, Immunology and Infection, 49(5), 625–635. https://doi.org/10.1016/j.jmii.2014.08.001
dc.relationYe, A. (2008). Complexation between milk proteins and polysaccharides via electrostatic interaction : principles and applications – a review. International Journal of Food Science and Technology, 43, 406–415. https://doi.org/10.1111/j.1365-2621.2006.01454.x
dc.relationZhu, F., Du, B., and Xu, B. (2016). A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids, 52, 275–288. https://doi.org/10.1016/j.foodhyd.2015.07.003
dc.relationZielke, C., Kosik, O., Ainalem, M. L., Lovegrove, A., Stradner, A., and Nilsson, L. (2017). Characterization of cereal β-glucan extracts from oat and barley and quantification of proteinaceous matter. PLOS ONE, 12(2), 1–16. https://doi.org/10.1371/journal.pone.0172034
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEvaluación de la inclusión de oligosacáridos de avena y Lactobacillus casei subsp. rhamnosus como probiótico en quesos frescos
dc.typeOtro


Este ítem pertenece a la siguiente institución