dc.contributor | Osorio Londoño, Gustavo Adolfo | |
dc.contributor | Montes Castrillón, Nubia Liliana | |
dc.contributor | Percepción y Control Inteligente (PCI) | |
dc.creator | Tamayo Monsalve, Manuel Alejandro | |
dc.date.accessioned | 2020-08-28T19:03:47Z | |
dc.date.accessioned | 2022-09-21T19:32:29Z | |
dc.date.available | 2020-08-28T19:03:47Z | |
dc.date.available | 2022-09-21T19:32:29Z | |
dc.date.created | 2020-08-28T19:03:47Z | |
dc.date.issued | 2020 | |
dc.identifier | M. A. Tamayo Monsalve, "Diseño de un sistema de adquisición de imágenes multiespectrales basado en iluminación LED de potencia de ancho de banda estrecho", PhD thesis,Universidad Nacional de Colombia sede Manizales, 2020. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78316 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3416682 | |
dc.description.abstract | Multispectral imaging systems using narrow bandwidth power LEDs have become a feasible solution for a wide range of applications. Compared to traditional RGB systems, they increase the feature space according to the number of wavelengths maintaining the range in price and acquisition time. On the other hand, compared to a hyperspectral system, the acquisition time is shorter, it is simpler to implement, but it sacrifices spectral resolution. This document presents the design and construction of a multispectral system based on LED illumination for color measurement from spectral information. Similarly, it seeks to fill the gap in the literature by presenting the detailed design of the light controller, the calibration process and the characterization as an instrument, as well as a correlation analysis against a high performance system used in fruit quality control. A study case is also presented on cherry coffee fruits, in order to determine their color characteristics and establish a possible application in quality control. The system captures multispectral images with 15 different wavelengths between 410 and 960 nm, and can capture up to 8 spectral images per second at 120fps. It has an LED illumination crown that calibrates the amount of light emitted through a digital modulation, and synchronizes the camera's and light's triggers to generate a strobe effect. Among the main findings in the characterization, the precision with measurement variation of less than 10% (σ^2< 0.1) and an accuracy with color distance Δ E less than 2% after a color correction process. Also a Pearson's correlation index of over 80% (ρ > 0.8) against to the hyperspectral system and complete separability of the 24 colorchecker used as a reference object. The results in coffee shows more discriminating information to separate the different fruits in 560, 620, 720 and 840nm. Additionally, we presents an analysis of the information provided by the near infrared band, in which a correlation is found between the loss of water in the fruit and the reflectance in the NIR band. Finally, we explore a color sorting with an efficiency higher than 93% in order to open the possibilities for a quality control system in coffee fruits with speed and real time restrictions. | |
dc.description.abstract | Los sistemas de imágenes multiespectrales que utilizan LED de potencia de ancho de banda estrecho se han convertido en una solución factible para una amplia gama de aplicaciones. En comparación con los sistemas RGB tradicionales, aumentan el espacio de características según el número de longitudes de onda manteniendo el rango en precio y tiempo de adquisición. Por otra parte si se comparan con sistemas hiperespectrales, el tiempo de adquisición es menor, son más simples de implementar, pero sacrifican resolución espectral. En este documento, se presenta el diseño y la construcción de un sistema multiespectral basado en iluminación LED para medición de color a partir de la información espectral. De igual forma se busca llenar el vacío existente en la literatura al presentar el diseño detallado del controlador de luz, el proceso de calibración y la caracterización como un instrumento de medida, así como un análisis de correlación frente a un sistema de altas prestaciones utilizado en el control de calidad de frutas. También se presenta un caso de estudio en frutos de café en cereza, con el fin de determinar sus características de color y establecer una posible aplicación en control de calidad. El sistema captura imágenes multiespectrales con 15 longitudes de onda diferentes entre los 410 y los 960nm, y puede llegar a capturar hasta 8 imágenes espectrales por segundo. Cuenta con una corona de iluminación LED que calibra la cantidad de luz emitida en cada longitud de onda por medio de una modulación digital, y genera un efecto estroboscópico al sincronizar los disparos de la cámara y la luz. Dentro de los principales hallazgos en la caracterización se muestra la precisión con una variación en la medida inferior al 10% (σ^2< 0.1) y una exactitud con distancia de color ΔE inferior al 2% luego de un proceso de corrección de color. También se muestra un índice de correlación de Pearson por encima de 80% (ρ > 0.8) respecto al sistema hiperespectral y se presenta una completa separabilidad de los 24 colores del colorchecker usado como objeto de referencia.
Los resultados en café destacan que las longitudes de onda 560, 620, 720 y 840 nm aportan mayor información discriminante respecto al color. Adicionalmente, se presenta un análisis de la información entregada por la banda del infrarrojo cercano, en el cual se encuentra una correlación entre la pérdida de agua en el fruto y la reflectancia en dicha banda. Por último se explora una clasificación por color con una eficiencia superior al 93% con el fin de abrir las posibilidades a un sistema de control de calidad en frutos de café con restricciones de velocidad y tiempo real. | |
dc.language | spa | |
dc.publisher | Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática | |
dc.publisher | Departamento de Ingeniería Eléctrica y Electrónica | |
dc.publisher | Universidad Nacional de Colombia - Sede Manizales | |
dc.relation | S. P. Brumby, J. P. Theiler, J. J. Bloch, N. R. Harvey, S. J. Perkins, J. J. Szymanski,
and A. C. Young, "Evolving land cover classification algorithms for multispectral
and multitemporal imagery," in Imaging Spectrometry VII, vol. 4480, pp. 120-129,
International Society for Optics and Photonics, 2002. | |
dc.relation | L. Biehl and D. Landgrebe, "Multispec- tool for multispectral-hyperspectral image
data analysis", Computers & Geosciences, vol. 28, no. 10, pp. 1153-1159, 2002. | |
dc.relation | R. Rud, M. Shoshany, V. Alchanatis, and Y. Cohen, "Application of spectral features'
ratios for improving classification in partially calibrated hyperspectral imagery: a case
study of separating mediterranean vegetation species", Journal of Real-Time Image
Processing, vol. 1, no. 2, pp. 143-152, 2006. | |
dc.relation | S. Bostan, M. A. Ortak, C. Tuna, A. Akoguz, E. Sertel, and B. B. Ustundag, "Comparison
of classification accuracy of co-located hyperspectral & multispectral images for
agricultural purposes", in 2016 Fifth International Conference on Agro-Geoinformatics
(Agro-Geoinformatics), pp. 1-4, IEEE, 2016. | |
dc.relation | F. A. Kruse, L. L. Richardson, and V. G. Ambrosia, "Techniques developed for geologic
analysis of hyperspectral data applied to near-shore hyperspectral ocean data", in
Presented at the Fourth International Conference on Remote Sensing for Marine and
Coastal Environments, vol. 17, p. 19, 1997. | |
dc.relation | A. J. Tchekmedyian, M. Pellisé, and R. Sáenz, "Imágenes de banda estrecha o narrow
band imaging (nbi): una nueva era en endoscopía digestiva", Revista Médica del
Uruguay, vol. 24, no. 1, pp. 42-49, 2008. | |
dc.relation | F. S. Assirati, C. L. Hashimoto, R. A. Dib, L. H. S. Fontes, and T. Navarro-Rodriguez,
"High definition endoscopy and 'narrow band imagin' the diagnosis of gastroesophageal
reflux disease", ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo),
vol. 27, no. 1, pp. 59-65, 2014. | |
dc.relation | P. Lukes, M. Zabrodsky, J. Plzak, M. Chovanec, J. Betka, E. Foltynova, and J. Betka,
"Narrow band imaging (nbi)-endoscopic method for detection of head and neck
cancer", Endoscopy, no. 5, pp. 75-87, 2013. | |
dc.relation | H. Erives and N. B. Targhetta, "Implementation of a 3-d hyperspectral instrument for
skin imaging applications", IEEE Transactions on Instrumentation and Measurement,
vol. 58, no. 3, pp. 631-638, 2009. | |
dc.relation | Y.-J. Kim and G. Yoon, "Prediction of glucose in whole blood by near-infrared spectroscopy:
influence of wavelength region, preprocessing, and hemoglobin concentration",
Journal of biomedical optics, vol. 11, no. 4, p. 041128, 2006. | |
dc.relation | T. Vitorino, A. Casini, C. Cucci, A. Gebejesje, J. Hiltunen, M. Hauta-Kasari, M. Picollo,
and L. Stefani, "Accuracy in colour reproduction: using a colorchecker chart
to assess the usefulness and comparability of data acquired with two hyper-spectral
systems", in International Workshop on Computational Color Imaging, pp. 225-235,
Springer, 2015. | |
dc.relation | A. Cosentino, "Identification of pigments by multispectral imaging; a flowchart
method", Heritage Science, vol. 2, no. 1, p. 8, 2014. | |
dc.relation | D. Comelli, G. Valentini, A. Nevin, A. Farina, L. Toniolo, and R. Cubeddu, "A portable
uv-fluorescence multispectral imaging system for the analysis of painted surfaces",
Review of Scientific Instruments, vol. 79, no. 8, p. 086112, 2008. | |
dc.relation | Y. H. El-Sharkawy and S. Elbasuney, "Design and implementation of novel hyperspectral
imaging for dental carious early detection using laser induced fluorescence",
Photodiagnosis and photodynamic therapy, vol. 24, pp. 166-178, 2018. | |
dc.relation | C. Odaira, S. Itoh, and K. Ishibashi, "Clinical evaluation of a dental color analysis system:
the crystaleye spectrophotometer®", Journal of prosthodontic research, vol. 55,
no. 4, pp. 199-205, 2011. | |
dc.relation | M. F. Carlsohn, "Spectral image processing in real-time", Journal of Real-Time Image
Processing, vol. 1, no. 1, pp. 25-32, 2006. | |
dc.relation | R. Leitner, H. Mairer, and A. Kercek, "Real-time classification of polymers with nir
spectral imaging and blob analysis", Real-Time Imaging, vol. 9, no. 4, pp. 245-251,
2003. | |
dc.relation | P. Tatzer, M. Wolf, and T. Panner, "Industrial application for inline material sorting
using hyperspectral imaging in the nir range", Real-Time Imaging, vol. 11, no. 2,
pp. 99-107, 2005. | |
dc.relation | J. Blasco, N. Aleixos, S. Cubero, J. Gómez-Sanchís, and E. Moltó, "Automatic sorting
of satsuma (citrus unshiu) segments using computer vision and morphological
features", Computers and electronics in agriculture, vol. 66, no. 1, pp. 1-8, 2009. | |
dc.relation | S. Cubero, M. P. Diago, J. Blasco, J. Tardaguila, B. Millan, and N. Aleixos, "A new
method for pedicel/peduncle detection and size assessment of grapevine berries and
other fruits by image analysis", Biosystems engineering, vol. 117, pp. 62-72, 2014. | |
dc.relation | R. Lu, "Multispectral imaging for predicting firmness and soluble solids content of
apple fruit", Postharvest Biology and Technology, vol. 31, no. 2, pp. 147-157, 2004. | |
dc.relation | E. Brach, P. Poirier, R. Desjardins, and D. Lord, "Multispectral radiometer to measure
crop canopy characteristics", Review of Scientific Instruments, vol. 54, no. 4, pp. 493-
500, 1983. | |
dc.relation | L. Lleó, P. Barreiro, M. Ruiz-Altisent, and A. Herrero, "Multispectral images of peach
related to firmness and maturity at harvest", Journal of Food Engineering, vol. 93,
no. 2, pp. 229-235, 2009. | |
dc.relation | N. Kobayashi and T. Okabe, "Separating reflection components in images under multispectral
and multidirectional light sources", in 2016 23rd International Conference
on Pattern Recognition (ICPR), pp. 3210-3215, IEEE, 2016. | |
dc.relation | J. A. Herrera Ramírez, "Diseño e implementación de un sistema multiespectral en el
rango ultravioleta, visible e infrarrojo: aplicación al estudio y conservación de obras de
arte", Universitat Politécnica de Catalunya, 2014. | |
dc.relation | B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huo, H. Xiao, R. G.
May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer",
Optical engineering, vol. 42, pp. 3165-3171, 2003. | |
dc.relation | A. Yan, W. Zhenye, Z. Tao, D. Keyan, and L. Xinhang, "Development status and
aberration overview of micro spectrometer with czerny-turner structure", in 2016 IEEE
Optoelectronics Global Conference (OGC), pp. 1-3, IEEE, 2016. | |
dc.relation | H. Imani, S. Golmohammadi, A. Rostami, and K. Abbasian, "Resolution improvement
in high-speed fiber-optic spectrometers using photonic crystal fibers", in International
Conference On Photonics 2010, pp. 1-5, IEEE, 2010. | |
dc.relation | M. Parmar, F. Imai, S. H. Park, and J. Farrell, "A database of high dynamic range
visible and near-infrared multispectral images", in Digital photography iv, vol. 6817,
p. 68170N, International Society for Optics and Photonics, 2008. | |
dc.relation | N. Nakajima and A. Taguchi, "A novel color image processing scheme in hsi color space
with negative image processing", in 2014 International Symposium on Intelligent Signal
Processing and Communication Systems (ISPACS), pp. 029-033, IEEE, 2014. | |
dc.relation | M. Rai, "Thermal imaging system and its real time applications: a survey", Journal of
Engineering Technology, vol. 62, 06 2018. | |
dc.relation | A. K. Krishnan, P. McGarey, and S. S. J. F. Bell, "Nir-cam-development of a near
infrared camera", in IEEE International Symposium on Robotic and Sensors Environments
(ROSE), 2013. | |
dc.relation | A. de la Casa, G. Ovando, L. Bressanini, and J. Martinez, "Empleo del ndvi de una
cámara digital modificada para estimar la cobertura del cultivo de papa bajo distintas
condiciones de fertilización nitrogenada", AgriScientia, vol. 33, pp. 75-88, 12 2016. | |
dc.relation | G. ElMasry and D.-w. Sun, "Principles of hyperspectral imaging technology", in Hyperspectral
imaging for food quality analysis and control, pp. 3-43, Elsevier, 2010. | |
dc.relation | M. Parmar, S. Lansel, and B. A.Wandell, "Spatio-spectral reconstruction of the multispectral
datacube using sparse recovery", in 2008 15th IEEE International Conference
on Image Processing, pp. 473-476, IEEE, 2008. | |
dc.relation | D. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, O. L. García-Navarrete, and
J. Blasco, "Recent advances and applications of hyperspectral imaging for fruit and
vegetable quality assessment", Food and Bioprocess Technology, vol. 5, no. 4, pp. 1121-
1142, 2012. | |
dc.relation | J. Beeckman, K. Neyts, and P. J. Vanbrabant, "Liquid-crystal photonic applications",
Optical Engineering, vol. 50, no. 8, p. 081202, 2011. | |
dc.relation | J. Vila-Frances, J. Calpe-Maravilla, L. Gomez-Chova, and J. Amoros-Lopez, "Design
of a configurable multispectral imaging system based on an aotf", IEEE transactions
on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 1, pp. 259-262, 2011. | |
dc.relation | R. Shrestha and J. Y. Hardeberg, "How are led illumination based multispectral imaging
systems influenced by different factors?", in International Conference on Image
and Signal Processing, pp. 61-71, Springer, 2014. | |
dc.relation | D. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, and J. Blasco, "Selection of
optimal wavelength features for decay detection in citrus fruit using the roc curve and
neural networks", Food and Bioprocess Technology, vol. 6, no. 2, pp. 530-541, 2013. | |
dc.relation | "Sistema de visión de fácil programación serie cv-x. keyence mexico s.a. de c.v."
<https://www.keyence.com.mx/products/vision/vision-sys/cv-x100/> . Accessed:
2020-08-19. | |
dc.relation | "Multispectral cameras cms series visible to near ir ranges. silios technologies rue gaston
imbert prolongée. france." <https://www.silios.com/cms-series>. Accessed: 2020-
08-19. | |
dc.relation | Y. Kanzawa, Y. Kimura, and T. Naito, "Human skin detection by visible and nearinfrared
imaging", in IAPR Conference on Machine Vision Applications, vol. 12,
pp. 14-22, Citeseer, 2011. | |
dc.relation | P. Colantoni, R. Pillay, C. Lahanier, and D. Pitzalis, "Analysis of multispectral images
of paintings", in 2006 14th European Signal Processing Conference, pp. 1-5, IEEE,
2006. | |
dc.relation | D. Ghimire and J. Lee, "A lighting insensitive face detection method on color images",
in 2012 Spring Congress on Engineering and Technology, pp. 1-4, IEEE, 2012. | |
dc.relation | H.-n. Li, J. Feng, W.-p. Yang, L. Wang, H.-b. Xu, P.-f. Cao, and J.-j. Duan, "Multispectral
imaging using led illuminations", in 2012 5th International Congress on Image
and Signal Processing, pp. 538-542, IEEE, 2012. | |
dc.relation | A. Paviotti and D. A. Forsyth, "A lightness recovery algorithm for the multispectral
acquisition of frescoed environments", in 2009 IEEE 12th International Conference on
Computer Vision Workshops, ICCV Workshops, pp. 970-977, IEEE, 2009. | |
dc.relation | F. Wu, S. Li, X. Zhang, and W. Ye, "A design method for leds arrays structure illumination",
Journal of Display Technology, vol. 12, no. 10, pp. 1177-1184, 2016. | |
dc.relation | S. Shirmohammadi and A. Ferrero, "Camera as the instrument: the rising trend of
vision based measurement", IEEE Instrumentation & Measurement Magazine, vol. 17,
no. 3, pp. 41-47, 2014. | |
dc.relation | H. Yang, J. W. Bergmans, T. C. Schenk, J.-P. M. Linnartz, and R. Rietman, "Uniform
illumination rendering using an array of leds: a signal processing perspective", IEEE
transactions on signal processing, vol. 57, no. 3, pp. 1044-1057, 2008. | |
dc.relation | I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, "Designing light-emitting diode
arrays for uniform near-field irradiance", Applied optics, vol. 45, no. 10, pp. 2265-2272,
2006. | |
dc.relation | E. Samani, V. Gupta, and S. Raman, "Flash/no-flash image fusion using dictionary
learning", in 2015 Fifth National Conference on Computer Vision, Pattern Recognition,
Image Processing and Graphics (NCVPRIPG), pp. 1-4, IEEE, 2015. | |
dc.relation | A. Pourreza, H. Pourreza, and M. Hossein-Aghkhani, "An automatic foreign materials
detection of barberries using red-free image processing", in Third International
Workshop on Advanced Computational Intelligence, pp. 517-521, IEEE, 2010. | |
dc.relation | M.-C. Chuang, J.-N. Hwang, K. Williams, and R. Towler, "Automatic fish segmentation
via double local thresholding for trawl-based underwater camera systems", in 2011 18th
IEEE International Conference on Image Processing, pp. 3145-3148, IEEE, 2011 | |
dc.relation | G. Polder, Spectral imaging for measuring biochemicals in plant material. PhD thesis, Delft University of Technology, Faculty of Applied Sciences, 2004. | |
dc.relation | B. Bennedsen and D. Peterson, "Performance of a system for apple surface defect
identification in near-infrared images", Biosystems engineering, vol. 90, no. 4, pp. 419-
431, 2005. | |
dc.relation | O. Kleynen, V. Leemans, and M.-F. Destain, "Development of a multi-spectral vision
system for the detection of defects on apples", Journal of food engineering, vol. 69,
no. 1, pp. 41-49, 2005. | |
dc.relation | Y. Peng and R. Lu, "An lctf-based multispectral imaging system for estimation of
apple fruit firmness: Part i. acquisition and characterization of scattering images",
Transactions of the ASABE, vol. 49, no. 1, pp. 259-267, 2006. | |
dc.relation | J . B. Ivars, A. Gutierrez, S. Alegre, S. C. García, and J. Gómez-Sanchís, “Sistemas de visión artificial para la inspección automática de fruta procesada. aplicación a gajos de satsuma y arilos de granada ,”Levante Agrícola: Revista internacional de cítricos, vol. 391, pp. 198–203,2008. | |
dc.relation | S. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, "An excitation
wavelength-scanning spectral imaging system for preclinical imaging", Review of Scientific Instruments, vol. 79, no. 2, p. 023707, 2008. | |
dc.relation | D. Zhang, Z. Guo, G. Lu, L. Zhang, and W. Zuo, "An online system of multispectral
palmprint verification", IEEE transactions on instrumentation and measurement,
vol. 59, no. 2, pp. 480-490, 2009. | |
dc.relation | W. A. Christens-Barry, K. Boydston, F. G. France, K. T. Knox, R. L. Easton Jr,
and M. B. Toth, "Camera system for multispectral imaging of documents", in Sensors,
Cameras, and Systems for Industrial/Scientific Applications X, vol. 7249, p. 724908,
International Society for Optics and Photonics, 2009. | |
dc.relation | G. ElMasry, N.Wang, and C. Vigneault, "Detecting chilling injury in red delicious apple
using hyperspectral imaging and neural networks", Postharvest biology and technology,
vol. 52, no. 1, pp. 1-8, 2009. | |
dc.relation | N. Everdell, I. Styles, A. Calcagni, J. Gibson, J. Hebden, and E. Claridge, "Multispectral
imaging of the ocular fundus using light emitting diode illumination", Review of
scientific instruments, vol. 81, no. 9, p. 093706, 2010. | |
dc.relation | H. Kalkan, P. Beriat, Y. Yardimci, and T. Pearson, "Detection of contaminated hazelnuts
and ground red chili pepper flakes by multispectral imaging", Computers and
Electronics in Agriculture, vol. 77, no. 1, pp. 28-34, 2011. | |
dc.relation | M. Taghizadeh, A. A. Gowen, and C. P. O'Donnell, "Comparison of hyperspectral
imaging with conventional rgb imaging for quality evaluation of agaricus bisporus
mushrooms", Biosystems engineering, vol. 108, no. 2, pp. 191-194, 2011. | |
dc.relation | Y. Gong, D. Zhang, P. Shi, and J. Yan, "High-speed multispectral iris capture system
design", IEEE Transactions on instrumentation and measurement, vol. 61, no. 7,
pp. 1966-1978, 2012. | |
dc.relation | P. Usenik, M. Bürmen, A. Fidler, F. Pernus, and B. Likar, "Automated classification
and visualization of healthy and diseased hard dental tissues by near-infrared hyperspectral
imaging", Applied Spectroscopy, vol. 66, no. 9, pp. 1067-1074, 2012. | |
dc.relation | K. Hirai, T. Tanimoto, K. Yamamoto, T. Horiuchi, and S. Tominaga, "An led-based
spectral imaging system for surface reflectance and normal estimation", in 2013 International
Conference on Signal-Image Technology & Internet-Based Systems, pp. 441-
447, IEEE, 2013. | |
dc.relation | J. Herrera-Ramírez, M. Vilaseca, and J. Pujol, "Portable multispectral imaging system
based on light-emitting diodes for spectral recovery from 370 to 1630 nm", Applied
optics, vol. 53, no. 14, pp. 3131-3141, 2014. | |
dc.relation | M. Goel, E. Whitmire, A. Mariakakis, T. S. Saponas, N. Joshi, D. Morris, B. Guenter,
M. Gavriliu, G. Borriello, and S. N. Patel, "Hypercam: hyperspectral imaging for ubiquitous
computing applications", in Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pp. 145-156, 2015. | |
dc.relation | C. LeGendre, X. Yu, D. Liu, J. Busch, A. Jones, S. Pattanaik, and P. Debevec, "Practical
multispectral lighting reproduction", ACM Transactions on Graphics (TOG),
vol. 35, no. 4, pp. 1-11, 2016. | |
dc.relation | C. LeGendre, X. Yu, and P. Debevec, "Optimal led selection for multispectral lighting
reproduction", Electronic Imaging, vol. 2017, no. 8, pp. 25-32, 2017. | |
dc.relation | T. Fu, J. Liu, and J. Tian, "Vis-nir multispectral synchronous imaging pyrometer
for high-temperature measurements", Review of Scientific Instruments, vol. 88, no. 6,
p. 064902, 2017. | |
dc.relation | J. van Roy, J. Keresztes, N.Wouters, B. De Ketelaere, and W. Saeys, "Measuring colour
of vine tomatoes using hyperspectral imaging", Postharvest Biology and Technology,
vol. 129, pp. 79-89, 2017. | |
dc.relation | A. Patrick, S. Pelham, A. Culbreath, C. C. Holbrook, I. J. De Godoy, and C. Li, "High
throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial
systems and multispectral imaging", IEEE Instrumentation Measurement Magazine,
vol. 20, pp. 4-12, June 2017. | |
dc.relation | B. Zhang, L. Liu, B. Gu, J. Zhou, J. Huang, and G. Tian, "From hyperspectral imaging
to multispectral imaging: Portability and stability of his-mis algorithms for common
defect detection", Postharvest Biology and Technology, vol. 137, pp. 95-105, 2018. | |
dc.relation | A. Duliu, J. Vogel, C. D. Samoilescu, T. Lasser, and N. Navab, "Illumination compensation
for high-resolution multispectral image mosaicing of heritage paintings", in
2015 Digital Heritage, vol. 1, pp. 191-198, IEEE, 2015. | |
dc.relation | P. C.West, "High speed, real-time machine vision", Imagenation and Automated Vision
Systems, Inc, 2001. | |
dc.relation | S.-H. Yang, F.-M. Jheng, and Y. C. Cheng, "Two-dimensional adaptive image stabilisation", Electronics Letters, vol. 43, no. 8, pp. 446-448, 2007. | |
dc.relation | K.-S. Lee, W. B. Cohen, R. E. Kennedy, T. K. Maiersperger, and S. T. Gower, "Hyperspectral
versus multispectral data for estimating leaf area index in four different biomes", Remote Sensing of Environment, vol. 91, no. 3-4, pp. 508-520, 2004. | |
dc.relation | S. K. Rout, M. Sahani, and M. N. Mohanty, "Modified color brightness preserving bihistogram
equalization with variable enhancement degree for restoration of skin color",
in 2015 International Conference on Information Technology (ICIT), pp. 88-93, IEEE,
2015. | |
dc.relation | B. Abdou, D. Morin, F. Bonn, and A. Huete, "A review of vegetation indices", Remote
Sensing Reviews, vol. 13, pp. 95-120, 01 1996. | |
dc.relation | F. J. Bolton, A. S. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, "Portable, lowcost
multispectral imaging system: design, development, validation, and utilization",
Journal of biomedical optics, vol. 23, no. 12, p. 121612, 2018. | |
dc.relation | P. G. R. Inc, “Hardware Warranty WEEE Licensing FleaR©3 GigE Imaging Performance Specification,” tech.rep., Point Grey Research© Inc 12051 Riverside Way• Richmond, BC • Canada, 2013 | |
dc.relation | Y. S. Cho, J. Kwon, and H.-Y. Kim, "Design and implementation of led dimming
system with intelligent sensor module", Journal of information and communication
convergence engineering, vol. 11, no. 4, pp. 247-252, 2013. | |
dc.relation | J. Fan, W. Yung, and M. Pecht, "Lifetime estimation of high-power white led using
degradation-data-driven method", IEEE Transactions on Device and Materials Reliability
- IEEE TRANS DEVICE MATER RELIA, vol. 12, pp. 470-477, 06 2012. | |
dc.relation | R. T. Marcus, "chapter 2 - the measurement of color", in Color for Science, Art and
Technology (K. Nassau, ed.), vol. 1 of AZimuth, pp. 31 - 96, North-Holland, 1998. | |
dc.relation | D. R. Wyble and D. C. Rich, "Evaluation of methods for verifying the performance of
color-measuring instruments. part ii: Inter-instrument reproducibility", Color Research
& Application: Endorsed by Inter-Society Color Council, The Colour Group (Great
Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society
for the Study of Color, The Swedish Colour Centre Foundation, Colour Society
of Australia, Centre Français de la Couleur, vol. 32, no. 3, pp. 176-194, 2007. | |
dc.relation | A. E2214-19, "Standard practice for specifying and verifying the performance
of color-measuring instruments", astm international, west conshohocken, pa, 2019,
www.astm.org. | |
dc.relation | M. Down, "Measurement System Analysis", 4th ed. Southfield, Michigan: Automotive Industry Action Group, 2010. | |
dc.relation | D. H. Foster and K. Amano, "Hyperspectral imaging in color vision research: tutorial",
JOSA A, vol. 36, no. 4, pp. 606-627, 2019. | |
dc.relation | D. H. Foster, K. Amano, S. M. Nascimento, and M. J. Foster, "Frequency of metamerism
in natural scenes", Josa a, vol. 23, no. 10, pp. 2359-2372, 2006. | |
dc.relation | D. H. Foster, K. Amano, and S. M. Nascimento, "Color constancy in natural scenes
explained by global image statistics", Visual neuroscience, vol. 23, no. 3-4, pp. 341-349,
2006. | |
dc.relation | B. E. Bayer, "Color imaging array", Mar. 5 1975. US Patent 3971065. | |
dc.relation | J. van Roy, J. Keresztes, N.Wouters, B. De Ketelaere, and W. Saeys, "Measuring colour
of vine tomatoes using hyperspectral imaging", Postharvest Biology and Technology,
vol. 129, pp. 79-89, 2017. | |
dc.relation | R. Hunt and M. Pointer, "A colour-appearance transform for the cie 1931 standard
colorimetric observer", Color Research & Application, vol. 10, no. 3, pp. 165-179, 1985. | |
dc.relation | M. Afifi, "Semantic white balance: Semantic color constancy using convolutional neural
network", arXiv preprint arXiv:1802.00153, 2018. | |
dc.relation | H. D. Beale, H. B. Demuth, and M. Hagan, "Neural network design", Pws, Boston,
1996. | |
dc.relation | H. Gavin, "The levenberg-marquardt algorithm for nonlinear least squares curve-fitting
problems", 2019. | |
dc.relation | N. J. Guliyev and V. E. Ismailov, "On the approximation by single hidden layer feedforward
neural networks with fixed weights", Neural Networks, vol. 98, pp. 296-304,
2018. | |
dc.relation | P. Goldstein, "Non-macadam color discrimination ellipses", in Novel Optical Systems
Design and Optimization XV, vol. 8487, p. 84870A, International Society for Optics
and Photonics, 2012. | |
dc.relation | D. L. MacAdam, "Visual sensitivities to color differences in daylight", Josa, vol. 32,
no. 5, pp. 247-274, 1942. | |
dc.relation | Y. Yusuf, J. T. Sri Sumantyo, and H. Kuze, "Spectral information analysis of image
fusion data for remote sensing applications", Geocarto international, vol. 28, no. 4,
pp. 291-310, 2013. | |
dc.relation | S. Li, Z. Li, and J. Gong, "Multivariate statistical analysis of measures for assessing
the quality of image fusion", International Journal of Image and Data Fusion, vol. 1,
no. 1, pp. 47-66, 2010. | |
dc.relation | A. C. Schuerger, G. A. Capelle, J. A. Di Benedetto, C. Mao, C. N. Thai, M. D. Evans,
J. T. Richards, T. A. Blank, and E. C. Stryjewski, "Comparison of two hyperspectral
imaging and two laser-induced fluorescence instruments for the detection of zinc stress
and chlorophyll concentration in bahia grass (paspalum notatum flugge.)", Remote
sensing of environment, vol. 84, no. 4, pp. 572-588, 2003. | |
dc.relation | N. S. Annamdevula, B. Sweat, P. Favreau, A. S. Lindsey, D. F. Alvarez, T. C. Rich,
and S. J. Leavesley, "An approach for characterizing and comparing hyperspectral
microscopy systems", Sensors, vol. 13, no. 7, pp. 9267-9293, 2013. | |
dc.relation | C. A. T. Navarrete, P. M. Narvaez, and L. E. A. Parada, "1ccd and 3ccd color cameras
performance comparison applied to hyperspectral image reconstruction", IEEE Latin
America Transactions, vol. 13, no. 8, pp. 2661-2667, 2015. | |
dc.relation | M. N. Kumar, M. Seshasai, K. V. Prasad, V. Kamala, K. Ramana, R. Dwivedi, and
P. Roy, "A new hybrid spectral similarity measure for discrimination of vigna species",
arXiv preprint arXiv:1509.05767, 2015. | |
dc.relation | K. X. Wan, I. Vidavsky, and M. L. Gross, "Comparing similar spectra: from similarity
index to spectral contrast angle", Journal of the American Society for Mass Spectrometry,
vol. 13, no. 1, pp. 85-88, 2002. | |
dc.relation | J. Gómez-Sanchis, D. Lorente, E. Soria-Olivas, N. Aleixos, S. Cubero, and J. Blasco,
"Development of a hyperspectral computer vision system based on two liquid crystal
tuneable filters for fruit inspection. application to detect citrus fruits decay", Food and
bioprocess technology, vol. 7, no. 4, pp. 1047-1056, 2014. | |
dc.relation | N. Sándor, T. Ondró, and J. Schanda, "Spectral interpolation errors", Color Research
& Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society
for the Study of Color, The Swedish Colour Centre Foundation, Colour Society
of Australia, Centre Français de la Couleur, vol. 30, no. 5, pp. 348-353, 2005. | |
dc.relation | K. Inoue, K. Hara, and K. Urahama, "Spectral reflectance estimation and color reproduction
based on sparse neugebauer model", Advances in Science, Technology and
Engineering Systems Journal, vol. 2, pp. 958-966, 06 2017. | |
dc.relation | S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, "Fisher discriminant
analysis with kernels", in Neural networks for signal processing IX: Proceedings of the
1999 IEEE signal processing society workshop (cat. no. 98th8468), pp. 41-48, Ieee,
1999. | |
dc.relation | P. Li, S. H. Lee, and H. Y. Hsu, "Study on citrus fruit image using fisher linear discriminant
analysis", Proceedings - 2011 IEEE International Conference on Computer
Science and Automation Engineering, CSAE 2011, vol. 4, pp. 175-180, 2011. | |
dc.relation | F. Hollaus, M. Gau, and R. Sablatnig, "Enhancement of multispectral images of degraded
documents by employing spatial information", in 2013 12th International Conference
on Document Analysis and Recognition, pp. 145-149, IEEE, 2013. | |
dc.relation | K. Perumal and R. Bhaskaran, "Supervised classification performance of multispectral
images", arXiv preprint arXiv:1002.4046, 2010. | |
dc.relation | S. Baronti, A. Casini, F. Lotti, and S. Porcinai, "Multispectral imaging system for the
mapping of pigments in works of art by use of principal-component analysis", Applied
optics, vol. 37, no. 8, pp. 1299-1309, 1998. | |
dc.relation | C. E. Thomaz and G. A. Giraldi, "A new ranking method for principal components
analysis and its application to face image analysis", Image and Vision Computing,
vol. 28, no. 6, pp. 902-913, 2010. | |
dc.relation | C.-C. Hung, H. Purnawan, and B.-C. Kuo, "Multispectral image classification using
rough set theory and the comparison with parallelepiped classifier", in 2007 IEEE
International Geoscience and Remote Sensing Symposium, pp. 2052-2055, IEEE, 2007. | |
dc.relation | C. Bishop, "Pattern Recognition and Machine Learning". Springer, 2006. | |
dc.relation | C. R. Rao, S. K. Mitra, et al., "Generalized inverse of a matrix and its applications",
in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Theory of Statistics, The Regents of the University of California,
1972. | |
dc.relation | S. Shalev-Shwartz and S. Ben-David, "Understanding Machine Learning". From Theory
to Algorithms. Cambridge University Press, 2014. | |
dc.relation | C.-I. Chang, "Spectral information divergence for hyperspectral image analysis", in
IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99
(Cat. No. 99CH36293), vol. 1, pp. 509-511, IEEE, 1999. | |
dc.relation | D. G. Altman and J. M. Bland, "Measurement in medicine: the analysis of method comparison
studies", Journal of the Royal Statistical Society: Series D (The Statistician) ,
vol. 32, no. 3, pp. 307-317, 1983. | |
dc.relation | C. Oliveros-Tascón and J. Sanz-Uribe, "Ingeniería y café en colombia", Revista de
Ingeniería, no. 33, pp. 99-114, 2011. | |
dc.relation | C. Oliveros, J. Pabón, E. Montoya, C. Ramírez, and J. Sanz, "Separación de frutos de
café verdes por medios mecánicos", Cenicafé, vol. 61, pp. 260-269, 01 2010. | |
dc.relation | J. R. Sanz-Uribe, P. J. Ramos-Giraldo, and C. E. Oliveros-Tascon, "Algorithm to
identify maturation stages of coffee fruits", in Advances in Electrical and Electronics
Engineering-IAENG Special Edition of the World Congress on Engineering and Computer
Science 2008, pp. 167-174, IEEE, 2008. | |
dc.relation | "Anhui. jiexun optoelectronic technology co. ltd. multifunction color sorter." <http:
//www.hfjiexun.com>. Accessed: 2019-09-05. | |
dc.relation | "Buhler. coffee sorting. separador classificador mtra." <https://www.buhlergroup.
com/southamerica/pt/produtos/separador-classificador-mtra.htm> . Accessed:
2019-09-05. | |
dc.relation | "China hefei taiho optoelectronic technology co. ltd. beans color sorter." <http://www.
chinacolorsort.com/display2.asp?id=768>. Accessed: 2019-09-05. | |
dc.relation | "Orange sorting machines (india) private limited. coffee sorting machines." <https:
//www.orangesorter.net/>. Accessed: 2019-09-05. | |
dc.relation | "Multiscan technologies. café." <http://www.multiscan.eu/
clasificacion-y-seleccion/cafe-es/>. Accessed: 2019-09-05. | |
dc.relation | "Hcg tecnologia ltda. máquina separadora de café." <http://www.hcgtecnologia.
com.br/produtos/separacao-de-graos-de-cafe> . Accessed: 2019-09-05. | |
dc.relation | Z. Sandoval, F. Prieto, and J. Betancur, "Digital image processing for classification of
coffee cherries", in 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference,
pp. 417-421, IEEE, 2010. | |
dc.relation | M. N. Merzlyak, A. E. Solovchenko, and A. A. Gitelson, "Reflectance spectral features
and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in
apple fruit", Postharvest biology and technology, vol. 27, no. 2, pp. 197-211, 2003. | |
dc.relation | D. Balasundaram, T. Burks, D. Bulanon, T. Schubert, and W. Lee, "Spectral reflectance
characteristics of citrus canker and other peel conditions of grapefruit", Postharvest
Biology and Technology, vol. 51, no. 2, pp. 220-226, 2009. | |
dc.relation | M. Moyano, A. J. Meléndez-Martínez, J. Alba, and F. J. Heredia, "A comprehensive
study on the colour of virgin olive oils and its relationship with their chlorophylls and
carotenoids indexes (i): Ciexyz non-uniform colour space", Food Research International,
vol. 41, no. 5, pp. 505-512, 2008. | |
dc.relation | I. D. Aristizabal Torres, J. J. Carvajal Herrera, and C. E. Oliveros Tascon, "Physical
and mechanical properties correlation of coffee fruit (coffea arabica) during its ripening,
" Dyna, vol. 79, no. 172, pp. 148-155, 2012. | |
dc.relation | Z. L. S. Niño and F. A. P. Ortiz, "Caracterización de café cereza empleando técnicas
de visión artificial", Revista Facultad Nacional de Agronomía-Medellín, vol. 60, no. 2,
pp. 4105-4127, 2007. | |
dc.relation | N. L. Montes Castrillón et al., "Real-time classification of coffee fruits using FPGA".
PhD thesis, Universidad Nacional de Colombia-Sede Manizales,2015. | |
dc.relation | Q. Gu, A. Al Noman, T. Aoyama, T. Takaki, and I. Ishii, "A fast color tracking system
with automatic exposure control", in 2013 IEEE International Conference on Information
and Automation (ICIA), pp. 1302-1307, IEEE, 2013. | |
dc.relation | J. J. Carvajal Herrera, I. D. Aristizábal Torres, C. E. Oliveros Tascón, M. Montoya,
and J. Wilson, "Coffee fruit (coffea arabica l.) colorimetry during its development
and maturation", Revista Facultad Nacional de Agronomía Medellín, vol. 64, no. 2,
pp. 6229-6240, 2011. | |
dc.relation | P. Ramos, J. Sanz, and J. Estrada, "Sistema opto electrónico para la identificación de
frutos de café por estados de maduración", Cenicafé, vol. 62, no. 1, pp. 87-99, 2011. | |
dc.relation | A. Bustillo, "El manejo de cafetales y su relación con el control de la broca del café",
Hypothenemus hampei. 01 2002. | |
dc.relation | P. Benavides and H. Arévalo, "Manejo integrado: una estrategia para el control de la
broca del café en colombia", Cenicafé, vol. 53, no. 1, pp. 39-48, 2002. | |
dc.relation | A. Pardey, "Una revisión sobre la broca del café", Hypothenemus hampei, 2006. | |
dc.relation | J. G. Clevers, L. Kooistra, and M. E. Schaepman, "Using spectral information from the
nir water absorption features for the retrieval of canopy water content", International
Journal of Applied Earth Observation and Geoinformation, vol. 10, no. 3, pp. 388-397,
2008. | |
dc.relation | A. A. Gitelson, Y. J. Kaufman, and M. N. Merzlyak, "Use of a green channel in remote
sensing of global vegetation from eos-modis", Remote sensing of Environment, vol. 58,
no. 3, pp. 289-298, 1996. | |
dc.relation | Y. Uwadaira, Y. Sekiyama, and A. Ikehata, "An examination of the principle of nondestructive
fresh firmness measurement of peach fruit by using vis-nir spectroscopy",
Heliyon, vol. 4, p. e00531, 02 2018. | |
dc.relation | L. Huang, L. Meng, N. Zhu, and D.Wu, "A primary study on forecasting the days before
decay of peach fruit using near-infrared spectroscopy and electronic nose techniques",
Postharvest Biology and Technology, vol. 133, pp. 104-112, 2017. | |
dc.relation | J. Rogowska, "Overview and fundamentals of medical image segmentation", Handbook
of medical imaging, processing and analysis, pp. 69-85, 2000. | |
dc.relation | G. ElMasry, N. Wang, A. ElSayed, and M. Ngadi, "Hyperspectral imaging for nondestructive
determination of some quality attributes for strawberry", Journal of Food
Engineering, vol. 81, no. 1, pp. 98-107, 2007. | |
dc.relation | A. A. Gitelson and M. N. Merzlyak, "Remote sensing of chlorophyll concentration in
higher plant leaves", Advances in Space Research, vol. 22, no. 5, pp. 689-692, 1998. | |
dc.relation | J. J. Díaz García-Cervigón, "Estudio de índices de vegetación a partir de imágenes
aéreas tomadas desde uas/rpas y aplicaciones de estos a la agricultura de precisión",
Universidad Complutense de Madrid, Madrid, España. Recuperado de http://eprints.
ucm. es/31423/1/TFM_Juan_Diaz_Cervignon. pdf, 2015. | |
dc.relation | H. A. Vrooman, C. A. Cocosco, F. van der Lijn, R. Stokking, M. A. Ikram, M. W.
Vernooij, M. M. Breteler, and W. J. Niessen, "Multi-spectral brain tissue segmentation
using automatically trained k-nearest-neighbor classification", Neuroimage, vol. 37,
no. 1, pp. 71-81, 2007. | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Diseño de un sistema de adquisición de imágenes multiespectrales basado en iluminación LED de potencia de ancho de banda estrecho | |
dc.type | Otros | |