dc.contributorLópez Rodríguez, Bibiana
dc.contributorAcevedo Martínez, Ramiro Miguel
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.creatorGómez Mosquera, Christian Camilo
dc.date.accessioned2020-08-19T19:24:51Z
dc.date.available2020-08-19T19:24:51Z
dc.date.created2020-08-19T19:24:51Z
dc.date.issued2020-08-13
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78086
dc.description.abstractThe aim of this work is to show an abstract framework to analyze the family of linear degenerate parabolic problems and family of linear degenerate parabolic mixed problems. To linear degenerate parabolic mixed equations, we deduce sufficient conditions to existence and uniqueness of solution by combining the theory for the degenerate parabolic equations and the classical Babuska-Brezzi theory. The numerical approximation was made through the finite element method in space and a Backward-Euler scheme in time. To degenerate parabolic and degenerate parabolic mixed problems, we obtain sufficient conditions to ensure that the fully-discrete problem has a unique solution and to prove quasi-optimal error estimates for the approximation. Moreover, we present a degenerate parabolic problem which arises from electromagnetic applications and deduce its well-posedness and convergence by using the developed abstract theory, including numerical tests to illustrate the performance of the method and confirm the theoretical results. Finally, we present the linear degenerate parabolic mixed (0 g) equations. We deduce that the fully-discrete problem has a unique solution and prove quasi-optimal error estimates for the approximation.
dc.description.abstractEl objetivo de este trabajo es mostrar un análisis numérico abstracto para una familia de problemas parabólicos degenerados lineales y una familia de problemas parabólicos degenerados en forma mixta lineales. En los problemas parabólicos degenerados ya se conocen resultados de existencia y unicidad, por lo cual se realizan algunos detalles de las demostraciones de los mismos por ilustración, mientras que en los problemas parabólicos degenerados en forma mixta se presenta un marco teórico, se demuestra un teorema de existencia, unicidad y dependencia continua de los datos, esto es, buen planteamiento del problema. Para la aproximación numérica de las soluciones de ambos problemas parabólicos, se propone en la variable espacial un método de elementos finitos y en la variable temporal el método de Euler implícito. Se demuestran resultados de existencia y unicidad de los esquemas totalmente discretos propuestos y bajo ciertas suposiciones de regularidad, se obtienen estimaciones del error que sugieren obtener ordenes óptimos de convergencia de los esquemas. En ambos casos se presenta modelos de aplicación que caen dentro del marco teórico estudiado, provenientes del modelo de corrientes inducidas. Por \'ultimo, se presentan experimentos numéricos que permiten confirmar los resultados teóricos obtenidos. Finalmente, se realiza un estudio de aproximación de problemas parabólicos degenerados mixtos en la forma (0 g) en donde se demuestra que el esquema totalmente discreto propuesto tiene única solución y bajo el supuesto que el problema continuo tiene solución, se realizan estimaciones del error.
dc.languagespa
dc.publisherMedellín - Ciencias - Doctorado en Ciencias - Matemáticas
dc.publisherEscuela de matemáticas
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAcevedo, R., Meddahi, S. and Rodríguez, R. An E-based mixed formulation for a time-dependent eddy current problem, Mathematics of Computation, 78, pp. 1929-1949, 2009.
dc.relationAcevedo R. and Meddahi S. An E-based mixed FEM and BEM coupling for a time-dependent eddy current problem, IMA Journal of Numerical Analysis, 31, pp. 667-697, 2011.
dc.relationAlonso-Rodríguez, A. and Valli, A. Eddy Current Approximation of Maxwell Equations: Theory, algorithms and applications, Springer, 2010.
dc.relationBernardi, C. & Raugel, G. A conforming nite element method for the time-dependent Navier-Stokes equations, SIAM Journal on Numerical Analysis, 22, pp. 455-473, 1985.
dc.relationBermúdez, A., Muñoz, R., Reales, C., Rodríguez, R. and Salgado, P. A transient eddy current problem on a moving domain. Numerical analysis, Advances in Computational Mathematics, 42, pp. 757{789, 2016.
dc.relationBermúdez, A., Muñoz, R., Reales, C., Rodríguez, R. and Salgado, P. A transient eddy current problem on a moving domain. Mathematical analysis. SIAM Journal on Mathematical Analysis, 45 (2013), pp. 3629-3650.
dc.relationBermúdez, A., López-Rodríguez. B., Rodríguez R. and Salgado, P. An eddy current problem in terms of a time-primitive of the electric eld with non-local source conditions., ESAIM. Mathematical Modelling and Numerical Analysis, 47, 875-902, 2013.
dc.relationBermúdez, A., López-Rodríguez. B., Rodríguez, R. and Salgado, P. Numerical solution of a transient three-dimensional eddy current model with moving conductors., JNAM International Journal of Numerical Analysis and Modeling, 16, no. 5, 695-717, 2019.
dc.relationBermúdez, A., López-Rodríguez. B., Rodríguez, R. and Salgado, P. Numerical solution of transient eddy current problems with input current intensities as boundary data., IMA Journal of Numerical Analysis, 47, 1001-1029, 2012.
dc.relationBermúdez, A., López-Rodríguez. B., Rodríguez, R. and Salgado, P. Equivalence between two nite element methods for the eddy current problem, Comptes Rendus de l'Académie des Sciences, 34, 769-774, 2010.
dc.relationBoffi, D. & Gastaldi, L. Analysis of nite element approximation of evolution problems in mixed form, SIAM Journal on Numerical Analysis, 42, pp. 1502-1526, 2004
dc.relationBossavit, A. Computational Electromagnetism, Academic Press Inc., 1998.
dc.relationBrezzi F. and Fortin M., Mixed and Hybrid Finited Elements Methods, Springer-Verlag, USA, 1991.
dc.relationBuffa, A. & Ciarlet Jr., P. On traces for functional spaces related to Maxwell equations. I. An integration by parts formula in Lipschitz polyhedra, Mathematical Methods in the Applied Sciences, 24,pp. 9-30, 2001.
dc.relationBuffa A., Costabel, M. & Sheen, D. On traces for H(curl; Ω) in Lipschitz domains, Journal of Mathematical Analysis and Applications, 276, pp. 845-867, 2002.
dc.relationCiarlet, P. The Finite Element Method for Elliptic Problems, SIAM, 2002.
dc.relationDautray R. and Lions J-L. Matematical Analysis and Numerical Methods for Science and Technology, Volumen 5, Evolution Problems I.
dc.relationHiptmair. R. Finite elements in computational electromagnetism, Numerica 11, pp. 237-339, 2002
dc.relationK. Kuttler, A degenerate nonlinear Cauchy problem Applicable Analysis, 13, pp. 307-322, 1982.
dc.relationKuttler K., The Galerkin method and degenerate evolution equations, Journal of Mathematical Analysis and Applications, 107, pp. 396-413, 1985
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEcuaciones parabólicas degeneradas en forma mixta
dc.typeOtro


Este ítem pertenece a la siguiente institución