Colombia | Otro
dc.contributorGómez Portilla, Karoll
dc.contributorForero Rodríguez, Diana Elvira
dc.contributorGRIEGO (Grupo Investigación en Gestión y Organizaciones)
dc.creatorBernal Puerto, Andrea María
dc.date.accessioned2020-08-23T04:27:41Z
dc.date.available2020-08-23T04:27:41Z
dc.date.created2020-08-23T04:27:41Z
dc.date.issued2020-02-12
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78185
dc.description.abstractEl Riesgo de Default abarca las pérdidas incurridas por el acreedor de una operación financiera, debido a que la contraparte o deudor de dicha operación incumple compromisos de pago, este riesgo se calcula por métodos estadísticos y precio de mercado, en este último se encuentran los modelos de Merton (1974) y Moody’s KMV de Crosbie (2003). Se utilizó el modelo Moody’s KMV de Crosbie (2003), para la evaluación del Riesgo de Default en el periodo 2014-2018 de las empresas que en 2019 integraron el índice COLCAP de la Bolsa de Valores de Colombia (BVC). El proceso de evaluación abarcó: el cálculo de probabilidades de default, la validación de los resultados con base en la función DRSK de Bloomberg e información financiera de las entidades evaluadas y, por último, las escalas de clasificación de las probabilidades de default obtenidas. La función DRSK utiliza la metodología del modelo de Merton (1974) junto a nociones derivadas del modelo de Black & Cox (1976) y desarrollos internos de Bloomberg. En el periodo observado se evidenció que ninguna empresa presentó un default; que el riesgo de default es diferenciado entre los sectores real y financiero y por otro lado entre las acciones ordinarias y preferenciales. Finalmente se encontró que el modelo Moody’s KMV de Crosbie (2003) y la función DRSK de Bloomberg no miden el riesgo de default de la misma manera, por lo que predomina la validez discriminante ante la validez convergente entre el modelo Moody’s KMV y la función DRSK de Bloomberg.
dc.description.abstractThe Default Risk includes the incurred losses by a financial operation´s creditor because the counterparty or debtor of the financial operation make a default to the payment commitments, that type of risk is calculated by statistical and market-price methods, the latest uses the models of Merton (1974) and Moody’s KMV of Crosbie (2003). The Moody’s KMV model from Crosbie (2003) was used to evaluate the Default Risk between 2014-2018 of the companies that in 2019 integrated the COLCAP index of the Colombian Stock Exchange (BVC). The evaluation process included: the calculation of the default probabilities, the validation of the results based on the DRSK function of the financial information vendor Bloomberg and finally, the risk classification scales for the obtained default probabilities. DRSK Function uses the Merton Model´s Methodology combined with notions of Black & Cox’s Model (Black & Cox, 1976) and Bloomberg’s Internal developments. In the period that was observed in the study: neither company presented a default situation, the default risk is differentiated between financial and real sector and as well as between ordinary and preferential equity shares. Finally, it was found that the Moody’s KMV Model and the Bloomberg´s DRSK function do not measure the risk of default in the same way, which gives way to a situation of discriminant validity that predominates over convergent validity between Moody’s KMV Model and the Bloomberg´s DRSK.
dc.languagespa
dc.publisherBogotá - Ciencias Económicas - Maestría en Administración
dc.publisherEscuela de Administración y Contaduría Pública
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation©IFRS Foundation. (2018). NIC 1. http://eifrs.ifrs.org/eifrs/bnstandards/es/2018/ias1.pdf
dc.relationAltman, Resti, & Sironi. (2003). Default Recovery Rates in Credit Risk Modeling: A Review of the Literature and Empirical Evidence. http://people.stern.nyu.edu/ealtman/Review1.pdf
dc.relationAMV Colombia. (2014). Guía de Estudio Mercado de Renta Variable (AMV Colombia (ed.)).
dc.relationBaslee Committe on Banking Supervision. (1999). CREDIT RISK MODELLING: CURRENT PRACTICES AND APPLICATIONS Basle Committee on Banking Supervision Basle.
dc.relationBerkson. (1944). Application to the Logistic Function to Bio-Assay. Journal of the American Statistical Association, 39(227), 357. https://doi.org/10.2307/2280041
dc.relationBlack, & Cox. (1976). Valuing Corporate Securities: Some Effects of Bond Indenture Provisions. The Journal of Finance, 31(2), 351–367. https://doi.org/10.1111/j.1540-6261.1976.tb01891.x
dc.relationBlack, & Scholes. (1973). The Pricing of Options and Corporate Liabilities. The Journal of Political Economy, 81(3), 637–654. http://www.sfu.ca/~kkasa/BlackScholes_73.pdf
dc.relationBliss. (1934). The Method of Probits. Science (New York, N.Y.), 79(2037), 38–39. https://doi.org/10.1126/science.79.2037.38
dc.relationBloomberg. (2013). ¿Qué es el Riesgo de Impago Bloomberg (DRSK)? (pp. 1–28). Bloomberg.
dc.relationBloomberg. (2019). Bloomberg Credit Risk DRSK <GO> Framework,Methodology and Usage (pp. 1–12). Bloomberg.
dc.relationBloomberg Markets. (2017). COLCAP Quote - Colombia COLCAP Index - Bloomberg Markets. Bloomberg Markets. https://www.bloomberg.com/quote/COLCAP:IND
dc.relationCaicedo, Claramunt, & Casanovas. (2011). The measurement of credit risk through structural models: An application to the Colombian market. http://www.scielo.org.co/pdf/cadm/v24n42/v24n42a04.pdf
dc.relationCampbell, & Fiske. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. 56(2), 81–105.
dc.relationCarlson, & Herdman. (2012). Understanding the impact of convergent validity on research results. Organizational Research Methods, 15(1), 17–32. https://doi.org/10.1177/1094428110392383
dc.relationCastro, & García. (2014). Default risk in agricultural lending, the effects of commodity price volatility and climate. Agricultural Finance Review, 74(4), 501–521. https://doi.org/10.1108/AFR-10-2013-0036
dc.relationCastro, & Pérez. (2017). Estimación de la probabilidad de incumplimiento para las firmas del sector económico industrial y comercial en una entidad financiera colombiana entre los años 2009 y 2014. Cuadernos de Economía, 36(71), 293. https://doi.org/10.15446/cuad.econ.v36n71.55273
dc.relationClavijo, Vera, Malagón, Cuéllar, & Vera. (2014). Profundización Financiera y Fondeo Bancario Investigación elaborada por ANIF para el Banco de Bogotá
dc.relationCrosbie. (2003a). Modeling Default Risk - Modeling Methodology. In Moody’s Modeling Methodology. https://doi.org/10.1016/j.frl.2006.03.003
dc.relationCrosbie, P. (2003b). MODELING DEFAULT RISK MODELING METHODOLOGY. http://www.business.illinois.edu/gpennacc/MoodysKMV.pdf
dc.relationDean-Brown. (2000). What is construct validity?
dc.relationElaine, Robinson, & Van Greuning. (2011). Financial Analysis Techniques .
dc.relationElliot, Jeanblanc, & Yor. (2006). On Models of Default Risk. https://math.maths.univ-evry.fr/jeanblanc/pubs/ejy99.pdf
dc.relationFernandes. (2005). CORPORATE CREDIT RISK MODELING: QUANTITATIVE RATING SYSTEM AND PROBABILITY OF DEFAULT ESTIMATION.
dc.relationFisher. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
dc.relationFosberg. (2012). Determinants of short-term debt financing. Research in Business and Economics Journal, 6, 1–12.
dc.relationGutiérrez. (2010). Un análisis de riesgo de crédito de las empresas del sector real y sus determinantes. Reporte de Estabilidad Financiera, 6, 29–64. http://www.banrep.gov.co/sites/default/files/publicaciones/archivos/tref_mar_2010_0.pdf
dc.relationHamilton, & Cantor. (2006). Special Comment Measuring Corporate Default Rates New York.
dc.relationHernández, Fernández, & Baptista. (2010). Metodología de la Investigación (McGrawHill (ed.)).
dc.relationIFRS Foundation. (2010). El Marco Conceptual para la Información Financiera. http://eifrs.ifrs.org/eifrs/bnstandards/es/2018/framework.pdf
dc.relationKealhofer. (2003). Quantifying credit risk I: Default prediction. Financial Analysts Journal, 59(1), 30–44. https://doi.org/10.2469/faj.v59.n1.2501
dc.relationMcculloch, & Pitts. (1943). A logical calculus of the ideas inmanent in nervous activity. In Bulletin of Mothemnticnl Biology (Vol. 52, Issue 2). https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
dc.relationMerton. (1974). On the Pricing of Corporate Debt: The Risk Structure of Interest Rates. The Journal of Finance, 29(2), 449–470. http://www.people.hbs.edu/rmerton/Pricing of corporate debt.pdf
dc.relationMiranda, M. (2018). Latinamerican local capital markets challenges and solutions. CFA Institute Research Challenge. https://www.cfainstitute.org/-/media/documents/article/rf-brief/latin_american_local_capital_markets.ashx
dc.relationMoody, & Analytics. (2011). EDF Overview from Moody’s Analytics EDFTM (Expected Default Frecuency) Credit Measures. www.moodysanalytics.com
dc.relationNielsen. (1992). Understanding N (d 1 ) and N (d 2 ): Risk-Adjusted Probabilities in the Black-Scholes Model 1. https://financetrainingcourse.com/education/wp-content/uploads/2011/03/Understanding.pdf
dc.relationNørreklit, Nørreklit, & Falconer. (2007). Theoretical conditions for validity in accounting performance measurement. In A. Neely (Ed.), Business Performance Measurement: Unifying theories and integrating practice Second edition (pp. 179–217). https://www.alnap.org/system/files/content/resource/files/main/business-performance-measurement-andy-neely-%28ed-%29.pdf
dc.relationRamírez, & Ayús. (2012). Análisis discriminante como seleccionador de variables incluyentes en el cálculo de la probabilidad de incumplimiento. Revista Ciencias Estratégicas. https://ideas.repec.org/a/col/000431/011353.html
dc.relationRuiz-Porras. (2016). La investigación econométrica mediante paneles de datos: historia, modelos y usos en México. 11–32. https://dialnet.unirioja.es/servlet/articulo?codigo=6166187
dc.relationSalamanca, & Benítez. (2018). Estimación de la probabilidad de incumplimiento de créditos para una empresa del sector siderúrgico en Colombia. https://repository.eafit.edu.co/handle/10784/12870
dc.relationSouto, & Abrego. (2008). Coyuntura económica. Fundación para la Educación Superior y el Desarrollo. https://www.repository.fedesarrollo.org.co/handle/11445/2081
dc.relationTaan, & Hajjar. (2018). STATISTICAL ANALYSIS: INTERNAL-CONSISTENCY RELIABILITY AND CONSTRUCT VALIDITY. In International Journal of Quantitative and Qualitative Research Methods (Vol. 6, Issue 1). www.eajournals.org
dc.relationVasicek, & McQuown. (1972). The Efficient Market Model. In Finance, Economics and Mathematics (Vol. 28, Issue 5, pp. 169–194). https://doi.org/10.1002/9781119186229.ch22
dc.relationVassalou, Xing, Campbell, Cochrane, Chen, French, Hirshleifer, Jagannathan, Lando, Nielsen, Ritter, Shanken, & Stein. (2004). Default Risk in Equity Returns. The Journal of Finance, LIX(2), 831–868. https://pages.nes.ru/agoriaev/Papers/Vassalou Default Risk in Equity Returns JF04.pdf
dc.relationWall., Michie, Patterson, Wood, Sheenan, & Cleeg. (2003). ON THE VALIDITY OF REPORTED COMPANY FINANCIAL PERFORMANCE. Academy of Management Proceedings, 1, 1–6. https://doi.org/10.5465/ambpp.2003.13792988
dc.relationWesten, Drew, & Rosenthal. (2003). Quantifying Construct Validity: Two Simple Measures. https://doi.org/10.1037/0022-3514.84.3.608
dc.relationZamudio. (2007). Determinantes de la Probabilidad de Incumplimiento de las Empresas Colombianas. Borradores de Economía, 466. http://www.banrep.gov.co/sites/default/files/publicaciones/pdfs/borra466.pdf
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleMedición del riesgo de default para empresas del índice COLCAP de la bolsa de valores de Colombia
dc.typeOtro


Este ítem pertenece a la siguiente institución