dc.contributor | Niño Vásquez, Luis Fernando | |
dc.contributor | Escobar Vargas, Jorge Alberto | |
dc.contributor | LABORATORIO DE INVESTIGACIÓN EN SISTEMAS INTELIGENTES - LISI | |
dc.creator | Soto Orjuela, Juan Carlos | |
dc.date.accessioned | 2020-05-07T15:57:25Z | |
dc.date.available | 2020-05-07T15:57:25Z | |
dc.date.created | 2020-05-07T15:57:25Z | |
dc.date.issued | 2020-02-14 | |
dc.identifier | Soto Orjuela, J.C. (2020). Desarrollo de una herramienta computacional que permita simular la dinámica geomorfológica de un meandro a la luz de la geología. Aplicación a la curva el Conejo en La Dorada (Caldas). Universidad Nacional de Colombia-Sede Bogota. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77484 | |
dc.description.abstract | Humanity, for convenience, has been close to rivers as they can provide food and serve as transportation routes between settlements, and even the capacity to generate energy for our consumption. Along the rivers we find meanders, which are of vital importance for geology, geomorphology and hydrology. The study of these geoforms is of special interest when human settlements are located near them. During the last 60 years, an attempt has been made to explain their behaviour in a quantitative way, but assuming homogeneous lithology. This research proposes an approach using a model based on cellular automata to be able to contemplate situations where the lithology is not homogeneous. Additionally, the research proposes mechanisms to cover the different steps needed to develop projects of this type such as the generation of synthetic data, generation of banks as a function of the change in the height of the water sheet, generation of the banks, generation of transects (simulating the generation of meshes), calculations of velocities and of the value of the lateral erosion that can affect the shape of the banks. Although some topics like the generation of orthogonal meshes, the use of unstructured cellular automata, flooding algorithms should be studied in depth, cellular automata are a good option when simulating physical systems of this type. | |
dc.description.abstract | La humanidad, por conveniencia, ha estado cerca de los ríos ya que estos pueden proveer comida y servir como vías de transporte para establecer rutas entre asentamientos, e incluso la capacidad de generar energía para nuestro consumo. A lo largo de los ríos encontramos meandros, que son de vital importancia para la geología, geomorfología e hidrología. El estudio de esas geoformas cobra especial interés cuando cerca a ellos se encuentran asentamientos humanos. Durante los últimos 60 años se ha tratado de explicar de manera cuantitativa su comportamiento, pero asumiendo litología homogénea. En esta investigación se propone un acercamiento usando un modelo basado en autómatas celulares para poder contemplar las situaciones donde la litología no es homogénea. Adicionalmente, la investigación propone mecanismos para cubrir los diferentes pasos necesarios para poder desarrollar proyectos de este tipo como generación de datos sintéticos, generación de orillas en función del cambio en la altura de la lámina de agua, generación de las orillas, generación de transectos (simulando la generación de mallas), cálculos de velocidades y del valor de la erosión lateral que puede afectar la forma de las bancas. Aunque se debe profundizar en algunos tópicos como la generación de mallas ortogonales, el uso de autómata celulares no estructurados, algoritmos de inundación, los autómatas celulares son una buena opción al momento de simular sistemas físicos de ese tipo. | |
dc.language | spa | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abad, J. D., & Garcia, M. H. (2006). RVR Meander: A toolbox for re-meandering of channelized streams. Computers and Geosciences, 32(1), 92–101. https://doi.org/10.1016/j.cageo.2005.05.006 | |
dc.relation | Adamatzky, A., Alonso-sanz, R., Lawniczak, A., Martinez, G. J., Morita, K., & Worsch, T. (2008). Andrew Adamatzky, Ramon Alonso-Sanz, Anna Lawniczak, Genaro Juarez Martinez, Kenichi Morita, Thomas Worsch Editors. | |
dc.relation | Ambrosio, D. D., Gregorio, S. Di, Gabriele, S., & Gaudio, R. (2002). Il modello ad Automi Cellulari SCAVATU per la simulazione dell ’ erosione del suolo e del trasporto solido nei bacini idrografici : specificazione della parte idrodinamica nel caso di reticolo a celle esagonali regolari. | |
dc.relation | Arcos, V. A. (2011). Modeling and prediction of the natural decontamination of the mining-impacted Geul River floodplain, (July), 1–52. | |
dc.relation | Aristizabal, V. M. (2013). Modelos hidrológicos e hidráulicos de zonificación de la amenaza por inundación en el municipio de La Dorada Caldas. Corpocaldas, (6), 1–134. | |
dc.relation | Astaiza Amado, L. G., Liberato Luna, J. C., & Soto Orjuela, J. C. (2012). Acercamiento a un estudio sobre la influencia (Erosion/Sedimentacion) historica del rio Magdalena en los alrededores del municipio de La Dorada (Caldas), durante el período 1953-2003. Bogota, DC. | |
dc.relation | Avolio, MV, Crisci, G., D`Ambrosio, D. ., Di Gregorio, S., Iovine, G., Rongo, R., & Spataro, W. (2003). An extended notion of Cellular Automata for surface flows modelling. WSEAS Transactions, (January), 1–6. Recuperado de http://sv.mat.unical.it/~spataro/publications/2003wseas.pdf | |
dc.relation | Avolio, M. V., Bozzano, F., D’Ambrosio, D., Di Gregorio, S., Lupiano, V., Mazzanti, P., … Spataro, W. (2011). Debris flows simulation by cellular automata: A short review of the SCIDDICA models. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 387–397. https://doi.org/10.4408/1JEGE.2011-03.B-044 | |
dc.relation | Avolio, M. V., Di Gregorio, S., Mantovani, F., Pasuto, A., Rongo, R., Silvano, S., & Spataro, W. (2000). Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios. ITC Journal, 2(1), 41–50. https://doi.org/10.1016/S0303-2434(00)85025-4 | |
dc.relation | Bahrepour, M. (2018). The Forgotten Step in CRISP-DM and ASUM-DM Methodologies. Luminis Amsterdam, 1–6. Recuperado de https://amsterdam.luminis.eu/2018/08/17/the-forgotten-step-in-crisp-dm-and-asum-dm-methodologies/ | |
dc.relation | Barrero, D., & Vesga, C. . (1976). Geología de la Plancha 188 La Dorada. Ingeominas, 1909. | |
dc.relation | BEEVERS, R. D. L., CROSATO, A., & WRIGHT, N. (2009). Bank Retreat Study of a Meandering River Reach Case Study: River Irwell. 7th ISE & 8th HIC, 3–4. | |
dc.relation | Berger, J. (1925). Memoria detallada de los estudios del rio Magdalena, obras proyectadas para su arreglo y resumen del presupuesto. Revista del Ministerio de Obras. | |
dc.relation | Bras, R. L., Tucker, G. E., & Teles, V. (2003). Six myths about mathematical modeling in geomorphology. Geophysical Monograph Series, 135, 63–79. https://doi.org/10.1029/135GM06 | |
dc.relation | Brice, J. (1977). Lateral migration of the middle Sacramento River, California. | |
dc.relation | Brotherton, D. I. (1979). On the origin and characteristics of river channel pattern. Journal of Hydrology, 44, 211–230. | |
dc.relation | Castaneda, J. A., Osorio, H., & Mesa, F. (2018). Evolución y comportamiento del meandro “curva el conejo” del río magdalena en el sector de La Dorada-Caldas. En Scientia et Technica Año XXIII (Vol. 23, pp. 178–185). Universidad Tecnologica de Pereira. | |
dc.relation | Charlton, R. (2010). Fundamentals of Fluvial Geomorphology. | |
dc.relation | Chen, Q., & Ye, F. (2008). Unstructured cellular automata and the application to model river riparian vegetation dynamics. En Lecture notes in computer science. https://doi.org/10.1007/978-3-540-79992-4 | |
dc.relation | Chinnarasri, C., Tingsanchali, T., & Banchuen, S. (2008). Field validation of two river morphological models on the Pasak River, Thailand. Hydrological Sciences Journal, 53(4), 818–833. https://doi.org/10.1623/hysj.53.4.818 | |
dc.relation | Chopard, B., & Droz, M. (1998). Cellular Automata Modeling of Physical Systems. Cellular Automata Modeling of Physical Systems, 27–60. https://doi.org/10.1017/cbo9780511549755 | |
dc.relation | Chow, V. Te. (1959). Open-Channel Hydraulics. McGraw-Hill Book Company. https://doi.org/ISBN 07-010776-9 | |
dc.relation | Cormagdalena, & UN-Bogota, C. (2002). Río Magdalena. La Dorada - Puerto Salgar. | |
dc.relation | Coulthard, T., de Rosa, P., & Marchesini, I. (2008). CAESAR: Un modello per la simulazione delle dinamiche d’alveo. Alpine and Mediterranean Quaternary, 21(1), 207–214. | |
dc.relation | Coulthard, T. J., Hicks, D. M., & Van De Wiel, M. J. (2007). Cellular modelling of river catchments and reaches: Advantages, limitations and prospects. Geomorphology, 90(3–4), 192–207. https://doi.org/10.1016/j.geomorph.2006.10.030 | |
dc.relation | Coulthard, T. J., Lewin, J., & Macklin, M. G. (2005). Modelling differential catchment response to environmental change. Geomorphology, 69(1–4), 222–241. https://doi.org/10.1016/j.geomorph.2005.01.008 | |
dc.relation | Coulthard, T. J., & Van De Wiel, M. J. (2012). Modelling river history and evolution. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1966), 2123–2142. https://doi.org/10.1098/rsta.2011.0597 | |
dc.relation | Coulthard, T. J., & Van De Wiel, M. J. (2013). Numerical Modeling in Fluvial Geomorphology. Treatise on Geomorphology (Vol. 9). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-374739-6.00261-X | |
dc.relation | Coulthard, Tom J. (2006). Modelling fluvial geomorphological response to climate change, 8, 9624. | |
dc.relation | Coulthard, Tom J., Hancock, G. R., & Lowry, J. B. C. (2012). Modelling soil erosion with a downscaled landscape evolution model. Earth Surface Processes and Landforms, 37(10), 1046–1055. https://doi.org/10.1002/esp.3226 | |
dc.relation | Coulthard, Tom J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida, G. A. M., & Hancock, G. R. (2013). Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: Implications for modelling landscape evolution. Earth Surface Processes and Landforms, 38(15), 1897–1906. https://doi.org/10.1002/esp.3478 | |
dc.relation | Coulthard, Tom J., & Van De Wiel, M. J. (2006). A cellular model of river meandering. Earth Surface Processes and Landforms, 31(1), 123–132. https://doi.org/10.1002/esp.1315 | |
dc.relation | Crosato, A. (s/f). MIANDRAS Physics-based model for the prediction of flow field, bed topography and planimetric changes of meandering rivers. | |
dc.relation | Crosato, A. (1990). Simulation of meandering river process. Communication on Hydraulic and Geotechnical Engineering, 90(3), 109. | |
dc.relation | Crosato, A. (2008a). Analysis and modelling of river meandering (portadas). TU Delft. | |
dc.relation | Crosato, A. (2008b). Analysis and modelling of river meandering Analyse en modellering van meanderende rivieren. https://doi.org/10.1111/j.1365-246X.2008.04032.x | |
dc.relation | Crosato, A., & Vriend, H. de. (2008). Analysis and modelling of river meandering. Civiele Techniek en Geowetenschap (Vol. PhD). | |
dc.relation | D’Ambrosio, D., Di Gregorio, S., Gabriele, S., & Gaudio, R. (2001). A cellular automata model for soil erosion by water. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(1), 33–39. https://doi.org/10.1016/S1464-1909(01)85011-5 | |
dc.relation | D’Ambrosio, D., Di Gregorio, S., & Iovine, G. (2003). Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S3–hex. Natural Hazards and Earth System Science, 3(6), 545–559. https://doi.org/10.5194/nhess-3-545-2003 | |
dc.relation | D’Ambrosio, Donato, Di Gregorio, S., Iovine, G., Lupiano, V., Rongo, R., & Spataro, W. (2003). First simulations of the Sarno debris flows through Cellular Automata modelling. Geomorphology, 54(1–2), 91–117. https://doi.org/10.1016/S0169-555X(03)00058-8 | |
dc.relation | Dey, S. (2014). Fluvial Hydrodynamics. Springer-Verlag Berlin Heidelberg. | |
dc.relation | Dingman, S. L. (2009). Fluvial Hydraulics. Oxford University Press. https://doi.org/10.1017/CBO9781107415324.004 | |
dc.relation | Duque-Escobar, G. (2013). La navegación del Magdalena y la conurbación Honda – La Dorada. | |
dc.relation | Duque-Escobar, G., Valderrama Charry, A., Rios Prada, E., Robledo Vasquez, G., & Maldonado, J. (2012). Nuevo puente La Dorada-Puerto Salgar. Informe Tecnico. | |
dc.relation | Duque, A., Poveda, G., & Posada, L. (2006). Influencia de El Niño en el transporte de sedimentos en algunas cuencas colombianas. XVII Seminario Nacional de Hidráulica e Hidrología, (1). | |
dc.relation | Duque Escobar, G. (2013). La Navegación Del Magdalena Y La Conurbación, Honda- La Dorada. Anales de Ingeniería, 927, 14. | |
dc.relation | Gonzalez-Aguirre, J. C. (2012). Simulacion numerica de inundaciones en Villahermosa. Universidad Juarez Autonoma de Tabasco. | |
dc.relation | Fernández, R., Motta, D., Abad, J. D., Langendoen, E. J., Oberg, N., & Garcia, M. H. (2011a). Rvr Meander – Tutorials, 24. | |
dc.relation | Fernández, R., Motta, D., Abad, J. D., Langendoen, E. J., Oberg, N., & Garcia, M. H. (2011b). Rvr Meander – User´s Manual. | |
dc.relation | Garcia, M. H., Bittner, L., & Nino, Y. (1994). Mathematical modeling of meandering streams in Illinois: A tool for stream management and engineering. CIVIL ENGINEERING STUDIES - Hydraulic Engineering Series No. 43, (43), 49. | |
dc.relation | Giraldo, E. Z. (2015). Análisis comparativo de la modelación hidráulica entre HEC-RAS y CCHE- 2D, aplicado a un cauce aluvial. Caso estudio: río Suarez (Boyacá). | |
dc.relation | Goldsman, D., Nance, R. E., & Wilson, J. R. (2009). A brief history of simulation. Proceedings - Winter Simulation Conference, 310–313. https://doi.org/10.1109/WSC.2009.5429341 | |
dc.relation | Goren, L., & Willett, S. (2011). Landscape characterization with DAC ( DIVIDE AND CAPTURE ), a new surface evolution model. Geophysical Research Abstracts, 13, 10614–10614. | |
dc.relation | Goren, L., Willett, S. D., Herman, F., & Braun, J. (2014). Coupled numerical-analytical approach to landscape evolution modeling. Earth Surface Processes and Landforms, 39(4), 522–545. https://doi.org/10.1002/esp.3514 | |
dc.relation | Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjević, S., & Savić, D. A. (2016). A weighted cellular automata 2D inundation model for rapid flood analysis. Environmental Modelling and Software, 84, 378–394. https://doi.org/10.1016/j.envsoft.2016.07.008 | |
dc.relation | Gutierrez, A., Contreras, V., Ramirez, A. I., & Mejia, R. (2014). Risk zone prediction in meandering rivers by using a multivariate approach. Journal of Hydrologic Engineering, 19(9), 1–9. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000631 | |
dc.relation | Gyssels, P., Baldissone, C. M., Hillman, G., Corral, M., Pagot, M., Brea, D., … Farias, H. D. (2013). Aplicaciones del modelo numérico Delft3D a diferentes problemas hidrosedimentologicos en casos argentinos, XXXII, 19–22. | |
dc.relation | Hancock, G. R., Lowry, J. B. C., Coulthard, T. J., Evans, K. G., & Moliere, D. R. (2010). A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models. Earth Surface Processes and Landforms, 35(8), 863–875. https://doi.org/10.1002/esp.1863 | |
dc.relation | Hancock, G. R., Willgoose, G. R., & Evans, K. G. (2002). Testing of the SIBERIA landscape evolution model using the tin camp creek, Northern Territory, Australia, field catchment. Earth Surface Processes and Landforms, 27(2), 125–143. https://doi.org/10.1002/esp.304 | |
dc.relation | Hancock, Greg R. (2004). Modelling soil erosion on the catchment and landscape scale using landscape evolution models – a probabilistic approach using digital elevation model error. System, (December), 5–9. | |
dc.relation | Hancock, Greg R., Coulthard, T. J., Martinez, C., & Kalma, J. D. (2011). An evaluation of landscape evolution models to simulate decadal and centennial scale soil erosion in grassland catchments. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2010.12.002 | |
dc.relation | Hasegawa, K. (1989). Universal bank erosion coefficient for meandering rivers. Journal of Hydraulic Engineering, 115(6), 744–765. | |
dc.relation | Heitmuller, F. T., Hudson, P. F., & Asquith, W. H. (2015). Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: Bankfull and macrochannels in the Llano River watershed, central Texas, USA. Geomorphology, 232, 1–19. https://doi.org/10.1016/j.geomorph.2014.12.033 | |
dc.relation | Herman J. C. Berendsen. (2007). Simulating the physical world. Annals of Physics. https://doi.org/10.1017/CBO9780511815348 | |
dc.relation | Howard, A. D., & Knutson, T. R. (1984). Sufficient conditions for river meandering: A simulation approach. Water Resources Research. https://doi.org/10.1029/WR020i011p01659 | |
dc.relation | Hugget, R. J. (2011). Fundamentals of geomorphology 3rd Edition. Evaluation. | |
dc.relation | Ikeda, S., Parker, G., & Sawai, K. (1981). Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics, 112, 363–377. https://doi.org/10.1017/S0022112081000451 | |
dc.relation | Jamali, B., Bach, P. M., Cunningham, L., & Deletic, A. (2019). A Cellular Automata Fast Flood Evaluation (CA-ffé) Model. Water Resources Research, 55(6), 4936–4953. https://doi.org/10.1029/2018WR023679 | |
dc.relation | Johannesson, H., & Parker, G. (1985). Computer simulated migration of meandering rivers in Minnesota, (242), 1–98. | |
dc.relation | Johannesson, H., & Parker, G. (2011). Linear theory of river meanders, 12, 181–213. https://doi.org/10.1029/wm012p0181 | |
dc.relation | Kamanbedast, A. A., Nasrollahpour, R., & Mashal, M. (2013). Estimation of sediment transport in rivers using CCHE2D model (Case study: Karkheh River). Indian Journal of Science and Technology, 6(2), 138–141. https://doi.org/10.17485/ijst/2013/v6i2/30592 | |
dc.relation | Klijn, F., & Schweckendiek, T. (2012). Comprehensive Flood Risk Management. Comprehensive Flood Risk Management. https://doi.org/10.1201/b13715 | |
dc.relation | Knighton, D. (1998). Fluvial forms and processes. Routledge. Taylor & Francis Group. | |
dc.relation | Kondolf, G. M., & Piégay, H. (2016). Tools in Fluvial Geomorphology, Second Edition. | |
dc.relation | Kondolf, G. Mathias, & Piégay, H. (2005). Tools in fluvial geomorphology. Tools in Fluvial Geomorphology, 1–688. https://doi.org/10.1002/0470868333 | |
dc.relation | Kondolf, M. (2016). Tools in fluvial geomorphology. (H. Kondolf, Mathias; Piegay, Ed.) (2nd ed.). Wiley Blackwell. | |
dc.relation | Kondolf, M., & Piégay, H. (2003). Tools in Fluvial Geomorphology. (M. Kondolf & H. Piégay, Eds.), Tools in Fluvial Geomorphology. John Wiley & Sons, Inc. https://doi.org/10.1002/0470868333 | |
dc.relation | Lai, T., & Dragićević, S. (2011). Development of an urban landslide cellular automata model: A case study of North Vancouver, Canada. Earth Science Informatics. https://doi.org/10.1007/s12145-011-0078-3 | |
dc.relation | Langendoen, E. J., Motta, D., Abad, J. D., Garcia, M. H., Fernandez, R., & Oberg, N. (2010). RVR Meander - A toolbox for river meander planform desing and evaluation. | |
dc.relation | Lifeng, Y. (2008). A soil erosion model based on cellular automata. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b, 37(6b), 21–26. | |
dc.relation | Lin, Y. (2014). Unstructured Cellular Automata in Ecohydraulics Modelling. | |
dc.relation | Luo, W. (2001). LANDSAP: A coupled surface and subsurface cellular automata model for landform simulation. Computers and Geosciences, 27(3), 363–367. https://doi.org/10.1016/S0098-3004(00)00104-7 | |
dc.relation | Martinez Aguirre, F. (2002). Erosion fluvial relacionada a la evolución historica del meandro “Curva el Conejo” en el municipio de La Dorada - Caldas - Colombia. Memorias del 1er Simposio Latinoamericano de control de erosión. | |
dc.relation | Miller, J. R., Ritter, J. B., & Rosgen, D. L. (1996). A classification of natural rivers : reply to the, 27, 301–307. | |
dc.relation | Modelación Hidráulica Y Morfodinámica De Cauces Sinuosos Aplicación a La Quebrada La Marinilla (Ant). (2011). Boletín de Ciencias de la Tierra, (30), 107–117. | |
dc.relation | Motta, D. (2013). Meander migration with physically-based bank erosion. Ph.D. Thesis. University of Illinois at Urbana-Champaign. | |
dc.relation | Motta, D., Abad, J. D., Langendoen, E. J., & García, M. H. (2011). Floodplain heterogeneity and meander migration. River, Coastal and Estuarine Morphodynamics RCEM2011, 1–16. | |
dc.relation | Motta, D., Abad, J. D., Langendoen, E. J., & García, M. H. (2012). The effects of floodplain soil heterogeneity on meander planform shape. Water Resources Research, 48(July), 1–17. https://doi.org/10.1029/2011WR011601 | |
dc.relation | open TELEMAC-MASCARET. (2014), 2014. | |
dc.relation | Ortigoza, G. M. (2015). Unstructured triangular cellular automata for modeling geographic spread. Applied Mathematics and Computation, 258, 520–536. https://doi.org/10.1016/j.amc.2015.01.116 | |
dc.relation | Paluszny, M., & Restrepo, G. (2016). Orthogonal grids on meander-like regions: A database approach. Journal of Computational and Applied Mathematics, 295, 62–69. https://doi.org/10.1016/j.cam.2015.02.034 | |
dc.relation | Parker, G., Sawai, K., & Ikeda, S. (1982). Bend theory of river meanders. Part 2. Nonlinear deformation of finite-amplitude bends. Journal of Fluid Mechanics, 115(1982), 303–314. https://doi.org/10.1017/S0022112082000767 | |
dc.relation | Pasculli, A., Audisio, C., & Sciarra, N. (2015). Application of CAESAR for catchment and river evolution. Rendiconti Online Societa Geologica Italiana, 35(August), 224–227. https://doi.org/10.3301/ROL.2015.106 | |
dc.relation | Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., & Wirth, R. (2000). Crisp-Dm 1.0. CRISP-DM Consortium, 76. | |
dc.relation | Piazza, S. (2012). The modelling of soil erosion in river beds using cellular automata. University of Leeds. UK. | |
dc.relation | Posner, A. (2011). River Meander Modeling and Confronting Uncertainty. SANDIA Report, (May). | |
dc.relation | Posner, A. J., & Duan, J. G. (2012). Simulating river meandering processes using stochastic bank erosion coefficient. Geomorphology, 163–164, 26–36. https://doi.org/10.1016/j.geomorph.2011.05.025 | |
dc.relation | Rameshwaran, P., Naden, P., Wilson, C. A. M. E., Malki, R., Shukla, D. R., & Shiono, K. (2013). Inter-comparison and validation of computational fluid dynamics codes in two-stage meandering channel flows. Applied Mathematical Modelling, 37(20–21), 8652–8672. https://doi.org/10.1016/j.apm.2013.07.016 | |
dc.relation | Restrepo Arboleda, G. A. (2014). Creación de Mallas Ortogonales con Lemniscatas, 67. Recuperado de http://www.bdigital.unal.edu.co/12604/ | |
dc.relation | Rhoads, B. L., & Welford, M. R. (1991). Initiation of river meandering. Progress in Physical Geography, 15(2), 127–156. https://doi.org/10.1177/030913339101500201 | |
dc.relation | Rosgen D.L. (1994). A Classification of Natural Rivers. Catena, 22, 169–199. | |
dc.relation | Rotmans, J., Sluijs, V. D. S., Van Asselt, M. B. A., Janssen, P., & Von Krauss, M. P. K. (2003). Defining uncertainty. A conceptual basis for uncertainty management i nmodel- based decision support. Integrated Assessment, 4, 2003, 00(0). Recuperado de https://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:fdc0105c-e601-402a-8f16-ca97e9963592 | |
dc.relation | Rousseau, Y. Y., Van De Wiel, M. J., & Biron, P. M. (2014). Integration of a geotechnical model within a morphodynamic model to investigate river meandering processes. Proceedings of the International Conference on Fluvial Hydraulics, RIVER FLOW 2014, 1127–1133. https://doi.org/10.1201/b17133-152 | |
dc.relation | Rüther, N. (2006). Computational fluid dynamics in fluvial sedimentation engineering. | |
dc.relation | Sargent, D. M. (1979). A simplified model for the generation of daily streamflows. Hydrological Sciences Bulletin, 24(4), 509–527. https://doi.org/10.1080/02626667909491890 | |
dc.relation | Sarkar, P. (2000). A brief history of cellular automata. ACM Computing Surveys, 32(1), 80–107. https://doi.org/10.1145/349194.349202 | |
dc.relation | Sharma, P., Bhakar, S. R., Ali, S., Jain, H. K., Singh, P. K., & Kothari, M. (2018). Generation of Synthetic Streamflow of Jakham River , Rajasthan Using Thomas-Fiering Model. Agricultural Engineering, 55(4). | |
dc.relation | SIMÕES, F. J. M., & YANG, C. T. (2008). GSTARS computer models and their applications, Part II: Applications. International Journal of Sediment Research, 23(4), 299–315. https://doi.org/10.1016/S1001-6279(09)60002-0 | |
dc.relation | Sontek/Ysi. (2003). RiverSurveyor System Manual Software Version 3.50, (858), 144. | |
dc.relation | Soto Orjuela, J.C., & Escobar Vargas, J.A. (2015). Una vía hacia el entendimiento del comportamiento del meandro ( curva el conejo ) del rio MAGDALENA al interior del cual se halla ubicada la población de La Dorada. I Congreso Nacional Rios Y Humedales Honda, Tolima, 26 Al 28 De Noviembre, 2015 Sbi. | |
dc.relation | Soto Orjuela, J. C., Escobar Vargas, J. A., & Niño V., L. F. (2017). UNA APROXIMACION A LA SIMULACION DE MEANDROS CON CONTROL LITOLOGICO PARCIAL. En I CONGRESO INTERNACIONAL Y II CONGRESO NACIONAL DE RÍOS Y HUMEDALES (p. 1). Neiva, Huila. Colombia. | |
dc.relation | Struiksma, N., & Crosato, A. (1989). Analysis of a 2-D bed topography model for rivers. | |
dc.relation | Subramanya, K. (2009). Flow in Open Channels. | |
dc.relation | Sun, T., Meakin, P., Jøssang, T., & Schwarz, K. (1996). A simulation model for meandering rivers. Water Resources Research, 32(9), 2937–2954. https://doi.org/10.1029/96WR00998 | |
dc.relation | Thorndycraft, V. R., Benito, G., & Gregory, K. J. (2008). Fluvial geomorphology: A perspective on current status and methods. Geomorphology, 98(1–2), 2–12. https://doi.org/10.1016/j.geomorph.2007.02.023 | |
dc.relation | Thorne, C., & Darby, S. (1993). Approaches to Modeling Width Adjustment in Curved Alluvial Channels, (February). Recuperado de http://www.stormingmedia.us/37/3723/A372362.html | |
dc.relation | Torres, E., & González, E. (2008). Aplicación del modelo de simulación hidráulica hec-ras para la emisión de pronósticos hidrológicos de inundaciones en tiempo real, en la cuenca media del río Bogotá - sector Alicachin. | |
dc.relation | Tsige, T. Z., Beevers, L., & Crosato, A. (2009). Application of Monte Carlo techniques to assess the river corridor width, 6, 9–10. https://doi.org/10.1029/2006JF000549. | |
dc.relation | Tucker, G. E., Lancaster, S., Gasparini, N., & Bras, R. (s/f). CHILD Channel-HIllslope Integrated Landscape Development Model. | |
dc.relation | Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L., & Rybarczyk, S. M. (2001). An object-oriented framework for hydrologic and geomorphic modeling using triangular irregular networks. Computers and Geosciences, 27, 959–973. | |
dc.relation | Turri, E. (1983). Los rios y el curso de la historia. El correo de la UNESCO. Los rios esas venas del planeta, XXXVI(Septiembre), 4–7. | |
dc.relation | Vaghela, C. R., & Vaghela, A. R. (2014). Synthetic Flow Generation. International Journal of Engineering Research and Aplications, 4(7), 66–71. | |
dc.relation | Van De Wiel, M. J., Coulthard, T. J., Macklin, M. G., & Lewin, J. (2007). Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model. Geomorphology, 90(3–4), 283–301. https://doi.org/10.1016/j.geomorph.2006.10.024 | |
dc.relation | Versteeg, H. K., & Malalasekera, W. (1995). An Introduction to Computacional Fluis Dynamics, The volume finite method. Longman Group Ltd. | |
dc.relation | Vieira, D. A. (2005). MODELING HYDRODYNAMICS, CHANNEL MORPHOLOGY, AND WATER QUALITY USING CCHE1D. US-China Workshop on advanced computational modelling in hydroscience & engineering, (May), 1–13. | |
dc.relation | Villaret, C., Hervouet, J. M., Kopmann, R., Merkel, U., & Davies, A. G. (2013). Morphodynamic modeling using the Telemac finite-element system. Computers and Geosciences, 53, 105–113. https://doi.org/10.1016/j.cageo.2011.10.004 | |
dc.relation | Warmink, J. . J., & Booij, M. J. (2015). Uncertainty analysis in River Modeling. En P. Rowinski & A. Radecki-Pawlik (Eds.), Rivers–Physical, Fluvial and Environmental Processes (pp. 255–277). https://doi.org/10.1007/978-3-319-17719-9 | |
dc.relation | Wendt, J. F., Anderson, J. D., Degroote, J., Degrez, G., Dick, E., Grundmann, R., & Vierendeels, J. (2009). Computational fluid dynamics: An introduction. Computational Fluid Dynamics. https://doi.org/10.1007/978-3-540-85056-4 | |
dc.relation | Willgoose, G. (2005). SIBERIA. User’s manual. | |
dc.relation | Willgoose, G., Bras, R. L., & Rodriguez-Iturbe, I. (1991). A physically based coupled channel network growth and hillslope evolution model. 1. Theory. Water Resources Research, 27(7), 1671–1684. https://doi.org/10.1029/91WR00936 | |
dc.relation | Yang, C. T., & SIMÕES, F. J. M. (2008). GSTARS computer models and their applications, part I: theoretical development. International Journal of Sediment Research, 23(3), 197–211. https://doi.org/10.1016/S1001-6279(08)60019-0 | |
dc.relation | Yará Amaya, F. A. (2019). Estudio hidráulico del meandro del río Magdalena , municipio de La Dorada Caldas. Universidad Nacional de COlombia - Sede Manizales. | |
dc.relation | Zerfu, T., Beevers, L., Crosato, A., & Wright, N. (2015). Variable input parameter influence on river corridor prediction. Proceedings of the Institution of Civil Engineers: Water Management, 168(5), 199–209. https://doi.org/10.1680/wama.13.00114 | |
dc.relation | Zhao, J., Li, B., & Huang, L. (2014). Study on the cell size in the simulation of a cellular automaton model for hillslope rill erosion. Journal of Chemical and Pharmaceutical Research, 6(6), 1615–1619. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Desarrollo de una herramienta computacional que permita simular la dinámica geomorfológica de un meandro a la luz de la geología. Aplicación a la curva el Conejo en La Dorada (Caldas) | |
dc.type | Otro | |