dc.contributorVaillant, Fabrice
dc.contributorHerrera Arévalo, Aníbal Orlando
dc.creatorMonroy Cardenas, Diana Marcela
dc.date.accessioned2021-03-15T17:23:32Z
dc.date.available2021-03-15T17:23:32Z
dc.date.created2021-03-15T17:23:32Z
dc.date.issued2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79358
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractColombia es el mayor exportador mundial de uchuva (Physalis peruviana L.), destacándose en el mercado internacional por sus frutos con características deseables como sabor dulce, aroma y color brillante. De las primeras variedades de uchuva registradas en Colombia, Corpoica Dorada y Corpoica Andina, aún se desconoce el comportamiento poscosecha y las diferencias metabólicas frente al ecotipo convencional y a nivel de localidad. El objetivo de esta investigación fue realizar la caracterización fisicoquímica, la detección y asignación tentativa de principales biomarcadores discriminantes en frutos de uchuva de las var. Corpoica Dorada, Corpoica Andina y ecotipo Colombia cosechados en cultivos comerciales de exportación ubicados en cuatro municipios productores: Ramiriquí (Boyacá), Granada (Cundinamarca), Gama (Cundinamarca) y San Vicente Ferrer (Antioquia). Se cosecharon frutos en madurez 4 para determinar los parámetros fisicoquímicos asociados al comportamiento poscosecha de cada unidad de medición, y posteriormente, se utilizó cromatografía líquida de ultra rendimiento acoplada a un ionizador electrospray con detectores cuadrupolo y tiempo de vuelo (UPLC-ESI (+)-QTOF/MS) para detectar los principales biomarcadores discriminantes entre genotipos y localidades. Los resultados indicaron que el ecotipo Colombia y la var. Corpoica Dorada presentaron los valores más altos para los parámetros fisicoquímicos relacionados con peso, diámetro, firmeza, índice de color y contenido de azúcares reductores. Los análisis de componentes principales (PCA) y análisis discriminatorio por regresión de mínimos cuadrados parciales (PLS-DA) no pudieron discriminar grupos de biomarcadores entre genotipos, pero si entre localidades, discriminación que se explicó sobre la base de variaciones en la temperatura, precipitación y radiación de las localidades muestreadas. Mediante el modelo de efecto principal aditivo y la interacción multiplicativa (AMMI) se determinó la estabilidad de los genotipos en los ambientes evaluados. Así para el ecotipo Colombia y la var. Corpoica Dorada, que fueron los materiales con mejor respuesta en la caracterización fisicoquímica, se encontró que, su siembra en las localidades de Granada y Ramiriquí permitió que estos materiales genéticos expresarán todo su potencial organoléptico, indicando interacción genotipo x ambiente. (Texto tomado de la fuente).
dc.description.abstractColombia is the world's largest exporter of cape gooseberry (Physalis peruviana L.), standing out in the international market for its fruit desirable characteristics such as sweet flavor, aroma and bright color. Of the first varieties of cape gooseberry registered in Colombia, Corpoica Dorada and Corpoica Andina, post-harvest behavior and metabolic differences compared to the conventional ecotype and locality level are still unknown. The objective of this investigation was to carry out the physicochemical characterization, detection and tentative allocation of the main discriminating biomarkers in cape gooseberry fruits of the var Corpoica Dorada, Corpoica Andina and ecotype Colombia harvested in commercial export crops in four producing municipalities: Ramiriquí (Boyacá), Granada (Cundinamarca), Gama (Cundinamarca) and San Vicente Ferrer (Antioquia). Fruits were harvested at maturity 4 to determine the physicochemical parameters associated with the post-harvest behavior of each measurement unit, and subsequently, ultra-performance liquid chromatography coupled to an electrospray ionizer with quadrupole and time-of-flight detectors (UPLC-ESI (+)-QTOF / MS) were used to detect the main discriminating biomarkers between genotypes and localities. The results indicated that the Colombia ecotype and the var. Corpoica Dorada indicates the highest values for physicochemical parameters related to weight, diameter, firmness, color index and content of reducing sugars. Principal component analysis (PCA) and partial least squares regression discriminatory analysis (PLS-DA) could not discriminate groups of biomarkers between genotypes, but between localities, discrimination that was specified based on variations in temperature, concentration and radiation of the sampled localities. the tentatively assigned compounds that were the most discriminating. Through the additive main-effects and multiplicative interaction model (AMMI) the stability of the genotypes in the evaluated environments were determined. Thus, for Colombia ecotype and the var. Corpoica Dorada, which reported the best response in physicochemical characterization, when planted in the localities of Granada and Ramiriquí, allow to express their full organoleptic potential, indicating genotype x environment interaction.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisherEscuela de posgrados
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAlbert, A., Sareedenchai, V., Heller, W., Seidlitz, H.K. & Zidorn, C. (2009). Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia, 160, 1–8.
dc.relationAlmanza PJ. & Fischer G. (2012). Fisiología del cultivo de la uchuva (Physalis peruviana L.). En: Anais II Reuniao Tecnica da Cultura da Physalis, UDESC, Lages, Brasil.
dc.relationAnaldex. (2018). Comportamiento de la uchuva – Producción y comercio. Recuperado de https://www.analdex.org/wp-content/uploads/2018/02/2018-02-08-Mercado-de-la-Uchuva.pdf
dc.relationAnaldex. (2019). Exportaciones de uchuva 2018. Recuperado de https://www.analdex.org/wp-content/uploads/2019/03/2019-03-04-Informe-de-exportaciones-de-uchuva-2018.pdf
dc.relationAreiza-Mazo, N., Maldonado, M.E. & Rojano, B. (2013). Extracto acuoso de uchuva (Physalis peruviana): actividades antiproliferativa, apoptótica y antioxidante. Perspectivas En Nutrición Humana, Vol. 15 (1), 41-55.
dc.relationArakawa, O., Hori, Y. & Ogata, R. (1985). Relative effectiveness and interaction of ultraviolet-B, red and blue light in anthocyanin synthesis of apple fruit. Physiol Plant. 64, 323-7.
dc.relationAvila, J., Moreno, P., Fischer, G. & Miranda, D. (2006). Influencia de la madurez del fruto y del secado del cáliz en uchuva (Physalis peruviana L.), almacenada a 18 °C. Acta Agron. 55 (4), 29 - 38.
dc.relationBadr, A. N. & Naeem, M. A. (2019). Protective efficacy using Cape- golden berry against pre-carcinogenic aflatoxins induced in rats. Toxicology Reports, 6, 607–615.
dc.relationBalaguera-López, H.E., Ramírez, L.V. & Herrera, A. (2014). Fisiología y bioquímica del fruto de uchuva (Physalis peruviana L.) durante la maduración y postcosecha. En: Carvalho, C.P. y D.A. Moreno (eds.). Physalis peruviana: fruta andina para el mundo (pp. 113-131). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo-CYTED; Limencop.
dc.relationBalaguera-López, H.E. (2015). Comportamiento poscosecha del fruto de uchuva (Physalis peruviana L.): efecto del 1-metilciclopropeno y de la refrigeración (tesis de Doctorado). Universidad Nacional de Colombia, Bogotá, Colombia.
dc.relationBallesteros-Vivas, D., Alvarez-Rivera, G., Ibañez, E., Parada-Alfonso, F. & Cifuentes, A. (2019). multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compounds from goldenberry (Physalis peruviana L.) calyx extracts using hyphenated techniques. J Chromatogr A. 1584, 155-164.
dc.relationBeckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology 63 (1), 129-140.
dc.relationBeckman, K.B. & Ames, B.N. (1998). The free radical theory of aging matures. Physiol. 78, 547-581.
dc.relationBenning, C. & Stitt, M. (2004). Physiology and metabolism: reacting to the full complexity of metabolic pathways in a postgenomic era. Curr Opin Plant Biol. 7, 231–234.
dc.relationBilger, W., Rolland, M. & Nybakken, L. (2007). UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochemical & Photobiological Sciences, 6, 190–195.
dc.relationBorchani, C., Besbes, S., Masmoudi, M., Blecker, C., Paquot, M. & Attia, M. (2011). Effect of drying methods on physico-chemical and antioxidant properties of date fibre concentrates. Food Chemistry, 125, 1194–1201.
dc.relationBoskou, D., G. Blekas & M. Tsimidou (2005). Phenolic compounds in olive and olives. Current Topics in Nutraceutical Research. 3, 125-136.
dc.relationBotella-Pavía, P. & Rodríguez-Concepción, M. (2006). Carotenoid biotechnology in plants for nutritionally improved foods. Physiologia Plantarum, 126 (3), 369–381.
dc.relationBradshaw, A. D. (2006). Unravelling phenotypic plasticity – why should we bother? New Phytol, 170, 644–648.
dc.relationBravo, K. & Osorio, E. (2016). Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit. Food Chem., 197 (A), 185–90.
dc.relationBrummell, D. A. (2006). Cell wall disassembly in ripening fruit. Funct Plant Biol, 33, 103-119.
dc.relationCarrasco, R. & Zelada, C. (2008). Determination of antioxidant capacity and bioactive compounds in native Peruvian fruits. Journal of the Chemical Society Peru, 74 (2), 108-124.
dc.relationCartaya, O. & Reynaldo, I. (2001). Flavonoides: Características químicas y aplicaciones. Cultivos Tropicales, 22 (2), 5-14.
dc.relationCarvajal Carvajal, C. (2019). Especies reactivas del oxígeno: formación, función y estrés oxidativo. Medicina Legal de Costa Rica, 36 (1), 91-100.
dc.relationCastro, A., Rodriguez, L. & Vargas, E. (2008). Dry gooseberry (Physalis peruviana) with pretreatment of osmotic dehydration. Journal of the Faculty of Chemistry Pharmaceutical, 15 (2), 226-231.
dc.relationCedeño, M., & Montenegro, D. (2004). Plan exportador, logístico y comercialización de uchuva al mercado de Estados Unidos para FRUTEXPO SCI Ltda. Facultad de Ingeniería, vol. Ingeniero Industrial, Bogotá Pontificia Universidad Javeriana.
dc.relationCésari, M., Stefanoni, M., Ventrera, N. & Gámbaro, A. (2016). Nuevo método de medida del color para alimentos vegetales. En 4° Congreso Internacional de Educación en Ciencias Empíricas en Facultades de Ingeniería ECEFI. Congreso llevado a cabo en Mendoza, Argentina.
dc.relationChan, L. K., Koay, S. S., Boey, P. L. & Bhatt, A. (2010). Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biol Res., 43, 127-35.
dc.relationChen, L. X., He, H. & Qiu, F. (2011). Natural withanolides: an overview [J]. Nat Prod Rep. 28 (4), 705-740.
dc.relationChernushevich, I. V., Loboda, A.V. & Thomson, B.A. (2001). An introduction to quadrupole–time-of-flight mass spectrometry. Journal of Mass Spectrometry, 36, 849-865.
dc.relationChitarra, M. I. & Chitarra, A. B. (2005). Pós-colheita de frutos e hortaliças: fisiologia e manuseio. Lavras: ESAL-FAEPE, 785 p.
dc.relationChristians, U.; Albuisson, J.; Klawitter, J. & Klawitter, J. (2011). In: Biomarkers in Kidney Disease. Charles, L.E.; Md; PhD; Fahaa2 - Charles L. Edelstein, M.D.P.F., Eds.; Academic Press: San Diego, pp. 39-100 p.
dc.relationCook, D., Fowler, S., Fiehn, O., & Thomashow, M. F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 101, 15243–15248.
dc.relationCorpoica, Corporación Colombiana de Investigación Agropecuaria. (2016a). Corpoica Andina: variedad de uchuva para Boyacá, Cundinamarca, Antioquia y Nariño. Recuperado de https://repository.agrosavia.co/bitstream/handle/20.500.12324/11528/80387_66861.pdf?sequence=1&isAllowed=y.
dc.relationCorpoica, Corporación Colombiana de Investigación Agropecuaria. (2016b). Corpoica Dorada: variedad de uchuva para Boyacá, Cundinamarca y Antioquia. Recuperado de: https://repository.agrosavia.co/handle/20.500.12324/11565.
dc.relationCortés Díaz, G., Prieto Suárez, G. & Rozo Nuñez, W. (2015). Caracterización bromatológica y fisicoquímica de la uchuva (Physalis peruviana L.) y su posible aplicación como alimento nutracéutico. Ciencia en Desarrollo, 6(1), 87-97. Consulta: Julio de 2019, En: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-74882015000100011&lng=en&tlng=es.
dc.relationCosta, J., Mafra, I. & Oliveira, M. B. (2012). Advances in vegetable oil authentication by DNA-based markers. Trends in Food Science and Technology 26, 43–55.
dc.relationCrossa, I., Gauch, H. & Zobel, R. (1990) Additive main effect and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci. 30, 493-500.
dc.relationCubero-Leon, E., De Rudder, O., & Maquet, A. (2018). Metabolomics for organic food authentication: Results from a long-term field study in carrots. Food Chemistry, 239, 760-770.
dc.relationDas, H.P. (2012). Agrometeorology in extreme events and natural disasters. BS Publikations, Hyderabad, India.
dc.relationDa Silveira, L.C., Kist, V., Mendes de Paula, T.O., Pereira Barbosa, M.H., Peternelli, L.A. & Daros, E. (2013). AMMI analysis to evaluate the adaptability and phenotypic stability of sugarcane genotypes. Sci. Agric. v.70 (1), 27-32
dc.relationDavey, M. P., Burrell, M. M., Woodward, F. I., & Quick, W. P. (2008). Population-specific metabolic phenotypes of Arabidopsis lyrata ssp. petraea. New Phytologist, 177, 380–388.
dc.relationDavis, V.W., Bathe, O.F., Schiller, D.E., Slupsky, C.M. & Sawyer, M.B. (2011). Metabolomics and surgical oncology: Potential role for small molecule biomarkers. J. Surg. Oncol. 103 (5), 451-459.
dc.relationDe Puente, L.A., Pinto-Muñoz, C.A., Castro, E.S. & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple propierties of a highly functional fruit. A review. Food Research International, 44, 1733-40.
dc.relationDe Puente, L.A., Pinto-Muñoz, C.A., Castro, E.S. & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple propierties of a highly functional fruit. A review. Food Research International, 44, 1733-40.
dc.relationDettmer, K.; Aronov, P.A. & Hammock, B.D. (2007). Mass spectrometry-based metabolomics. Mass Spectrom. Rev., 26 (1), 51-78.
dc.relationDrozen, M., Harrison, T. (1998). Structure/function claims for functional foods and nutraceuticals. Nutraceuticals World, 1, 8–18.
dc.relationDurrant, W. E. & Dong, X. (2004). Systemic acquired resistance. Annual review of phytopathology 42, 185-209.
dc.relationEncina Zelada, C. R., Ureña, M. O. & Repo Carrasco, R. (2012). Determinación de compuestos bioactivos del aguaymanto (Physalis peruviana, linnaeus, 1753) y de su conserva en almíbar maximizando la retención de ácido ascórbico. ECIPERU. http://guzlop-editoras.com/web_des/ing01/alimentaria/pld0292.pdf. Consulta: Julio 2019.
dc.relationErtürk O., Ҫol Ayvaz M., Can Z., Karaman Ű., Korkmaz K. (2017). Antioxidant, antimicrobial activities and phenolic and chemical contents of Physalis peruviana L. from Trabzon, Turkey. Indian Journal of Pharmaceutical Education and Research, 51(3), 213-216.
dc.relationEuropean Medicines Agency, EMEA. (2008). Reflection paper on markers used for quantitative and qualitative analysis of herbal medicinal, https://www.ema.europa.eu/en/documents/scientific-guideline/draft-reflection-paper-markers-used-quantitative-qualitative-analysis-herbal-medicinal-products_en.pdf. Consulta: octubre de 2019.
dc.relationEvans, C. R. & Jorgenson, J. W. (2004). Multidimensional LC-LC and LC-CE for high-resolution separations of biological molecules. Anal Bioanal Chem, 378, 1952–1961.
dc.relationFancy, S. A. & Rumpel, K. (2008). In: Biomarker Methods in Drug Discovery and Development. Wang, F., Ed.; Humana Press. pp 317-340.
dc.relationFang, S. T., Liu, J.-K., & Li, B. (2012). Ten new withanolides from Physalis peruviana. Steroids, 77(1-2), 36-44.
dc.relationFebles Fernández, C., Soto Febles, C., Saldaña Bernabeu, A. & García Triana, B. E. (2002). Funciones de la vitamina E: Actualización. Revista Cubana de Estomatología, 39(1), 28-32.
dc.relationFerreira, H.I. (2005). Atividade antitumoral (in vitro e in vivo) das fisalinas isoladas de Physalis angulata Lin. Dissertação (Mestrado em Farmacologia)- Universidade Federal do Ceará – UFC, Fortaleza.
dc.relationFlorez, V., Fischer, G. & Sora. A. (2000). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Universidad Nacional de Colombia, Facultad de Agronomía.
dc.relationFischer G., Ebert G., Ludders P. (2000). Provitamin A carotenoids, organic acids and ascorbic acid content of cape gooseberry (Physalis peruviana L.) ecotypes grown at two tropical altitudes. Acta Horticulturae. 531, 263-267.
dc.relationFischer G. (2005). El problema del rajado del fruto de uchuva y su posible control. pp. 55-82. En: Fischer, G., D. Miranda, W. Piedrahita y J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Unibiblos, Universidad Nacional de Colombia, Bogotá.
dc.relationFischer G., Ebert G. & Lüdders P. (2007). Production, seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. Journal of Applied Botany and Food Quality. 81 (1), 29-35.
dc.relationFischer, G., Herrera, A. & Almanza, P.J. (2011). Cape gooseberry (Physalis peruviana L.) pp. 374-396. En: Yahia, E.M. (ed.) Postharvest biology and technology of tropical and subtropical fruits. Vol. 2. Acai to citrus. Woodhead Publishing, Oxford, U.K.
dc.relationFischer, G. & Miranda, D. (2012). Uchuva (Physalis peruviana L.). in: Fischer, G. (Ed.). manual para el cultivo de frutales en el trópico. Bogotá: Produmedios, pp.851-873.
dc.relationFischer, G. & Orduz-Rodríguez, J.O. (2012). Ecofisiología en frutales. pp. 54-72. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
dc.relationFischer G., Almanza-Merchán J. P. & Miranda D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1): 1-15.
dc.relationFraga, C. G., Mactino, U. S., Ferraro, G. E., Coussio, J. F. & Boveris, A. (1987). Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochem Med Metabol Biol., 36:717-720.
dc.relationFujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9 (4), 436-442.
dc.relationGalvis J.A., Fischer, G. & Gordillo, O. (2005). Cosecha y poscosecha de la uchuva, En: Fischer G., Miranda D., Piedrahíta W. y Romero J. Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Unibiblos, Universidad Nacional de Colombia, 165-190.
dc.relationGarcía, H.R., A. C. Peña & C. García. (2008). Manual de práctica de cosecha y acondicionamiento de la uchuva con fines de exportación, Corpoica, Bogotá.
dc.relationGarcía, M. C. (2013). Bioconversion des ellagitannins de la mure tropicale de montagne (Rubus adenotrichos) et relation avec l’écologie du microbiome intestinal. Tesis Doctoral, Ecole doctorale Sciences des Procédés – Sciences des Aliments Unité Mixte de recherche (UMR).
dc.relationGariglio, N.F., R.A. Pilatti, & Agustí, M. (2007). Requerimientos ecofisiológicos de los árboles frutales. pp. 41-82. In: Sozzi, G.O. (ed.). Árboles frutales. Ecofisiología, cultivo y aprovechamiento. Editorial Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.
dc.relationGauch, H. & Zobel, R. (1996). AMMI analysis of yield trials. In: M.S. Kang y H.G. Gauch. (eds.). Genotype-by-Environment interaction. CRC Press, Boca Ratón. pp. 85-122.
dc.relationGautier, H., Diakou-Verdin, V., Benard, C., Reich, M., Buret, M., Bourgaud, F., Poessel, J.L., Caris-Veyrat, C. & Genard, M., (2008). How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance?. J. Agric. Food Chem. 56, 1241–1250.
dc.relationGlish, G.L. & Vachet, R.W. (2002). The basics of mass spectrometry in the twenty first century. Nature Reviews. 2, 140-150.
dc.relationGoodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G. & Kell, D.B. (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol., 22 (5), 245-252.
dc.relationGouvea, D. R., Gobbo-Neto, L., & Lopes, N. P. (2012). The influence of biotic and abiotic factors on the production of secondary metabolites in medicinal plants. Plant bioactives and drug discovery, 419–452.
dc.relationGranados-Conde, C., Torrenegra-Alarcón, M. & Tejada-Tovar, C. N. (2017). Caracterización de la pulpa de Physalis peruviana L. cultivada en el departamento de Norte de Santander – Colombia. Bistua: Revista de la Facultad De Ciencias Basicas, 15(1), 42-56.
dc.relationGriffiths, W.J., Koal, T., Wang, Y., Kohl, M., Enot, D.P. & Deigner, H.P. (2010). Targeted metabolomics for biomarker discovery. Angew. Chem. Int. Ed. Engl., 49 (32), 5426-5445.
dc.relationGutiérrez, M.S., Trinchero, G.D., Cerri, A.M. Vilella, F. & Sozzi, G.O. (2008). Different responses of goldenberry fruit treated at four maturity stages with the ethylene antagonist 1-methylcyclopropene. Postharvest Biol. Technol. Vol. 48, 199–205.
dc.relationHalliwell, B. & Gutteridge, J.M.C. (1995). The Definition and Measurement of Antioxidants in Biological Systems. Free Radical Biology and Medicinal. 18, 125-126.
dc.relationHalliwell B. (2007). Biochemistry of Oxidative Stress Bioche- chemical Society Transactions, 35, 1147-1150.
dc.relationHäkkinen, S. H., Kärenlampi, S. O., Heinonen, I. M., Mykkänen, H. M. & Törrönen, A. R. HPLC method for screening of flavonoids and phenolic acids in berries. J. Sci. Food Agric. 1998b, 77, 543-551.
dc.relationHarborne, J. B. & Baxter, H. (1999). The handbook of natural flavonoids. Vol.1-2. New York: John Wiley and son.
dc.relationHassan, H. A., Seraga, H. M., Qadira, M. S., Ramadan, M. F. (2017). Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinomalinked apoptosis and cell cycle arrest. Biomed. Pharmacother., 94, 1129–1137.
dc.relationHernandez, M. M. (2015). Actividad antioxidante y citotoxica de las fisalinas y de los flavonoides presentes en las hojas de Physalis peruviana L. Tesis para optar al Grado Académico de magíster en Recursos Vegetales y Terapéuticos. Universidad Nacional Mayor de San Marcos, Facultad De Farmacia Y Bioquímica, Lima, Perú.
dc.relationHicks, J. J. (2001). Bioquímica. McGraw-Hill. México. 900 pp.
dc.relationHuo, Y., Kamal, G.M., Wang, J., Liu, H., Zhang, G., Hu, Z., Anwar, F., & Du, H. (2017). 1H NMR-based metabolomics for discrimination of rice from different geographical origins of China. Journal of Cereal Science, 76, 243-252.
dc.relationICBF. (2015). Tabla de composición de alimentos colombianos. https://www.icbf.gov.co/sites/default/files/tcac_2015_final_para_imprimir.pdf. Consulta: septiembre de 2019.
dc.relationIcontec. (1999). Norma Técnica Colombiana NTC 4580. Frutas frescas. Uchuva, especificaciones. Bogotá, Colombia.
dc.relationIsmail, N. & Alam, M. (2001). A novel citotoxic flavonoid glycoside from Physalis angulata. Fitoterapia, 72, 676-9.
dc.relationKaddurah-Daouk, R.; Kristal, B.S. & Weinshilboum, R.M. (2008). Metabolomics: a global biochemical approach to drug response and disease. Annu. Rev. Pharmacol. Toxicol., 48, 653-683.
dc.relationKaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., et al., (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology. 136, 4159–4168.
dc.relationKariola, T., G. Brader, J. Li & T. Palva. (2005). Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in Plants. Plant Cell 17, 282-294.
dc.relationKhan, M. A., Khan, H., Khan, S., et al. (2009). Anti-inflammatory, analgesic and antipyretic activities of Physalis minima Linn. [J]. J Enzym Inhib Med Ch, 24(3), 632-637.
dc.relationKhoo H.E., Prasad K.N., Kong K. W., Jiang Y. & Ismail A. (2011). Carotenoids and their isomers: Color pigments in fruits and vegetables. Molecules, 16(2), 1710-38.
dc.relationKristensen, M. (2010). Potential disease prevention from apple intake, in Department of Human Nutrition/Preventive Nutrition. University of Copenhagen: Copenhagen. p. 62.
dc.relationLabarca, V. B., Vicuna, C.G., Alvarez, P.F., Fuentes, I.Q. & Won, M. P. (2013). Extraction of β-carotene, vitamin C and antioxidant compounds from Physalis peruviana (Cape gooseberry) assisted by high hydrostatic pressure. Journal of Food and Nutrition Science, 4, 109-118.
dc.relationLan, Y. H., Chang, F. R., Pan, M. G., Wu, C. C., Wu, S. J., Chen, S. L., et al. (2009). New cytotoxic withanolides from Physalis peruviana. Food Chemistry, 116, 462−469.
dc.relationLeterme, P., Buldgen, A., Estrada, F., Londoño, A.M. (2006). Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chemistry, 95(4), 644-652.
dc.relationLegge, A.P. (1974). Notes on the history, cultivation and uses of Physalis peruviana L. Journal of the Royal Horticultural Society, London, 99 (7), 310- 314.
dc.relationLindon, J.C. & Nicholson, J.K. (2008). Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. Trends Analyt. Chem., 27 (3), 194-204.
dc.relationLiu, Y., Song, L. L., Yu, W. W., Hu, Y. Y., Ma, X. H., Wu, J. S. & Ying, Y. Q. (2015). Light quality modifies camptothecin production and gene expression of biosynthesis in Camptotheca acuminate Decne seedlings. Industrial Crops and Products, 66, 137–143.
dc.relationLorenzo, M. & Pico, Y. (2017). Gas Chromatography and Mass Spectroscopy Techniques for the Detection of Chemical Contaminants and Residues in Foods. En D. Screnk & A. Cartus. Chemical Contaminants and Residues in Food (pp. 15-50). Sawston, Cambridge: Woodhead Publishing.
dc.relationLucchese, C. l., Guruk, P. D. & Marczak, L. D. F. (2015). Osmotic dehydration of (Physalis peruviana L.): Evaluation of water loss and sucrose incorporation and the quantification of carotenoids. LWT-Food Science and Technology, 63, 1128-1136.
dc.relationMachlin, L.J., Bendich, A. (1987). Free radical tissue damage: protective role of antioxidant nutrients. Faseb J. 1, 441-445.
dc.relationMagalhães, H. I., Veras, M. L., Torres, M. R., Alves, A. P., Pessoa, A. D. & Silveira, E. R., (2006). In vitro and in vivo antitumour activity of Physalins B and D from Physalis angulata. J Pharm Pharmacol, 58, 235-41.
dc.relationMajumder, K. & Mazumdar. B. (2002). Changes of pectic substances in developing fruits of cape-gooseberry (Physalis peruviana L.) in relation to the enzyme activity and evolution of ethylene. Scientia Horticulturae. 96, 91–101.
dc.relationMarín, Z. (2009). Viabilidad de desarrollo de uchuva (Physalis peruviana L.) mínimamente procesada enriquecida con microorganismos probióticos a partir de la Ingeniería de Matrices. Facultad de Ciencias Agropecuarias. Maestría en Ciencia y Tecnología de alimentos. Universidad Nacional de Colombia, Medellín, pp. 152.
dc.relationMarín A, Z. T., Cortés R, M., & Montoya C, O. I. (2010). Frutos de uchuva (Physalis peruviana L.) ecotipo ‘Colombia’ mínimamente procesados, adicionados con microorganismos probióticos utilizando la Ingeniería de Matrices. Rev. Fac. Nal. Agr. 63(1), 5395-5407.
dc.relationMárquez, C. (2009) Caracterización fisiológica, fisico-química, reológica, nutracéutica, estructural y sensorial de la guanábana (Annona muricata L. cv. ELITA). Tesis presentada para optar al título de Doctor en Ciencias. Universidad Nacional de Colombia. Facultad de Ciencias Agropecuarias. Dpto. Ciencias Agronómicas, Medellín
dc.relationMaruenda, H., Cabrera, R., Cañari-Chumpitaz, C., Lopez, J. M., & Toubiana, D. (2018). NMR-based metabolic study of fruits of Physalis peruviana L. grown in eight different Peruvian ecosystems. Food Chemistry, 262, 94–101.
dc.relationMastuti, R. & Soryidah, M. (2019). In Vitro Environmental Stresses for Enhancing Withanolides Production in Physalis angulata L. IOP Conf. Ser.: Earth Environ. Sci. 239p.
dc.relationMatile, P., S. Hörtensteiner y H. Thomas. 1999. Chlorophyll degradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 67-95.
dc.relationMedina, P. 2012. Implementación de una metodología para la obtención de marcadores de frutos de Physalis peruviana L., y evaluación de actividad hipoglicemiante. Tesis Magister en Ciencias Farmaceuticas. Universidad Nacional de Colombia, Faculta de Ciencias, Departamento de Farmacia. Bogotá, Colombia.
dc.relationMembrillo Ortega, Agustín, Córdova Izquierdo, Alejandro, Hicks Gómez, Juan José, Olivares-Corichi, Ivonne María, Martínez Torres, Víctor Manuel, & Valencia Méndez, Javier de Jesús. (2003). Peroxidación lipídica y antioxidantes en la preservación de semen: Una revisión. Interciencia. 28(12), 699-704.
dc.relationMendoza Ch, J. H., Rodríguez de S, A., & Millán, P. (2012). Caracterización fisicoquímica de la uchuva (Physalis peruviana) en la región de Silvia Cauca. Biotecnología en el Sector Agropecuario y Agroindustrial. 10(2), 188 - 196.
dc.relationMokhtar, S.M., Swailam, H.M., Embaby, H.E-S. (2017) Physicochemical Properties, Nutritional Value and Techno-functional Properties of Goldenberry (Physalis peruviana) Waste powder. Food Chemistry. 248, 1–7.
dc.relationMonteiro, M.S., Carvalho, M., Bastos, M.L. y Guedes de Pinho, P. (2013). Metabolomics Analysis for Biomarker Discovery: Advances and Challenges. Current Medicinal Chemistry. 20, 257-271.
dc.relationMoon, Y. & Morris, M. (2006). Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicology in vitro. 20, 187-210.
dc.relationMora R., Peña A., López E., Ayala J.J., Ponce D. (2006). Agrofenología de Physalis peruviana L. en invernadero y fertirriego. Revista Chapingo, Serie Horticultura. 12 (1), 57-63.
dc.relationMorais, P.L.D.; Miranda, M.R.A.; Lima, L.C.O.; Alves, J.D.; Alves, R.E. y Silva. J.D. (2008). Cell wall biochemistry of sapodilla (Manilkara zapota) submitted to 1-methylcyclopropene, Braz. J. Plant Physiol. 20 (2), 85-94.
dc.relationMoreno-González, J.; Crossa, J.; Cornelius, P.L. 2004. Genotype × environment interacion in multi-environment trials using shrinkage factors for AMMI models. Euphytica. 137, 119–127.
dc.relationMorison, J. I. L. & Lawlor, D. W. (1999). Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ. 22, 659-682.
dc.relationNaidu, K. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutritional Journal, 2(1) 1-10.
dc.relationNordstrom, A.; Lewensohn, R. (2010). Metabolomics: moving to the clinic. J. Neuroimmune Pharmacol. 5 (1), 4-17.
dc.relationOldiges, M.; Lutz, S.; Pflug, S.; Schroer, K.; Stein, N.; Wiendahl, C. (2007). Metabolomics: current state and evolving methodologies and tools. Appl. Microbiol. Biotechnol. 76 (3), 495-511.
dc.relationOlivares Tenorio, M., Dekker, M., Verkerk, R., & A.J.S van Boekel, M. (2016). Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends in Food Science & Technology. 83-92.
dc.relationOsorio, C., Schreckinger, M.E., Bhargava, P., Bang, W. Y., Jacobo-Velázquez, D. A., & Cisneros-Zevallos, L. (2016). Golden berry and selected tropical (açai, acerola, and maqui) juices. En F. Shahidi & C. Alasalvar (Eds.), Handbook of Functional Beverages and Human Health (p. 890). Boca Raton: Taylor y Francis Group.
dc.relationOsterloh, A., G. Ebert, W.H. Held, H. Schulz y E. Urban. 1996. Lagerung von Obst und Südfrüchten. Verlag Ulmer, Stuttgart. 253 p.
dc.relationParra-Coronado, A. & Miranda, D. (2016). La calidad poscosecha de los frutos en respuesta a los factores climáticos en el cultivo. Agron. Colomb. Supl. 1.
dc.relationPatti, G.J.; Yanes, O.; Siuzdak, G. (2012). Innovation: Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13 (4), 263-269.
dc.relationPatil, B., Jayaprakasha, G. Chidambara Murthy, K. y Vikram, A. (2009). Bioactive Compounds: Historical Perspectives, Opportunities, and Challenges. J. Agric. Food Chem. 57, 8142–8160.
dc.relationPinchao, Y., Osorio, O. & Ordoñez-Santos, L. (2016). Correlación del índice de madurez de uchuva (Physalis peruviana) y tomate de árbol (Solanum betaceum) con la concentración de carotenoides. Vitae 23 (Supl. 1), S260-S263.
dc.relationPlou Gasca, F. J. & Torres Salas, P. (2019). Cromatografía líquida de alta resolución (HPLC). En M. Faraldos & C. Goberna (Ed.), Técnicas de análisis y caracterización de materiales (pp. 787-827). Madrid, España: Consejo Superior de Investigaciones Científicas.
dc.relationPuente L.A., Pinto-Muñoz C.A., Castro E.S., Cortés M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44, 1733-1740
dc.relationRamadan, M.F. and J.T. Moersel, (2003). Oil goldenberry (Physalis perviana L.). J. Agric. Food Chem., 51, 969-974.
dc.relationRamadan, M. F. y Morsel, J. T. (2004). Goldenberry: A novel fruit source of fat soluble bioactives. Inform. 15, 130−131.
dc.relationRamadan, M.F. and J. Morsel, (2007). Kachnar seed oil. Inf. Champaign, 18, 13-15.
dc.relationRamadan, M. F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44 (7), 1830-1836.
dc.relationRamakrishna, A. y Aswathanarayana, G. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior; 6(11), 1720-1731
dc.relationRao SR, Ravishankar GA. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv.; 20, 101-53.
dc.relationRasmussen, L.; Savorani, F.; Larsen, T.; Dragsted, L.; Astrup, A.; Engelsen, S. (2011). Standardization of factors that influence human urine metabolomics. Metabolomics, 7 (1), 71-83.
dc.relationRavisankar, P., Abhishekar Reddy, A., Nagalakshmi, B., Sai, O., Vijaya, B. y Sai P. (2015). The comprenhensive review on fat soluble vitamins. IOSR Journal Of Pharmacy, 5(11), 12-28.
dc.relationRehm, S.; Espig, G. (1991). the cultivated plants of the tropics and subtropics. Weihersheim: Verlag Margraf (Ed).
dc.relationRoessner, U.; Bowne, J. What is metabolomics all about? Biotechniques, (2009), 46 (5), 363-365.
dc.relationRivas, M., Rojas, E., Cortés, J. & Santander, E. (2002). Efecto de la altura en la radiación solar ultravioleta en Arica norte de Chile. Revista Facultad de Ingeniería, U.T.A. 10, 59-62.
dc.relationRodrigues, E., Rockenbach, I. I., Cataneo, C., Gonzaga, L.V., Chaves, E.S. and Fett, R. (2009). Minerals and essential fatty acids of the exotic fruit Physalis peruvianaL. Journal of Food Science and Technology, 29(3): 2009.
dc.relationRugkong, A., R. McQuinnc, J.J. Giovannonic, J.K.C. Rosee y C.B. Watkins. (2011). Expression of ripening-related genes in cold-stored tomato fruit. Postharvest Biology and Technology 61, 1-14.
dc.relationRyan, D.; Robards, K.; Prenzler, P.D.; Kendall, M. (2011). Recent and potential developments in the analysis of urine: a review. Anal. Chim. Acta, 684 (1-2), 8-20
dc.relationSalek, R., Steinbeck, C, Viant, R., Goodacre, R. y Dunn, W. (2013). The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience, 2:13.
dc.relationSan Feliciano, A., Pérez, A.L., Del Olmo, E., Martínez, J.C., Pérez, C., Jiménez, C., Ravelo, A.G. (2008). Manual de determinación estructural de compuestos naturales. CYTED; organización del Convenio Andrés Bello, Bogotá Colombia.
dc.relationScalbert, A.; Brennan, L.; Fiehn, O.; Hankemeier, T.; Kristal, B.; Ommen, B.; Pujos-Guillot, E.; Verheij, E.; Wishart, D.; Wopereis, S. (2009). Massspectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5 (4), 435-458.
dc.relationSemel, Y., Schauer, N., Roessner, U., Zamir, D., & Fernie, A. R. (2007). Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype. Metabolomics, 3, 289–295.
dc.relationSherman, W.B. & Beckman, T.G. (2003). Climate adaptions in fruit crops. Acta Hortic. 622, 411-428.
dc.relationSitrit, Y. & Bennet, A. (1998). Regulation of Tomato Fruit polygalacturonase mRNA Accumulation by Ethylene: A Re-Examination. Plant physiology, 116(3), 1145-50.
dc.relationSon, H.-S., Hwang, G.-S., Kim, K.M., Ahn, H.-J., Park, W.-M., Van Den Berg, F., Hong, Y.-S. & Lee, C.-H. (2009). Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics. J. Agric. Food Chem. 57, 1481-1490.
dc.relationSpratlin, J.L.; Serkova, N.J.; Eckhardt, S.G. (2009). Clinical applications of metabolomics in oncology: a review. Clin. cancer res. 15 (2), 431-440.
dc.relationSuarez, M.H., Rodriguez, E.M.R. & Romero, C.D. (2008). Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. Food Chem. 106, 1046–1056.
dc.relationSumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W. M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., Reily, M. D., Thaden, J.J., & Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics: Official Journal of the Metabolomic Society, 3(3), 211-221.
dc.relationSun CP, Qiu CY, Yuan T, et al. (2016). Antiproliferative and anti-inflammatory withanolides from Physalis angulata [J]. J Nat Prod. 79(6), 1586-1597.
dc.relationSzefer, P., & Nriagu. J. (2007). Mineral components in foods. New York: CRC
dc.relationTandon, R.K. & Garg, P.K. (2011). Oxidative stress in chronic pancreatitis: pathophysiological relevance and management, Antioxid. Redox Signal. 15 (10), 2757–2766.
dc.relationTapas, A.R., Sakarkar, D. M. & Kakde, R. B. (2008). Flavonoids as Nutraceuticals: A Review. Tropical Journal of Pharmaceutical Research, 7 (3), 1089-1099
dc.relationTheodoridis, G., H.G. Gika, & I.D. Wilson. Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass spectrometry, 2011. 30: p. 884-906.
dc.relationTomassini, T.C.B., et al. (2000). Gênero Physalis – Uma revisão sobre witaesteróides. Química Nova, 23:47-57.
dc.relationTomoyoshi, S.; Maria, R. & Monton, N. (2009). In: The Metabolic Pathway Engineering Handbook; CRC Press. 14 (11),14-12.
dc.relationTrinchero, G.; Sozzi, G.; Cerri, A.M.; Vilella, F. & Fraschina, A. (1999). Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biol. Technol. 16, 139–145.
dc.relationUlaszewska, M. M. et al. Nutrimetabolomics: an integrative action for metabolomic analyses in human nutritional studies. Molecular Nutrition and Food Research. 63, 1800384.
dc.relationU.S. Department of Agriculture, Agricultural Research Service (2019) Food composition databases page. En: https://ndbnalusdagov/ndb/nutrients. Consulta: 17 July 2019
dc.relationValares, C. (2011). Variación del metabolismo secundario en plantas debida al genotipo y al ambiente. Tesis de Doctorado en Ciencias. Universidad de Extremadura, Badajoz, España.
dc.relationVallad G.E. & Goodman, R.M. (2004) Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science 44 (6), 1920-1934.
dc.relationValladares, F., Gianolim E., Gomez, J.M. (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176: 749–763
dc.relationVallejo C., F. & Estrada, E. (2002) Mejoramiento Genético de Plantas Universidad Nacional de Colombia Sede Palmira, Palmira, Colombia. 402p.
dc.relationVallejo C., F., Espitia M., Estrada, E. & Ramírez, H. (2010) Genética Vegetal Universidad Nacional de Colombia Sede Palmira, Palmira, Colombia. 383p.
dc.relationValpuesta, V., M.A. Quesada & M.S. Reid. (1996). Senescencia y abscisión. pp. 479-492. En: Azcón-Bieto, J. y M. Talón (eds.). Fisiología y bioquímica vegetal. Interamericana McGraw-Hill, Bogotá.
dc.relationViant, M. & Sommer, U. (2013). Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics. 9, S144–S158.
dc.relationVilar-Rojas, C., Guzmán-Grenfel,l A.M. & Hicks, J.J. (1996). Participation of oxygen-free radicals in the oxido-reduction of proteins. Arch Med Res. 27, 1-6.
dc.relationVincente, A.R., Manganaris, G.A., Ortiz, C.M., Sozzi, G.O. & Crisosto, C.H. (2014) Nutritional quality of fruits and vegetables. In: Florkowski WJ, Shewfelt RL, Brueckner B, Prussia SE (eds) Postharvest Handling, 3rd edn. Academic Press Elsevier, California, pp 69–122
dc.relationWalker, A.J. & Ho, L.C., (1977). Carbon translocation in tomato—effects of fruit temperature on carbon metabolism and rate of translocation. Ann. Bot, 41, 825–832.
dc.relationWang, J.H.; Byun, J. & Pennathur, S. (2010). Analytical approaches to metabolomics and applications to systems biology. Sem. Nephrol. 30 (5), 500-511.
dc.relationWeckwerth, W. (2003). Metabolomics in systems biology. Annu. Rev. Plant Biol. 54, 669-689.
dc.relationWeiss, R.H. & Kim, K. (2012). Metabolomics in the study of kidney diseases. Nat. Rev. Nephrol. 8 (1), 22-33.
dc.relationWestwood, M.N. (1993). Temperate-zone pomology: physiology and culture. 3rd ed. Timber Press, Portland, OR.
dc.relationWilson, I. D., Nicholson, J. K., Castro-Perez, J., Granger, J. H., Johnson, K. A., Smith, B. W., & Plumb, R. S. (2005). High resolution "ultra performance" liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res. 4(2), 591-598.
dc.relationWolfender, J. L., Rudaz, S., Choi, Y. H. & Kim, H. K. (2013). Plant metabolomics: From holistic data to relevant biomarkers. Current Medicinal Chemistry 20, 1056–1090.
dc.relationYanes, O.; Tautenhahn, R.; Patti, G.J. & Siuzdak, G. (2011). Expanding Coverage of the Metabolome for Global Metabolite Profiling. Anal. Chem..83 (6), 2152-2161.
dc.relationYan, W.L., Hunt, A., Sheng, Q. & Szlavnics, Z. (2000) Cultivars evaluation and mega-environment investigation based on GGE biplot. Crop Sci. 40, 597-605.
dc.relationZapata, J. E., Ciro, G. L. y Marulanda, P. (2016). Optimization of pulsed vacuum osmotic dehydration of the cape gooseberry (Physalis peruviana L.) using the response surface methodology. Agronomía Colombiana 34(2), 228-238.
dc.relationZhang W, Seki M, Furusaki S. (1997). Effect of temperature and its shift on growth and anthocyanin production in suspension cultures of strawberry cells. Plant Sci. 127, 207-14.
dc.relationZhang, Y.J., Deng, F.G., Xu, R.X., Wu, S., Li, S. & Li, H.B. (2013). Chemical Components and Bioactivities of Cape Gooseberry (Physalis peruviana). IJFNS. 3, 15-24.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDiferenciación tentativa por metabolómica no dirigida y caracterización fisicoquímica de tres genotipos de uchuva (Physalis peruviana L.) en tres localidades
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución