dc.contributorArango Zuluaga, Eliana Isabel
dc.contributorBotero Castro, Héctor Antonio
dc.creatorRojas Palacio, Cinthia Viviana
dc.date.accessioned2021-08-27T15:25:59Z
dc.date.accessioned2022-09-21T19:36:50Z
dc.date.available2021-08-27T15:25:59Z
dc.date.available2022-09-21T19:36:50Z
dc.date.created2021-08-27T15:25:59Z
dc.date.issued2021-08
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80042
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3417264
dc.description.abstractEsta tesis surge de la necesidad de establecer una conexión entre metodologías educativas y los estilos de aprendizaje de los estudiantes para que logren comprender conceptos con alto nivel de abstracción como los conceptos de control. Para ello, se diseñaron estrategias didácticas orientadas a laboratorio, para cuatro conceptos de control de sistemas dinámicos, integrando metodologías educativas activas y el estilo de aprendizaje de Felder y Silverman. Los conceptos seleccionados fueron: Efecto de las acciones de control Proporcional Integral Derivativa (PID), linealización y punto de operación, efectos de la realimentación y respuesta en el tiempo. Para cada concepto se diseñó una guía de laboratorio, una rúbrica por competencias y una encuesta de percepción, las cuales fueron implementadas en el curso Control: Entrada-Salida de la Universidad Nacional de Colombia Sede Medellín, en tres periodos académicos. En cuanto a los resultados de la aplicación del instrumento de diagnóstico de estilos de aprendizaje, se obtuvo que, de los 62 estudiantes que participaron en el estudio el 74% posee un estilo sensitivo, el 58% un estilo activo, el 84% un estilo visual y el 58% un estilo secuencial, por tanto, los estilos sensitivo y visual fueron los predominantes entre los estudiantes. A partir de estos resultados y, a través de pruebas de Chi-Cuadrada y de una porción, se validó que para este caso de estudio la premisa de Felder y Silverman acerca de los estilos de aprendizaje de los ingenieros sólo es verdadera para el estilo visual y sensitivo; y con respecto a los niveles de preferencia de cada estilo de aprendizaje, solo el estilo visual obtuvo una tendencia a preferencia moderada con el 53% de los estudiantes, los demás estilos obtuvieron una tendencia a una preferencia leve. Por otra parte, al aplicar la estrategia didáctica diseñada que tiene en cuenta los estilos de aprendizaje de los estudiantes, se obtuvieron los siguientes resultados: El 88% de los estudiantes aprobó la sesión de efectos de las acciones de control PID, el 89% aprobó la sesión de linealización y punto de operación, y el 100% aprobaron las sesiones de efectos de la realimentación y respuesta en el tiempo; y según las encuestas de percepción el 83% de los estudiantes tuvo claridad del concepto efectos de las acciones de control, el 94% tuvo claridad del concepto de punto de operación, el 97% obtuvo claridad del concepto de linealización, y al 76% les quedó claro el concepto de efectos de la realimentación gracias a la guía de laboratorio. Por tanto, las estrategias didácticas diseñadas fueron pertinentes para la enseñanza de los cuatro conceptos seleccionados. (Texto tomado de la fuente)
dc.description.abstractThis thesis results from the need to establish a connection between educational methodologies and students' learning styles so that they can understand concepts with a high level of abstraction such as control concepts. For this, didactic strategies with a laboratory approach were designed for four concepts of control systems integrating active methodologies and Felder and Silverman’s learning style. The selected concepts were: Effect of Proportional Integral Derivative (PID) control actions, linearization and operating point, effects of feedback and time response. A laboratory guide, a rubric by competences and a perception survey were designed for each concept, which were implemented in the course Control: Entrada – Salida in three academic periods at Universidad Nacional de Colombia in Medellín. As a result, it was obtained that 62 students participated in the study and 74% of the students had a sensitive style, 58% of the students had an active style, 84% of the students had a visual style and 58% of the students had a sequential style. So, the sensitive and visual styles were the predominant among students. Also, through Chi-Square and One-Portion tests, it was validated that the Felder and Silverman premise about the learning styles of engineers is only true for the visual and sensitive style. Regarding the levels of preference for each style only the visual style had a tendency to moderate preference with 53% of the students, the other styles had a tendency to a slight preference. According to the didactic strategy designed, it was obtained that 88% of the students passed the session on the effects of the PID control actions, 89% of the students passed the linearization and operating point session, and 100% of the students passed the feedback effects and time response sessions. Finally, according to the perception surveys 83% of the students had clarity of the concept of the effects of the PID control actions, 94% of the students had clarity of the concept of operating point, 97% of the students had clarity of the concept of linearization, and 76% of the students had clarity of the concept of feedback effects due to the lab guide. Therefore, the didactic strategies designed were relevant for the teaching of the four selected concepts. (Texto tomado de la fuente)
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Automatización Industrial
dc.publisherDepartamento de Ingeniería Eléctrica y Automática
dc.publisherFacultad de Minas
dc.publisherMedellín
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAlonso, C., Gallego, D., & Honey, P. (1994). Los estilos de aprendizaje. Procedimientos de diagnóstico y mejora (7a). Ediciones Mensajero. Aprender. (s.f.). (2014). In Diccionario de la lengua española (23a). https://dle.rae.es/aprender Apte, M., & Bhave-Gudipudi, A. (2020). Cooperative Learning techniques to bridge gaps in academia and corporate. Procedia Computer Science, 172, 289–295. Avanzini, G. (2004). Capacitación en estrategias y técnicas didácticas. In Instituto Tecnológico y de Estudios Superiores de Monterrey. https://doi.org/10.1037/h0051332 Bandler, R., Grinder, J., & O’Stevens, J. (1979). Frogs into Princes: Neuro Linguistic Programming. Real People Press. Bedenlier, S., Bond, M., Buntins, K., Zawacki-Richter, O., & Kerres, M. (2020). Learning by doing? Reflections on conducting a systematic review in the field of educational technology. Systematic Reviews in Educational Research, 111–127. Budiyanto, C., Fitriyaningsih, R. N., Kamal, F., Ariyuana, R., & Efendi, A. (2020). Hands-on Learning in STEM: Revisiting Educational Robotics as a Learning Style Precursor. Open Engineering, 10(1), 649–657. https://doi.org/10.1515/eng-2020-0071 Campusano Cataldo, K., & Díaz Olivos, C. (2017). Manual de Estrátegias didácticas: Orientaciones. Ediciones INACAP. http://www.inacap.cl/web/2018/documentos/Manual-de-Estrategias.pdf Case, J. M., & Light, G. (2011). Emerging Research Methodologies in Engineering Education Research. Journal of Engineering Education, 100(1), 186–210. https://doi.org/10.1002/j.2168-9830.2011.tb00008.x Chang, P.-H. (2018). A study on the process and effect of using cooperative learning approach into electronics lecture. 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), 84–90. Chen, C.-H., & Yang, Y.-C. (2019). Revisiting the effects of project-based learning on students’ academic achievement: A meta-analysis investigating moderators. Educational Research Review, 26, 71–81. Condliffe, B. (2017). Project-Based Learning: A Literature Review. Working Paper. MDRC. ACUERDO 263 DE 2017. Retrieved November 13, 2018, from http://www.legal.unal.edu.co/rlunal/home/doc.jsp?d_i=90022 de Houwer, J., Barnes-Holmes, D., & Moors, A. (2013). What is learning? On the nature and merits of a functional definition of learning. Psychonomic Bulletin and Review, 20(4), 631–642. https://doi.org/10.3758/s13423-013-0386-3 Dori, Y. J., Mevarech, Z. R., & Baker, D. R. (2018). Cognition, metacognition, and culture in STEM education. Innovations in Science Education and Technology, 24, 386. Felder, M. R., & Brent, R. (2003). Designing and Teaching Courses to Satisfy. Journal of Engineering Education, 92(1), 7–25. https://doi.org/10.1111/j.1467-8411.1988.tb00200.x Felder, R. M., & Silverman, L. K. (1998). Learning and Teaching Styles In Engineering Education. Engineering Education, 78, 674–681. https://doi.org/10.1109/FIE.2008.4720326 Feldman, R. (2010). Psicología con aplicaciones en países de habla hispana (8a). McGraw-Hill. Feo, R. (2010). Feo, R. (2010). Orientaciones básicas para el diseño de estrategias didácticas. Tendencias pedagógicas, 16, 220-236. Recuperado de http://www.tendenciaspedagogicas.com/Articulos/2010_16_13.pdf. Tendencias Pedagógicas, 16, 220–236. https://revistas.uam.es/tendenciaspedagogicas/article/viewFile/1951/2062 Ferreiro Gravié, R. (2003). Estrategias didácticas del aprendizaje cooperativo (1ra ed.). Editorial Trillas. Fleming, N. D., & Mills, C. (1992). Not Another Inventory, Rather a Catalyst for Reflection. To Improve the Academy, 11(1), 137–155. https://doi.org/10.1002/j.2334-4822.1992.tb00213.x Garcia Cué, J. L., Santizo Rincón, J. A., & Alonso García, C. M. (2009). Instrumentos de medición de estilos de aprendizaje. Revista Estilos de Aprendizaje, 2(4). https://doi.org/10.1016/0046-8177(94)90196-1 Gardner, H. (1997). Arte, mente y cerebro: Una aproximación cognitiva a la creatividad (7a). Paidós. Gold, Z. S., & Elicker, J. (2020). Engineering peer play: A new perspective on science, technology, engineering, and mathematics (STEM) early childhood education. In Peer Play and Relationships in Early Childhood (pp. 61–75). Springer. Hassan, H., Domínguez, C., Martínez, J., Perles, A., Capella, J., & Albaladejo, J. (2015). A Multidisciplinary PBL Robot Control Project in Automation and Electronic Engineering. IEEE Transactions on Education, 58(3), 167–172. https://doi.org/10.1109/TE.2014.2348538 Hassan, O. A. B. (2011). Learning theories and assessment methodologies - an engineering educational perspective. In European Journal of Engineering Education (Vol. 36, Issue 4, pp. 327–339). https://doi.org/10.1080/03043797.2011.591486 He, P. (2021). Stem Education and Engineering Education in 21st Century. Reality and Perspectives. Journal of Latex Class Files. Helmi, S A, Hassani, S. El, Yusof, K. M., & Phang, F. A. (2017). Enrichment of Problem Solving Skills Among Engineering Students through Cooperative Problem Based Learning. 2017 7th World Engineering Education Forum (WEEF), 410–414. https://doi.org/10.1109/WEEF.2017.8467109 Helmi, Syed Ahmad, Mohd-Yusof, K., & Hisjam, M. (2019). Enhancing the implementation of science, technology, engineering and mathematics (STEM) education in the 21st century: A simple and systematic guide. AIP Conference Proceedings, 2097(1), 20001. Heywood, J. (2005). Engineering Education: Research and Development in Curriculum and Instruction (Chapter 14). IEEE PRess. Wiley Interscience. Keefe, J. W., & Thompson, S. . (1987). Learning Style: Theory and Practice. Reston,VA:NASSP. Khan, S., Jaffery, M. H., Hanif, A., & Asif, M. R. (2017). Teaching Tool for a Control Systems Laboratory Using a Quadrotor as a Plant in MATLAB. IEEE Transactions on Education, 60(4), 249–256. https://doi.org/10.1109/TE.2017.2653762 Kheir, N. A., Åström, K. J., Auslander, D., Cheok, K. C., Franklin, G. F., Masten, M., & Rabins, M. (1996). Control systems engineering education. Automatica, 32(2), 147–166. https://doi.org/https://doi.org/10.1016/0005-1098(96)85546-4 Kolb, A. Y., & Kolb, D. A. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of Management Learning and Education, 4(2), 193–212. https://doi.org/10.5465/AMLE.2005.17268566 Kosheleva, O., Villaverde, K., & Cabrera, S. D. (2013). Back to the future: Advanced control techniques justify-on a new level-traditional education practices. 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 466–470. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608445 Kövecses-Gősi, V. (2018). Cooperative learning in VR environment. Acta Polytechnica Hungarica, 15(3), 205–224. Kozulin, A., & Barberán, G. S. (2000). Instrumentos psicológicos: la educación desde una perspectiva sociocultural. Paidós. https://books.google.com.co/books?id=hQZJPgAACAAJ LaForce, M., Noble, E., & Blackwell, C. (2017). Problem-Based Learning (PBL) and Student Interest in STEM Careers: The Roles of Motivation and Ability Beliefs. In Education Sciences (Vol. 7, Issue 4). https://doi.org/10.3390/educsci7040092 Lee, C.-S., Su, J.-H., Hsieh, C.-C., Lin, K.-E., Chang, J.-H., & Lin, G.-H. (2008). A Hands-on Laboratory for Introductory Automatic Control Courses. IFAC Proceedings Volumes, 41(2), 9737–9742. https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.01647 Leš, M., & Svečko, R. (2001). Teaching control systems theory using linear systems education tool. 2001 European Control Conference (ECC), 3326–3331. https://doi.org/10.23919/ECC.2001.7076446 Mahasneh, A. M., & Alwan, A. F. (2018). The Effect of Project-Based Learning on Student Teacher Self-Efficacy and Achievement. International Journal of Instruction, 11(3), 511–524. Mahmoud, A., & Nagy, Z. K. (2009). Applying Kolb’s Experiential Learning Cycle for Laboratory Education. Journal of Engineering Education, 98(3), 283–294. https://doi.org/10.1002/j.2168-9830.2009.tb01025.x Malacaria, M. I. (2010). Estilos de Enseñanza, Estilos de Aprendizaje y desempeño académico [Universidad FASTA]. In Tesis - Biblos-e Archivo - Repositorio.uam.es. http://redi.ufasta.edu.ar:8080/xmlui/bitstream/handle/123456789/1490/2009_P_007.pdf?sequence=1 Mastascusa, E. J., & Hoyt, B. (1999). Pedagogical and structural considerations in the design of a set of control system lessons. ASEE Annual Conference Proceedings. Matijević, M. S., Jović, N. D., Nedeljković, M. S., & Čantrak, Đ. S. (2017). Remote labs and problem oriented engineering education. 2017 IEEE Global Engineering Education Conference (EDUCON), 1391–1396. https://doi.org/10.1109/EDUCON.2017.7943029 McCarthy, B. (1987). The 4MAT System: Teaching to Learning Styles with Right-Left Techniques. The Reading Teacher, 35(6). Mendez, J. A., & Gonzalez, E. J. (2011). Implementing Motivational Features in Reactive Blended Learning: Application to an Introductory Control Engineering Course. IEEE Transactions on Education, 54(4), 619–627. https://doi.org/10.1109/TE.2010.2102028 Méndez, J. A., Lorenzo, C., Acosta, L., Torres, S., & González, E. (2006). A web-based tool for control engineering teaching. Computer Applications in Engineering Education, 14(3), 178–187. https://doi.org/https://doi.org/10.1002/cae.20080 Mohammad Rasouli, Robert Weissback, Deryck Yeung, . (2017). Introducing advanced control methods to undergraduates using a state space model of a synchronous generator. Journal of Engineering Technology. Moor, S. S., & Piergiovanni, P. (2003). Experiments in the classroom: Examples of inductive learning with classroom-friendly laboratory kits. ASEE Annual Conference Proceedings. https://doi.org/10.18260/1-2--11569 Muñoz Ochoa, P. L. (2018). Estrategias de enseñanza y aprendizaje en el área de control de procesos. Encuentro Internacional de Educacion En Ingenieria. https://acofipapers.org/index.php/eiei/article/view/531 Ocampo, F., Guzmán, A., Camarena, P., & De Luna, R. (2014). Identificación de estilos de aprendizaje en estudiantes de ingeniería. Revista Mexicana de Investigacion Educativa, 19(61), 401–429. Oviedo, H. C., & Campo-Arias, A. (2005). Aproximación al uso del coeficiente alfa de Cronbach. Revista Colombiana de PSiquiatría, XXXIV(4), 572–580. Özbek, N. S., & Eker, İ. (2015). An Interactive Computer-Aided Instructional Strategy and Assessment Methods for System Identification and Adaptive Control Laboratory. IEEE Transactions on Education, 58(4), 297–302. https://doi.org/10.1109/TE.2015.2412512 Pantoja Ospina, M. A., Duque Salazar, L. I., & Correa Meneses, J. S. (2013). Modelos de estilos de aprendizaje: una actualización para su revisión y análisis. Revista Colombiana de Educación, 1(64), 79–105. https://doi.org/10.17227/01203916.64rce79.105 Prince, M. (2004). Does_Active_Learning_Work_A_review_of_the_research. Journal of Engineering Education, July, 1–10. https://doi.org/10.1038/nature02568 Qiu, L., & Zhou, K. (2013). Preclassical Tools for Postmodern Control: An Optimal and Robust Control Theory for Undergraduate Education. IEEE Control Systems, 33(4), 26–38. https://doi.org/10.1109/MCS.2013.2258757 Quanser. (2011). QNET Practical Control Guide. Quin, M. (1990). What is hands-on science, and where can I find it? Physics Education, 25(5), 243–246. https://doi.org/10.1088/0031-9120/25/5/306 RAMADHANİ, R., Syamsul, H., & Rofiqul, U. (2019). Problem-Based Learning, Its Usability and Critical View as Educational Learning Tools. Journal of Gifted Education and Creativity, 6(3), 193–208. Rana, K. P. S., Kumar, V., & Mendiratta, J. (2017). An educational laboratory virtual instrumentation suite assisted experiment for studying fundamentals of series resistance–inductance–capacitance circuit. European Journal of Engineering Education, 42(6), 1220–1239. https://doi.org/10.1080/03043797.2017.1284764 Reck, R. M. (2017). Common Learning Objectives for Undergraduate Control Systems Laboratories. IEEE Transactions on Education, 60(4), 257–264. Reck, R. M., & Sreenivas, R. S. (2016). Developing an Affordable and Portable Control Systems Laboratory Kit with a Raspberry Pi. In Electronics (Vol. 5, Issue 3). https://doi.org/10.3390/electronics5030036 Rojas, C., & Arango, E. (2019). Teaching Aids for Explaining the Effects of Proportional, Integral, Derivative Actions in a Closed Loop. IFAC-PapersOnLine, 52(9), 21–26. https://doi.org/https://doi.org/10.1016/j.ifacol.2019.08.117 Roubal, J., Husek, P., & Stecha, J. (2010). Linearization: Students Forget the Operating Point. IEEE Transactions on Education, 53(3), 413–418. https://doi.org/10.1109/TE.2009.2026427 Rusk, N., Resnick, M., Berg, R., & Pezalla-Granlund, M. (2008). New pathways into robotics: Strategies for broadening participation. Journal of Science Education and Technology, 17(1), 59–69. https://doi.org/10.1007/s10956-007-9082-2 Samacá, L. F., & Ramirez, J. M. (2011). Learning Control Concepts in a Fun Way. International Journal of Engineering Education, 27(1), 1–13. Schwichow, M., Zimmerman, C., Croker, S., & Härtig, H. (2016). What students learn from hands-on activities. Journal of Research in Science Teaching, 53(7), 980–1002. https://doi.org/https://doi.org/10.1002/tea.21320 Shin, M.-H. (2018). Effects of project-based learning on students’ motivation and self-efficacy. English Teaching, 73(1), 95–114. Shuman, L., Besterfield-Sacre, M., & J. (2005). The ABET “Professional Skills”—Can They Be Taught? Can they Be Assessed? Journal of Engineering Education, January. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.1993&rep=rep1&type=pdf Smart, K. L., & Csapo, N. (2007). Learning by Doing: Engaging Students Through Learner-Centered Activities. Business Communication Quarterly, 70(4), 451–457. https://doi.org/10.1177/10805699070700040302 Soloman, B. A., & Felder, R. M. (2005). Index of learning styles questionnaire. NC State University. Available Online at: Http://Www. Engr. Ncsu. Edu/Learningstyles/Ilsweb. Html (Last Visited on 14.05. 2010), 70. Staehle, M. M., & Ogunnaike, B. A. (2014). Simulation-based guided explorations in process dynamics and control. ASEE Annual Conference and Exposition, Conference Proceedings. https://doi.org/10.18260/1-2--23017 Tobón, S., Pimienta, J. H., & Garcia, J. A. (2010). Secuencias didácticas aprendizaje y evaluación de competencias (1a). Pearson Educación. www.pearsoneducacion.net Uyanik, I., & Catalbas, B. (2018). A low-cost feedback control systems laboratory setup via Arduino–Simulink interface. Computer Applications in Engineering Education, 26(3), 718–726. https://doi.org/https://doi.org/10.1002/cae.21917 Vélez Restrepo, J. M., Benjumea Hernández, P. N., Castro Peláez, K. J., & Ríos Echeverri, D. C. (2017). Estrategia de Innovación en Educación en Ingeniería. https://minas.medellin.unal.edu.co/descargas/InnovacionenEducacionenIngenieria FM.pdf Woolfolk, A. (2010). Psicología educativa (11a). Pearson Educación. Xing, X., & Jiang, S. (2010). The realization of Automatic Control Theory virtual experiment system based on LabVIEW and MATLAB. 2010 International Conference On Computer Design and Applications, 3, V3-47-V3-50. https://doi.org/10.1109/ICCDA.2010.5541233
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titlePropuesta de estrategia didáctica para la enseñanza de la teoría y la práctica del control de sistemas dinámicos integrando los estilos de aprendizaje.
dc.typeTesis


Este ítem pertenece a la siguiente institución