dc.contributorRestrepo Parra, Elisabeth
dc.contributorOspina Ospina, Rogelio
dc.contributorLaboratorio de Fisica del Plasma
dc.creatorLondoño Calderón, Viviana
dc.date.accessioned2020-08-03T22:40:23Z
dc.date.available2020-08-03T22:40:23Z
dc.date.created2020-08-03T22:40:23Z
dc.date.issued2020
dc.identifierV. Londoño-Calderón, “Síntesis de nanopartículas de Níquel y Molibdeno mediante ablación láser para aplicación en catálisis heterogénea Síntesis de nanopartículas de Níquel y Molibdeno mediante ablación láser para aplicación en catálisis heterogénea” 2020.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77908
dc.description.abstractEn el presente trabajo se sintetizaron y caracterizaron nanopartículas de Ni y Mo para ser utilizadas como precursor, con el fin de producir un catalizador NiMo/γAl2O3, el cual también fue caracterizado y activado para evaluar su desempeño catalítico en una reacción de HDS. Los resultados mostraron que el porcentaje de conversión de la molécula modelo utilizada en la reacción catalítica fue de alrededor de 17%, posiblemente debido a que, según la cuantificación de los resultados de XPS el porcentaje atómico de la fase activa (Mo) es menor que el porcentaje atómico del promotor, dando lugar a que el metal promotor (Ni) pueda estar ocupando sitios activos del Mo, quitándole superficie efectiva a éste y dando como consecuencia un efecto contrario a la función del promotor (Texto tomado de la fuente)
dc.description.abstractIn the present work, Ni and Mo nanoparticles were synthesized and characterized in order to be used as a precursor to produce a NiMo/γAl2O3 catalyst, which was also characterized and activated to evaluate its catalytic performance in an HDS reaction. The results show that the conversion percentage of the model molecule detected in the catalytic reaction was around 17%, possibly because according to the quantification of the XPS results, the atomic percentage of the active phase (Mo) islower than the atomic percentage of the promoter (Ni), resulting in the promoter metal (Ni) being able to occupy active sites of the Mo, filling up part of the effective surface of the Mo and causing a contrary effect to the function of the promoter
dc.languagespa
dc.publisherManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física
dc.publisherDepartamento de Física y Química
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationJ. Rouquerol, P. Llewellyn, and F. Rouquerol, “Is the BET equation applicable to microporous adsorbents?,” Stud. Surf. Sci. Catal., vol. 160, no. December 2015, pp. 49–56, 2007, doi: 10.1016/s0167-2991(07)80008-5.
dc.relationBarrett, Joyner, and Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms,” Vol. Area Distrib. Porous Subst., vol. 73, no. 1948, pp. 373–380, 1951, doi: 10.1021/ja01145a126.
dc.relationR. Huirache-Acuña et al., “SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts—Review,” Materials (Basel)., vol. 6, no. 9, pp. 4139–4167, 2013, doi: 10.3390/ma6094139.
dc.relationS. Hu, G. Luo, T. Shima, Y. Luo, and Z. Hou, “Hydrodenitrogenation of pyridines and quinolines at a multinuclear titanium hydride framework,” Nat. Commun., vol. 8, no. 1, pp. 1–8, 2017.
dc.relationY. Shi et al., “Pore engineering of hierarchically structured hydrodemetallization catalyst pellets in a fixed bed reactor,” Chem. Eng. Sci., vol. 202, pp. 336–346, 2019.
dc.relationS. Boullosa-Eiras, R. Lødeng, H. Bergem, M. Stöcker, L. Hannevold, and E. A. Blekkan, “Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts,” Catal. today, vol. 223, pp. 44–53, 2014.
dc.relationC. Li, X. Zhao, A. Wang, G. W. Huber, and T. Zhang, “Catalytic Transformation of Lignin for the Production of Chemicals and Fuels,” Chem. Rev., vol. 115, no. 21, pp. 11559–11624, 2015, doi: 10.1021/acs.chemrev.5b00155.
dc.relationF. J. Méndez, G. Bravo-Ascención, M. González-Mota, I. Puente-Lee, X. Bokhimi, and T. E. Klimova, “NiMo catalysts supported on Al, Nb, Ti or Zr-containing MCM-41 for dibenzothiophene hydrodesulfurization,” Catal. Today, no. 2010, 2018, doi: 10.1016/j.cattod.2018.03.039.
dc.relationA. Infantes-Molina, A. Romero-Pérez, E. Finocchio, G. Busca, A. Jiménez-López, and E. Rodríguez-Castellón, “HDS and HDN on SBA-supported RuS2 catalysts promoted by Pt and Ir,” J. Catal., vol. 305, pp. 101–117, 2013.
dc.relationA. Bathla and B. Pal, “Catalytic Selective Hydrogenation and Cross Coupling Reaction Using Polyvinylpyrrolidone-Capped Nickel Nanoparticles,” ChemistrySelect, vol. 3, no. 17, pp. 4738–4744, 2018, doi: 10.1002/slct.201800699.
dc.relationE. Camilo and G. Pacheco, “EFECTO DE LA PRESENCIA DE OLEFINAS Y LA TEMPERATURA SOBRE REACCIONES DE HDS DE DBT,” 2012.
dc.relationW. Lai et al., “Efficient one pot synthesis of mesoporous NiMo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization,” Fuel Process. Technol., vol. 110, pp. 8–16, 2013, doi: 10.1016/j.fuproc.2013.01.006.
dc.relationH. Liu et al., “PVP-assisted synthesis of unsupported NiMo catalysts with enhanced hydrodesulfurization activity,” Fuel Process. Technol., vol. 160, pp. 93–101, 2017, doi: 10.1016/j.fuproc.2017.02.018.
dc.relationC. E. Scott et al., “Preparation of NiMoS nanoparticles for hydrotreating,” Catal. Today, vol. 250, pp. 21–27, 2015, doi: 10.1016/j.cattod.2014.07.033.
dc.relationK. Parveen, V. Banse, and L. Ledwani, “Green synthesis of nanoparticles: Their advantages and disadvantages,” AIP Conf. Proc., vol. 1724, 2016, doi: 10.1063/1.4945168.
dc.relationM. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, “Synthesis of nanoparticles by laser ablation: A review,” KONA Powder Part. J., vol. 2017, no. 34, pp. 80–90, 2017, doi: 10.14356/kona.2017009.
dc.relationA. Kruusing, Handbook of liquids-assisted laser processing. Elsevier. 2010.
dc.relationA. J. Kang, H. W., Lee, H., & Welch, “Laser ablation in a liquid-confined environment using a nanosecond laser pulse.,” J. Appl. Phys., vol. 103, no. 8, 2008.
dc.relationM. Hashida, H. Mishima, S. Tokita, and S. Sakabe, “Non-thermal ablation of expanded polytetrafluoroethylene with an intense femtosecond-pulse laser,” Opt. Express, vol. 17, no. 15, p. 13116, 2009, doi: 10.1364/oe.17.013116.
dc.relationH. Zeng et al., “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater., vol. 22, no. 7, pp. 1333–1353, 2012, doi: 10.1002/adfm.201102295.
dc.relationD. Zhang, B. Gökce, and S. Barcikowski, “Laser Synthesis and Processing of Colloids: Fundamentals and Applications,” Chem. Rev., vol. 117, no. 5, pp. 3990–4103, 2017, doi: 10.1021/acs.chemrev.6b00468.
dc.relationO. . D. G. A. Dell′Aglio, M.; Gaudiuso, R.; De Pascale, “Mechanisms and Processes of Pulsed Laser Ablation in Liquids during Nanoparticle Production.,” Appl. Surf. Sci., vol. 348, 2015.
dc.relationS. . Kim, K. K.; Roy, M.; Kwon, H.; Song, J. K.; Park, “S. M. Laser Ablation Dynamics in Liquid Phase: the Effects of Magnetic Field and Electrolyte.,” J. Appl. Phys., vol. 117, 2015.
dc.relationN. A. Mihatsch, M. S., Schmidt, S. J., & Adams, “Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra. ,” Phys. Fluids, vol. 27, no. 10, p. 103302, 2015.
dc.relationS. Lazic, V., Laserna, J. J., & Jovicevic, “Insights in the laser-induced breakdown spectroscopy signal generation underwater using dual pulse excitation—Part I: Vapor bubble, shockwaves and plasma.,” Spectrochim. Acta Part B At. Spectrosc., vol. 82, pp. 42–49, 2013.
dc.relationX. Liu, H., Chen, F., Wang, X., Yang, Q., Bian, H., Si, J., & Hou, “Influence of liquid environments on femtosecond laser ablation of silicon.,” Thin Solid Films, vol. 518(18), pp. 5188–5194, 2010.
dc.relationK. Šišková, B. Vlćková, P. Y. Turpin, A. Thorel, and M. Procházka, “Laser ablation of silver in aqueous solutions of organic species: Probing ag nanoparticle-Adsorbate systems evolution by surface-enhanced raman and surface plasmon extinction spectra,” J. Phys. Chem. C, vol. 115, no. 13, pp. 5404–5412, 2011, doi: 10.1021/jp110907d.
dc.relationK. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology, vol. 26, no. 6, p. 65601, 2015, doi: 10.1088/0957-4484/26/6/065601.
dc.relationX. Xu et al., “Fabrication of gold nanoparticles by laser ablation in liquid and their application for simultaneous electrochemical detection of Cd2+, Pb2+, Cu2+, Hg2+,” ACS Appl. Mater. Interfaces, vol. 6, no. 1, pp. 65–71, 2014, doi: 10.1021/am404816e.
dc.relationG. Herrera, A. Padilla, and S. Hernandez-Rivera, “Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation,” Nanomaterials, vol. 3, no. 1, pp. 158–172, Mar. 2013, doi: 10.3390/nano3010158.
dc.relationS. C. Singh, “Effect of oxygen injection on the size and compositional evolution of ZnO/Zn(OH)2 nanocomposite synthesized by pulsed laser ablation in distilled water,” J. Nanoparticle Res., vol. 13, no. 9, pp. 4143–4152, 2011, doi: 10.1007/s11051-011-0359-2.
dc.relationR. Singh, S. C., & Gopal, “Nanoarchitectural evolution from laser-produced colloidal solution: growth of various complex cadmium hydroxide architectures from simple particles.,” J. Phys. Chem. C, vol. 114(20), pp. 9277-9289., 2010.
dc.relationK. S. Khashan, G. M. Sulaiman, and F. A. Abdulameer, “Synthesis and Antibacterial Activity of CuO Nanoparticles Suspension Induced by Laser Ablation in Liquid,” Arab. J. Sci. Eng., vol. 41, no. 1, pp. 301–310, 2016, doi: 10.1007/s13369-015-1733-7.
dc.relationA. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids,” J. Phys. Chem. C, vol. 115, no. 12, pp. 5108–5114, 2011, doi: 10.1021/jp109370q.
dc.relationK. M. M. Abou El-Nour, A. Eftaiha, A. Al-Warthan, and R. A. A. Ammar, “Synthesis and applications of silver nanoparticles,” Arab. J. Chem., vol. 3, no. 3, pp. 135–140, 2010.
dc.relationX. Huang et al., “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol., vol. 6, no. 1, pp. 28–32, 2011, doi: 10.1038/nnano.2010.235.
dc.relationK. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Science and Applications, vol. 3, no. 4. Nature Publishing Group, pp. e149–e149, 11-Apr-2014, doi: 10.1038/lsa.2014.30.
dc.relationD. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C Photochem. Rev., vol. 17, pp. 50–68, 2013.
dc.relationD. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev., vol. 117, no. 5, pp. 3990–4103, 2017.
dc.relationS. Iravani, H. Korbekandi, S. V. Mirmohammadi, and B. Zolfaghari, “Synthesis of silver nanoparticles: chemical, physical and biological methods,” Res. Pharm. Sci., vol. 9, no. 6, p. 385, 2014.
dc.relationR. Kumar, R. K. Singh, D. P. Singh, E. Joanni, R. M. Yadav, and S. A. Moshkalev, “Laser-assisted synthesis, reduction and micro-patterning of graphene: recent progress and applications,” Coord. Chem. Rev., vol. 342, pp. 34–79, 2017.
dc.relationM. Abbasi and D. Dorranian, “Effect of laser fluence on the characteristics of Al nanoparticles produced by laser ablation in deionized water,” Opt. Spectrosc. (English Transl. Opt. i Spektrosk., vol. 118, no. 3, pp. 472–481, 2015, doi: 10.1134/S0030400X15030029.
dc.relationR. Zamiri et al., “The effect of laser repetition rate on the LASiS synthesis of biocompatible silver nanoparticles in aqueous starch solution,” Int. J. Nanomedicine, vol. 8, p. 233, 2013.
dc.relationP. A. Danilov et al., “Photofragmentation of colloidal solutions of gold nanoparticles under femtosecond laser pulses in IR and visible ranges,” Quantum Electron., vol. 45, no. 5, pp. 472–476, 2015, doi: 10.1070/qe2015v045n05abeh015760.
dc.relationS. Besner, A. V. Kabashin, F. M. Winnik, and M. Meunier, “Ultrafast laser based ‘green’ synthesis of non-toxic nanoparticles in aqueous solutions,” Appl. Phys. A Mater. Sci. Process., vol. 93, no. 4, pp. 955–959, 2008, doi: 10.1007/s00339-008-4773-y.
dc.relationX. F. Zhang, Z. G. Liu, W. Shen, and S. Gurunathan, “Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches,” Int. J. Mol. Sci., vol. 17, no. 9, 2016, doi: 10.3390/ijms17091534.
dc.relationP. Chewchinda, O. Odawara, and H. Wada, “The effect of energy density on yield of silicon nanoparticles prepared by pulsed laser ablation in liquid,” Appl. Phys. A Mater. Sci. Process., vol. 117, no. 1, pp. 131–135, 2014, doi: 10.1007/s00339-014-8293-7.
dc.relationE. Solati, L. Dejam, and D. Dorranian, “Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles,” Opt. Laser Technol., vol. 58, pp. 26–32, 2014.
dc.relationK. ichi Shimizu, Y. Miyamoto, and A. Satsuma, “Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics,” J. Catal., vol. 270, no. 1, pp. 86–94, 2010, doi: 10.1016/j.jcat.2009.12.009.
dc.relationMARÍA HELENA BRIJALDO RAMÍREZ, “HIDROGENACIÓN DE m-DINITROBENCENO CON CATALIZADORES DE Pt SOPORTADOS EN TITANIA, ALÚMINA Y ÓXIDO MIXTO DE TITANIA/ALÚMINA.” 2010.
dc.relationR. Guzmán, J. Ancheyta, F. Trejo, and S. Rodríguez, “Methods for determining asphaltene stability in crude oils,” Fuel, vol. 188, pp. 530–543, 2017.
dc.relationA. Akbari, M. Omidkhah, and J. T. Darian, “Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3/Al2O3 catalyst,” Ultrason. Sonochem., vol. 21, no. 2, pp. 692–705, 2014.
dc.relationP. A. Nikulshin, A. V. Mozhaev, K. I. Maslakov, A. A. Pimerzin, and V. M. Kogan, “Genesis of HDT catalysts prepared with the use of Co2Mo10HPA and cobalt citrate: Study of their gas and liquid phase sulfidation,” Appl. Catal. B Environ., vol. 158–159, no. October, pp. 161–174, 2014, doi: 10.1016/j.apcatb.2014.04.013.
dc.relationP. A. Nikulshin, V. A. Salnikov, A. V. Mozhaev, P. P. Minaev, V. M. Kogan, and A. A. Pimerzin, “Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co(Ni)Mo catalysts in HDS and HYD reactions,” J. Catal., vol. 309, no. April, pp. 386–396, 2014, doi: 10.1016/j.jcat.2013.10.020.
dc.relationR. Ouyang, J. X. Liu, and W. X. Li, “Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions,” J. Am. Chem. Soc., vol. 135, no. 5, pp. 1760–1771, 2013, doi: 10.1021/ja3087054.
dc.relationA. M. Beale, F. Gao, I. Lezcano-Gonzalez, C. H. F. Peden, and J. Szanyi, Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials, vol. 44, no. 20. 2015.
dc.relationH. Idriss, “Surface reactions of uranium oxide powder, thin films and single crystals,” Surf. Sci. Rep., vol. 65, no. 3, pp. 67–109, 2010, doi: 10.1016/j.surfrep.2010.01.001.
dc.relationE. C. G. P. M. Á. M. MARTÍNEZ, “EFECTO DE LA PRESENCIA DE OLEFINAS Y LA TEMPERATURA SOBRE REACCIONES DE HDS DE DBT,” vol. 66. pp. 37–39, 2012.
dc.relationA. Demirbas, “Competitive liquid biofuels from biomass.,” Appl. Energy, vol. 88(1), pp. 17-28., 2011.
dc.relationA. Ananth, D. H. Gregory, and Y. S. Mok, “Synthesis, characterization and shape-dependent catalytic CO oxidation performance of ruthenium oxide nanomaterials: influence of polymer surfactant,” Appl. Sci., vol. 5, no. 3, pp. 344–358, 2015.
dc.relationS. Nazari, G. Karimi, E. Ghaderi, K. Mansouri Moradian, and Z. Bagherpor, “Synthesis and characterization of γ-alumina porous nanoparticles from sodium aluminate liquor with two different surfactants,” Int. J. Nanosci. Nanotechnol., vol. 12, no. 4, pp. 207–214, 2016.
dc.relationP. A. Nikulshin, V. A. Salnikov, A. V Mozhaev, P. P. Minaev, V. M. Kogan, and A. A. Pimerzin, “Relationship between active phase morphology and catalytic properties of the carbon–alumina-supported Co (Ni) Mo catalysts in HDS and HYD reactions,” J. Catal., vol. 309, pp. 386–396, 2014.
dc.relationD. Gao et al., “Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS,” Appl. Catal. B Environ., vol. 165, pp. 269–284, 2015, doi: 10.1016/j.apcatb.2014.10.034.
dc.relationM. Houalla, N. K. Nag, A. V. Sapre, D. H. Broderick, and B. C. Gates, “Hydrodesulfurization of dibenzothiophene catalyzed by sulfided CoO-MoO3γ-Al2O3: The reaction network,” AIChE J., vol. 24, no. 6, pp. 1015–1021, Nov. 1978, doi: 10.1002/aic.690240611.
dc.relationA. Stanislaus, A. Marafi, and M. S. Rana, “Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production,” Catal. Today, vol. 153, no. 1–2, pp. 1–68, 2010, doi: 10.1016/j.cattod.2010.05.011.
dc.relationJ. P. Abrahamson, “EFFECTS OF CATALYST PROPERTIES ON HYDRODESULFURIZATION OF FLUID CATALYTIC CRACKING DECANT OILS AS FEEDSTOCK FOR NEEDLE COKE by,” no. May, 2015.
dc.relationB. Cornils, W. A. Herrmann, M. Beller, and R. Paciello, Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, vol. 4. John Wiley & Sons, 2017.
dc.relationS. Her, D. A. Jaffray, and C. Allen, “Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements,” Adv. Drug Deliv. Rev., vol. 109, pp. 84–101, 2017.
dc.relationH. U. I. Zhang, M. Jin, Y. Xiong, B. Lim, and Y. Xia, “Shape-controlled synthesis of Pd nanocrystals and their catalytic applications,” Acc. Chem. Res., vol. 46, no. 8, pp. 1783–1794, 2013.
dc.relationP. Herves, M. Pérez-Lorenzo, L. M. Liz-Marzán, J. Dzubiella, Y. Lu, and M. Ballauff, “Catalysis by metallic nanoparticles in aqueous solution: model reactions,” Chem. Soc. Rev., vol. 41, no. 17, pp. 5577–5587, 2012.
dc.relationS. Pedireddy et al., “One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance,” Nat. Commun., vol. 5, no. 1, pp. 1–9, 2014.
dc.relationI. Xiaoye et al., “Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/Ti02 Catalyst,” Sci. mag, vol. 333, no. 6043, pp. 736–739, 2011.
dc.relationE. Tomaszewska et al., “Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids,” J. Nanomater., vol. 2013, 2013, doi: 10.1155/2013/313081.
dc.relationE. Tomaszewska et al., “Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids,” J. Nanomater., vol. 2013, 2013.
dc.relationD. Chicea, E. Indrea, and C. M. Cretu, “Assesing Fe3O4 nanoparticle size by DLS, XRD and AFM,” J. Optoelectron. Adv. Mater., vol. 14, no. 5, p. 460, 2012.
dc.relationD. Chicea, “Nanoparticles and nanoparticle aggregates sizing by DLS and AFM,” Optoelectron. Adv. Mater. Rapid Commun., vol. 4, no. 9, pp. 1310–1315, 2010.
dc.relationN. Haustrup and G. M. O’Connor, “Nanoparticle generation during laser ablation and laser-induced liquefaction,” Phys. Procedia, vol. 12, no. PART 2, pp. 46–53, 2011, doi: 10.1016/j.phpro.2011.03.104.
dc.relationI. Technology, “Calculation of the surface energy of fcc metals,” vol. 13, no. 7, pp. 1082–1090, 2004.
dc.relationZ. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 7, 2008, doi: 10.1103/PhysRevB.77.075133.
dc.relationP. S. Hale, L. M. Maddox, J. G. Shapter, N. H. Voelcker, M. J. Ford, and E. R. Waclawik, “Growth kinetics and modeling of znO nanoparticles,” J. Chem. Educ., vol. 82, no. 5, pp. 775–778, 2005, doi: 10.1021/ed082p775.
dc.relationL. M. H. MOSCOSO, “Desempeño de catalizadores NiMo y CoMo soportados en alúmina modificada con K en la hidrodesoxigenación de bioaceites.,” 2013.
dc.relationP. C. H. Mitchell, “Speciation of molybdenum compounds in water Ultraviolet spectra and REACH read across,” Rep. Int. Molybdenum Assoc. Reach Molybdenum Consort., pp. 1–28, 2009.
dc.relationM. Rashad, R. Amin, and M. M. Hafiz, “Redshift in the optical band gap of amorphous nanostructure Se80Te20-xSnx films,” Chalcogenide Lett., vol. 12, no. 9, pp. 441–451, 2015.
dc.relationC. Makori, N. E., Oeba, D. A., & Mosiori, “Relationship between band gap and particle size of cadmium sulfide quantum dots.,” Chem. Res., vol. 2(5), pp. 15-21., 2017.
dc.relationD. L. Ferreira et al., “Size-dependent bandgap and particle size distribution of colloidal semiconductor nanocrystals,” J. Chem. Phys., vol. 147, no. 15, 2017, doi: 10.1063/1.4999093.
dc.relationA. Burzlaff, C. Beevers, H. Pearce, M. Lloyd, and K. Klipsch, “New studies on the in vitro genotoxicity of sodium molybdate and their impact on the overall assessment of the genotoxicity of molybdenum substances,” Regul. Toxicol. Pharmacol., vol. 86, pp. 279–291, Jun. 2017, doi: 10.1016/j.yrtph.2017.03.018.
dc.relationR. Mahfouz, F. J. Cadete Santos Aires, A. Brenier, B. Jacquier, and J. C. Bertolini, “Synthesis and physico-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water,” Appl. Surf. Sci., vol. 254, no. 16, pp. 5181–5190, 2008, doi: 10.1016/j.apsusc.2008.02.022.
dc.relationG. Elango, S. M. Roopan, K. I. Dhamodaran, K. Elumalai, N. A. Al-Dhabi, and M. V. Arasu, “Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities,” J. Photochem. Photobiol. B Biol., vol. 162, pp. 162–167, 2016, doi: 10.1016/j.jphotobiol.2016.06.045.
dc.relationH. Kumar and R. Rani, “Structural and Optical Characterization of ZnO Nanoparticles Synthesized by Microemulsion Route,” Int. Lett. Chem. Phys. Astron., vol. 19, pp. 26–36, 2013, doi: 10.18052/www.scipress.com/ilcpa.19.26.
dc.relationT. Sakka, S. Masai, K. Fukami, and Y. H. Ogata, “Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid,” Spectrochim. Acta - Part B At. Spectrosc., vol. 64, no. 10, pp. 981–985, 2009, doi: 10.1016/j.sab.2009.07.018.
dc.relationJ. Ji et al., “Nanoporous Ni(OH)2 thin film on 3d ultrathin-graphite foam for asymmetric supercapacitor,” ACS Nano, vol. 7, no. 7, pp. 6237–6243, 2013, doi: 10.1021/nn4021955.
dc.relationA. M. Smith and S. Nie, “Semiconductor nanocrystals: Structure, properties, and band gap engineering,” Acc. Chem. Res., vol. 43, no. 2, pp. 190–200, Feb. 2010, doi: 10.1021/ar9001069.
dc.relationW. Zhang et al., “Formation of laser-induced periodic surface structures during femtosecond laser ablation of highly oriented pyrolytic graphite (HOPG),” Lasers Eng., vol. 25, no. 5–6, pp. 397–404, 2013.
dc.relationWyckoff R W G, “Crystal Structures - Second edition.,” Intersci. Publ., pp. 239–444, 1963.
dc.relationR. S. and K. B. Bob Downs, “American Mineralogist,” vol. 78, pp. 1104–1107, 1993.
dc.relationO. F. Oyerinde, C. L. Weeks, A. D. Anbar, and T. G. Spiro, “Solution structure of molybdic acid from Raman spectroscopy and DFT analysis,” Inorganica Chim. Acta, vol. 361, no. 4, pp. 1000–1007, 2008, doi: 10.1016/j.ica.2007.06.025.
dc.relationP. A. Powder diffraction file. Philadelphia, “Joint Committee on Powder Diffraction Standards.” pp. 47–1049, 1996.
dc.relationP. A. Powder diffraction file. Philadelphia, “Joint Committee on Powder Diffraction Standards.” pp. 4–850, 1996.
dc.relationJ. N. Tiwari, R. N. Tiwari, and K. S. Kim, “Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices,” Prog. Mater. Sci., vol. 57, no. 4, pp. 724–803, 2012.
dc.relationS. Wacharasindhu, S. Likitmaskul, L. Punnakanta, K. Chaichanwatanakul, K. Angsusingha, and C. Tuchinda, “Serum IGF-I and IGFBP-3 Levels for Normal Thai Children and their Usefulness in Clinical Practice,” J. Med. Assoc. Thail., vol. 81, no. 6, pp. 420–430, 1998.
dc.relation“DESEMPEÑO DE CATALIZADORES CoMo/ASAs EN LA DESOXIGENACIÓN DE BIOACEITES YENNY.”
dc.relationJ. F. Moulder, “Handbook of X-ray photoelectron spectroscopy,” Phys. Electron., pp. 230–232, 1995.
dc.relationD. Li, T. Sato, M. Imamura, H. Shimada, and A. Nishijima, “A Comparison of NiMo/Al2O3 Catalysts Prepared by Impregnation and Coprecipitation Methods for Hydrodesulfurization of Dibenzothiophene,” J. Catal., vol. 365, no. 2, pp. 357–365, 1997, doi: 10.1006/jcat.1997.1730.
dc.relationB.-Y. Kim et al., “Highly selective xylene sensor based on NiO/NiMoO4 nanocomposite hierarchical spheres for indoor air monitoring,” ACS Appl. Mater. Interfaces, vol. 8, no. 50, pp. 34603–34611, 2016.
dc.relationE. M. Morales-Valencia, C. O. Castillo-Araiza, S. A. Giraldo, and V. G. Baldovino-Medrano, “Kinetic Assessment of the Simultaneous Hydrodesulfurization of Dibenzothiophene and the Hydrogenation of Diverse Polyaromatic Structures,” ACS Catal., vol. 8, no. 5, pp. 3926–3942, 2018, doi: 10.1021/acscatal.8b00629.
dc.relationR. U. S. A. Data, “(12) United States Patent,” vol. 2, no. 12, 2015.
dc.relationH. Topsøie, R. Candia, N. Topsøe, B. S. Clausen, and H. Topsøe, “On The State of the Co‐MO‐S Model,” Bull. des Sociétés Chim. Belges, vol. 93, no. 8‐9, pp. 783–806, 1984.
dc.relationA. D. Gandubert, E. Krebs, C. Legens, D. Costa, D. Guillaume, and P. Raybaud, “Optimal promoter edge decoration of CoMoS catalysts: A combined theoretical and experimental study,” Catal. Today, vol. 130, no. 1, pp. 149–159, 2008.
dc.relationE. Le Guludec et al., “From Gas to Liquid Phase Sulfidation: An IR Spectroscopy Study,” Catal. Letters, vol. 142, no. 6, pp. 736–743, 2012.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleSíntesis de nanopartículas de Níquel y Molibdeno mediante ablación láser para aplicación en catálisis heterogénea
dc.typeOtro


Este ítem pertenece a la siguiente institución