dc.contributor | Muñoz Molina, Liliana | |
dc.contributor | Salazar Pulido, Luz Mary | |
dc.creator | Segura-Alba, Maryi Lorena | |
dc.date.accessioned | 2020-03-05T13:21:30Z | |
dc.date.available | 2020-03-05T13:21:30Z | |
dc.date.created | 2020-03-05T13:21:30Z | |
dc.date.issued | 2020-02-27 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/75858 | |
dc.description.abstract | Los Staphylococcus spp. hacen parte de la microbiota humana, la patología depende de la capacidad de secretar toxinas, factores de virulencia y genes de resistencia.
Otro de los factores de resistencia es la formación de biopelícula controlado por el quorum sensing y proteínas de adhesión intracelular (PIA), mediante un proceso descrito en tres pasos: adhesión; proliferación/maduración y dispersión. En la adhesión las proteínas de unión (MSCRAMM) tienen la capacidad de unirse a elastina, colágeno, fibronectina y fibrinógeno, esto aumenta la capacidad de adherencia y prevalencia.
Este trabajo tiene como objetivo determinar la presencia de algunas de estas enzimas y la actividad anti-biopelícula de cuatro péptidos con secuencias análogas a la catelicidina humana, en aislamientos clínicos de S.aureus y S. epidermidis, mediante métodos de rojo Congo, microplaca de 96 pozos, PCR y qPCR.
El ensayo en microplaca de 96 pozos mostró que los péptidos LL37-1 y DLL37-1, a una concentración de 5 μM, inhiben la formación de biopelícula después de 24 horas de exposición, en un 50 y 55% respectivamente y en las curvas de crecimiento bacteriano presenta cambios con respecto al control entre 4 y 12 horas. Las enzimas de adhesión identificadas fueron ClfA, ClfB, FnbA en S. aureus y SdrE, SdrF en S. epidermidis. La expresión de estas proteínas en presencia de los péptidos fue diferente en cada aislamiento. Los hallazgos encontrados proporcionan evidencia que los péptidos con mayor capacidad de actividad antibiopelícula son los péptidos LL37-1 y DLL-37-1.
Palabras Clave: S.aureus, S.epidermidis, biopelícula, Péptido sintético LL-37. | |
dc.description.abstract | The Staphylococcus spp. They are part of the human microbiota, the pathology depends on the ability to secrete toxins, virulence factors and resistance genes.
Another resistance factor is the formation of biofilm controlled by quorum sensing and intracellular adhesion proteins (PIA), by a process described in three steps: adhesion; proliferation / maturation and dispersion. In adhesion binding proteins (MSCRAMM) have the ability to bind elastin, collagen, fibronectin and fibrinogen, this increases the ability to adhere and prevail.
This work aims to determine the presence of some of these enzymes and the anti-biofilm activity of four peptides with sequences analogous to human cathelicidin, in clinical isolates of S. aureus and S. epidermidis, using methods of Congo red, microplate of 96 wells, PCR and qPCR.
The 96-well microplate assay showed that LL37-1 and DLL37-1 peptides, at a concentration of 5 μM, inhibit biofilm formation after 24 hours of exposure, at 50 and 55% respectively and in the curves of Bacterial growth presents changes with respect to the control between 4 and 12 hours. The adhesion enzymes identified were ClfA, ClfB, FnbA in S. aureus and SdrE, SdrF in S. epidermidis. The expression of these proteins in the presence of the peptides was different in each isolation. The findings found provide evidence that the peptides with the highest capacity for anti-film activity are peptides LL37-1 and DLL-37-1.
Keywords: S.aureus, S.epidermidis, biofilm, LL-37 synthetic peptide. | |
dc.language | spa | |
dc.publisher | Instituto de Biotecnología | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Hall CW, Mah T. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41:276–301. | |
dc.relation | Venkatesan N, Perumal G, Doble M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol. | |
dc.relation | Wolcott R, Dowd S. The role of biofilms: Are we hitting the right target? Plast Reconstr Surg. 2011;127(SUPPL. 1 S):28–35. | |
dc.relation | Barrero L, Rivera S, Villalobos A. Protocolo de vigilancia en salud pública, Infecciones asociadas a dispositivos. Grup Enfermedades Transm Equipo Infecc Asoc a la Aten en salud. 2016;version 03:3–70. | |
dc.relation | Patti JM, Allen BL, McGavin MJ, Hook M. MSCRAMM-Mediated Adherence of Microorganisms to Host Tissues. Annu Rev Microbiol. 1994;48(1):585–617. | |
dc.relation | Lianhua Y, Yunchao H, Guangqiang Z, Kun Y, Xing L, Fengli G. The Effect of Iatrogenic Staphylococcus epidermidis Intercellar Adhesion Operon on the Formation of Bacterial Biofilm on Polyvinyl Chloride Surfaces. Surg Infect (Larchmt) [Internet]. 2014;15(6):768–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25402758 | |
dc.relation | Pei L, Palma M, Nilsson M, Guss B, Flock JI. Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis. Infect Immun [Internet]. 1999;67(9):4525–30. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC96773/pdf/ii004525.pdf | |
dc.relation | Arora S, Uhlemann AC, Lowy FD, Hook M. A novel MSCRAMM subfamily in coagulase negative Staphylococcal species. Front Microbiol. 2016;7(APR):1–9. | |
dc.relation | Dakheel KH, Abdul Rahim R, Neela VK, Al-Obaidi JR, Hun TG, Yusoff K. Methicillin-Resistant Staphylococcus aureus Biofilms and Their Influence on Bacterial Adhesion and Cohesion. Biomed Res Int. 2016;2016. | |
dc.relation | C.B. Ardon, E.P. Prens1, K. Fuursted, R.N. Ejaz, J. Shailes, H. Jenssen2 and GBE. Biofilm production and antibiotic susceptibility of Staphylococcus epidermidis strains from Hidradenitis Suppurativa lesions. | |
dc.relation | Betancourth M, Botero JE, S Rivera. Biopeliculas: una comunidad microscÛpica en desarrollo. Colomb Med. 2004;35(1):34-39. | |
dc.relation | Costerson JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science (80- ). 1999;284(May):1318–22. | |
dc.relation | Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat [Internet]. 2016;26:43–57. Available from: http://dx.doi.org/10.1016/j.drup.2016.04.002 | |
dc.relation | Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev [Internet]. 2003;55(1):27–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12615953%5Cnhttp://pharmrev.aspetjournals.org.gate2.inist.fr/content/55/1/27.abstract%5Cnhttp://pharmrev.aspetjournals.org/content/55/1/27.full | |
dc.relation | Yin P, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug- resistant bacteria. J Microbiol Immunol Infect [Internet]. 2017;50(4):405–10. Available from: http://dx.doi.org/10.1016/j.jmii.2016.12.005 | |
dc.relation | Koppen BC, Mulder PPG, Boer L De, Riool M, Drijfhout JW, Zaat SAJ. International Journal of Antimicrobial Agents Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus aureus. 2019;53:143–51. | |
dc.relation | Bandurska K, Krupa P. Unique features of human cathelicidin LL-37. Int Union Biochem Mol Biol. 2015;41(5):289–300. | |
dc.relation | Hancock REW, Sahl H. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. 2006;24(12):1551–7. | |
dc.relation | Pushpanathan M, Gunasekaran P, Rajendhran J. Antimicrobial peptides: Versatile biological properties. Int J Pept. 2013;2013(November 2016) | |
dc.relation | Yin LM, Edwards MA, Li J, Yip CM, Deber CM. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem. 2012;287(10):7738–45. | |
dc.relation | He Y, Lazaridis T. Activity Determinants of Helical Antimicrobial Peptides: A Large-Scale Computational Study. PLoS One. 2013;8(6). | |
dc.relation | Gherardi G, Di Bonaventura G, Savini V. Staphylococcal Taxonomy [Internet]. Pet-To-Man Travelling Staphylococci. Elsevier Inc.; 2018. 1–10 p. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780128135471000017 | |
dc.relation | David MZ, Daum RS. Treatment of Staphylococcus aureus Infections. 2017 | |
dc.relation | Kaiser JC. crossm Branching Out : Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. 2018;9(5):1–17 | |
dc.relation | Almeida GCM, dos Santos MM, Lima NGM, Cidral TA, Melo MCN, Lima KC. Prevalence and factors associated with wound colonization by Staphylococcus spp. and Staphylococcus aureus in hospitalized patients in inland northeastern Brazil: A cross-sectional study. BMC Infect Dis. 2014;14(1):1–8. | |
dc.relation | Fairbrother RW. Coagulase production as a criterion for the classification of the Staphylococci. J Pathol Bacteriol. 1940;2(50(1)):83–8. | |
dc.relation | Cervantes-García E, García-González R, Salazar-Schettino PM. Características generales del Staphylococcus aureus. Rev Latinoam Patol Clin Med Lab [Internet]. 2014;61(1):28–40. Available from: www.medigraphic.com/patologiaclinica%5Cnwww.medigraphic.org.mx | |
dc.relation | Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh H a, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis [Internet]. 2005;5(12):751–62. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1473309905702954 | |
dc.relation | Andrea de S. Monteiro , Bruna L. S. Pinto , Joveliane de M. Monteiro, Rômulo M. Ferreira , Patrícia C. S. Ribeiro SYB, , Sirlei G. Marques LCNS, Wallace R. Nunes Neto, Gabriella F. Ferreira MRQB and AGA. Phylogenetic and Molecular Profile of Staphylococcus aureus Isolated from Bloodstream Infections in Northeast Brazil. :1–14. | |
dc.relation | Salud IN de. Resultados del Programa de Vigilancia por Laboratorio de Resistencia antimicrobiana en Infecciones Asociadas a la Atención en Salud (IAAS). 2016. | |
dc.relation | Chen H, Liu Y, Jiang X, Chen M, Wang H. Rapid Change of Methicillin-Resistant Staphylococcus aureus Clones in a Chinese Tertiary Care Hospital over a 15-Year Period. 2010;54(5):1842–7. | |
dc.relation | Yu F, Li T, Huang X, Xie J, Xu Y, Tu J, et al. Virulence gene profiling and molecular characterization of hospital-acquired Staphylococcus aureus isolates associated with bloodstream infection. Diagn Microbiol Infect Dis [Internet]. 2012;74(4):363–8. Available from: http://dx.doi.org/10.1016/j.diagmicrobio.2012.08.015 | |
dc.relation | Paternina-de R, Israel S, Célia M, Aparecida D, Lima S, Martinez R, et al. Is community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) an emerging pathogen among children in Brazil? 2018;2(5):371–6. | |
dc.relation | Edslev SM, Westh H, Andersen PS, Skov R, Kobayashi N, Bartels MD, et al. Identification of a PVL-negative SCCmec-IVa sublineage of the methicillin-resistant Staphylococcus aureus CC80 lineage: understanding the clonal origin of CA-MRSA. Clin Microbiol Infect [Internet]. 2018;24(3):273–8. Available from: https://doi.org/10.1016/j.cmi.2017.06.022 | |
dc.relation | Spaan AN, Van Strijp JAG, Torres VJ. Leukocidins: Staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol [Internet]. 2017;15(7):435–47. Available from: http://dx.doi.org/10.1038/nrmicro.2017.27 | |
dc.relation | Biomed R, Biomed R. Staphylococcus aureus : la reemergencia de un patógeno. 2006;17(4):287–305. | |
dc.relation | Hecker M, Mäder U, Völker U. From the genome sequence via the proteome to cell physiology - Pathoproteomics and pathophysiology of Staphylococcus aureus. Int J Med Microbiol [Internet]. 2018;(December 2017):0–1. Available from: http://dx.doi.org/10.1016/j.ijmm.2018.01.002 | |
dc.relation | Gillet Y, Issartel B, Vanhems P, Fournet JC, Lina G, Bes M, et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet. 2002;359(9308):753–9. | |
dc.relation | Ito T, Okuma K, Ma XX, Yuzawa H, Hiramatsu K. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome : genomic island SCC. 2003;6:41–52. | |
dc.relation | Mazmanian SK. Staphylococcus aureus Sortase , an Enzyme that Anchors Surface Proteins to the Cell Wall. Sci mag. 1999;285(1999). | |
dc.relation | Haim M, Trost A, Maier CJ, Achatz G, Feichtner S, Hintner H. Cytokeratin 8 interacts with clumping factor B : a new possible virulence factor target. 2018;(2010):3710–21. | |
dc.relation | Pinilla G, Bautista A, Cruz C, Chavarro B, Navarrete J. Determinación de factores de adhesión asociados a la formación de biopelícula en aislamientos clínicos de Staphylococcus aureus y Staphylococcus epidermidis. NOVA. 2017;15(27):67–75. | |
dc.relation | Ganesh VK, Liang X, Geoghegan JA, Luisa A, Cohen V, Venugopalan N, et al. Lessons from the Crystal Structure of the S . aureus Surface Protein Clumping Factor A in Complex With Te fi bazumab , an Inhibiting Monoclonal Antibody. EBIOM [Internet]. 2016;13:328–38. Available from: http://dx.doi.org/10.1016/j.ebiom.2016.09.027 | |
dc.relation | Camussone CM, Calvinho LF. Factores de virulencia de Staphylococcus aureus asociados con infecciones mamarias en bovinos: Relevancia y rol como agentes inmunógenos. Rev Argent Microbiol. 2013;45(2):119–30. | |
dc.relation | Malachowa N, Kobayashi SD, Porter AR, Braughton KR, Scott P, Gardner DJ, et al. Contribution of Staphylococcus aureus Coagulases and Clumping Factor A to Abscess Formation in a Rabbit Model of Skin and Soft Tissue Infection. 2016;1–14. | |
dc.relation | Vaudaux PE, Franc P, Proctor RA, Devitt DMC, Foster TJ, Albrecht RM, et al. Use of Adhesion-Defective Mutants of Staphylococcus aureus To Define the Role of Specific Plasma Proteins in Promoting Bacterial Adhesion to Canine Arteriovenous Shunts. 1995;63(2):585–90. | |
dc.relation | Id KAL, Mulcahy ME, Id AMT, Id JAG, Id RMM. Clumping factor B is an important virulence factor during Staphylococcus aureus skin infection and a promising vaccine target. 2019;1–20 | |
dc.relation | Mulcahy ME, Geoghegan JA, Monk IR, Keeffe KMO, Walsh EJ, Foster TJ, et al. Nasal Colonisation by Staphylococcus aureus Depends upon Clumping Factor B Binding to the Squamous Epithelial Cell Envelope Protein Loricrin. 2012;8(12). | |
dc.relation | Josefsson E, Mccrea KW, Eidhin DN, Connell DO, Cox J, Hook M, et al. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. 2019;(1 998):3387–95. | |
dc.relation | Schaffer AC, Solinga RM, Cocchiaro J, Portoles M, Kiser KB, Risley A, et al. Immunization with Staphylococcus aureus Clumping Factor B , a Major Determinant in Nasal Carriage , Reduces Nasal Colonization in a Murine Model. 2006;74(4):2145–53. | |
dc.relation | Hair PS, Foley CK, Krishna NK, Nyalwidhe JO, Geoghegan JA, Timothy J, et al. Results in Immunology Complement regulator C4BP binds to Staphylococcus aureus surface proteins SdrE and Bbp inhibiting bacterial opsonization and killing. Elsevier [Internet]. 2013;3:114–21. Available from: http://dx.doi.org/10.1016/j.rinim.2013.10.004 | |
dc.relation | Mccrea KW, Hartford O, Davis S, Eidhin DN, Lina G, Speziale P, et al. The serine-aspartate repeat ( Sdr ) protein family in Staphylococcus epidermidis. 2000;(146):1535–46. | |
dc.relation | Trivedi S, Uhlemann A, Herman-bausier P, Sullivan SB, Sowash MG, Flores EY, et al. The Surface Protein SdrF Mediates Staphylococcus epidermidis Adherence to Keratin. 2017;215 | |
dc.relation | Bowden MG, Heuck AP, Ponnuraj K, Kolosova E, Choe D, Gurusiddappa S, et al. Evidence for the “dock, lock, and latch” ligand binding mechanism of the Staphylococcal microbial surface component recognizing adhesive matrix molecules (MSCRAMM) SdrG. J Biol Chem. 2008;283(1):638–47. | |
dc.relation | Mascari LM, Ross JM. Quantification of Staphylococcal-collagen binding interactions in whole blood by use of a confocal microscopy shear-adhesion assay. J Infect Dis. 2003;188(1):98–107. | |
dc.relation | Madani A, Garakani K, Mofrad MRK. Molecular mechanics of Staphylococcus aureus adhesin , CNA , and the inhibition of bacterial adhesion by stretching collagen. 2017;1–19. | |
dc.relation | Shanks RMQ, Meehl MA, Brothers KM, Martinez RM, Donegan NP, Graber ML, et al. Genetic Evidence for an Alternative Citrate-Dependent Biofilm Formation Pathway in Staphylococcus aureus That Is Dependent on Fibronectin Binding Proteins and the GraRS Two-Component Regulatory System. 2008;76(6):2469–77. | |
dc.relation | Mccourt J, Halloran DPO, Mccarthy H, Gara JPO, Geoghegan JA. Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. 2014;353:157–64. | |
dc.relation | Claro T, Kavanagh N, Foster TJ, Brien FJO, Kerrigan SW. Staphylococcus epidermidis serine e aspartate repeat protein G ( SdrG ) binds to osteoblast integrin alpha V beta 3. Microbes Infect [Internet]. 2015;17(6):395–401. Available from: http://dx.doi.org/10.1016/j.micinf.2015.02.003 | |
dc.relation | Jan-roblero J, García-gómez E, Jan-roblero J, García-gómez E, Rodríguez-martínez S, Mario E. Surface Proteins of Staphylococcus aureus. intech open Sci. 2017 | |
dc.relation | Pietrocola G, Nobile G, Gianotti V, Zapotoczna M, Foster TJ, Geoghegan JA, et al. Molecular Interactions of Human Plasminogen with Fibronectin-binding Protein B ( FnBPB ), a Fibrinogen / Fibronectin-binding Protein from Staphylococcus aureus. 2016;291(35):18148–62. | |
dc.relation | Kang M, Ko Y, Liang X, Liu Q, Murray BE. Collagen-binding Microbial Surface Components Recognizing Adhesive Matrix Molecule ( MSCRAMM ) of Gram-positive Bacteria Inhibit Complement Activation via the Classical Pathway *. 2013;288(28):20520–31 | |
dc.relation | Vuong C, Otto M. Staphylococcus epidermidis infections. 2002;4:481–9 | |
dc.relation | Eiff C Von, Peters G, Heilmann C. Pathogenesis of infections due to coagulase- negative Staphylococci. 2002;2(November):677–85. | |
dc.relation | Edited by John E. Bennett, MD, MACP, Raphael Dolin and Martin J. Blaser M. Enfermedades infecciosas. Principios y práctica. 8th ed. Elsevier, editor. Vol. 8. 2015. 3960 p. | |
dc.relation | C. Heilmann, W. Ziebuhr KB. Are coagulase-negative Staphylococci virulent? Clin Microbiol Infect [Internet]. 2018; Available from: http://www.sciencedirect.com/science/article/pii/S1198743X18307390 | |
dc.relation | Otto M. Staphylococcus epidermidis—the’accidental’pathogen. Nat Rev Microbiol [Internet]. 2009;7(8):555–67. Available from: http://www.nature.com/nrmicro/journal/v7/n8/abs/nrmicro2182.html | |
dc.relation | Götz F, Yu W, Dube L, Prax M, Ebner P. Excretion of cytosolic proteins (ECP) in bacteria. Int J Med Microbiol [Internet]. 2015;305(2):230–7. Available from: http://dx.doi.org/10.1016/j.ijmm.2014.12.021 | |
dc.relation | Paharik AE, Kotasinska M, Roy P, Fey PD, Horswill AR, Rohde H. The metalloprotease SepA governs processing of accumulation-associated protein and shapes intercellular adhesive surface properties in Staphylococcus epidermidis. 2017;103(January):860–74. | |
dc.relation | S. MARTINEZ-GARCIA, S. RODRIGUEZ-MARTINEZ MEC-D and JCC-D. Extracellular proteases of Staphylococcus epidermidis : roles as virulence factors and their participation in biofilm. 2018;1–9. | |
dc.relation | Fey PD, Olson ME. Current concepts in biofilm formation of Staphylococcus epidermidis. FutureMicrobiol [Internet]. 2010;5(1746-0921 (Electronic)):917–33. Available from: c:%5CKARSTEN%5CPDFs%5CStaphylokokken-PDFs%5CStaph-2010%5CFey - Olson-Current concepts in biofilm formation of S.epidermidis.pdf | |
dc.relation | Wang C, Li M, Dong D, Wang J, Ren J, Otto M, et al. Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microbes Infect. 2007;9(11):1376–83. | |
dc.relation | Frees D, Qazi SNA, Hill PJ, Ingmer H. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. 2003;48:1565–78. | |
dc.relation | Stahlhut SG, Alqarzaee AA, Jensen C, Fisker NS, Ana R, Pinho MG, et al. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Sci Rep [Internet]. 2017;(June):1–14. Available from: http://dx.doi.org/10.1038/s41598-017-12122-y | |
dc.relation | Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus bio fi lms. Int J Med Microbiol [Internet]. 2018;309(1):1–12. Available from: https://doi.org/10.1016/j.ijmm.2018.11.002 | |
dc.relation | Vanderhaeghen W, Piepers S, Leroy F, Coillie E Van, Haesebrouck F, Vliegher S De. Invited review : Effect , persistence , and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. J Dairy Sci [Internet]. 2014;97(9):5275–93. Available from: http://dx.doi.org/10.3168/jds.2013-7775 | |
dc.relation | Löffler B, Tuchscherr L, Niemann S, Peters G. Staphylococcus aureus persistence in non-professional phagocytes. Int J Med Microbiol [Internet]. 2014;304(2):170–6. Available from: http://dx.doi.org/10.1016/j.ijmm.2013.11.011 | |
dc.relation | Yarawsky AE, English LR, Whitten ST, Herr AB. The Proline / Glycine-Rich Region of the Biofilm Adhesion Protein Aap Forms an Extended Stalk that Resists Compaction. J Mol Biol [Internet]. 2017;429(2):261–79. Available from: http://dx.doi.org/10.1016/j.jmb.2016.11.017 | |
dc.relation | Alabdullatif M, Ramirez-arcos S. Biofilm-associated accumulation-associated protein ( Aap ): A contributing factor to the predominant growth of Staphylococcus epidermidis in platelet concentrates. 2018;1–10. | |
dc.relation | Sivadon V, Rottman M, Quincampoix J, Prunier E, Mazancourt P De, Bernard L, et al. Polymorphism of the Cell Wall-Anchoring Domain of the Autolysin-Adhesin AtlE and Its Relationship to Sequence Type , as Revealed by Multilocus Sequence Typing of Invasive and Commensal Staphylococcus epidermidis Strains. 2006;44(5):1839–43. | |
dc.relation | Sivadon V, Rottman M, Quincampoix J, Prunier E, Moal M Le, Mazancourt P De, et al. Partial atlE Sequencing of Staphylococcus epidermidis Strains from Prosthetic Joint Infections. 2009;47(7):2321–4. | |
dc.relation | Rohde H, Frankenberger S, Ulrich Z, Mack D. Structure , function and contribution of polysaccharide intercellular adhesin ( PIA ) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. 2010;89:103–11. | |
dc.relation | Speziale P, Pietrocola G, Foster TJ, Geoghegan JA, Fey PD. Protein-based biofilm matrices in Staphylococci. 2014;4(December):1–10. | |
dc.relation | R. Biswas LV, U. Simon K, Hentschel, Petra. Gunther T. Friedrich G. Activity of the major Staphylococcal autolysin Atl. 2006;259:260–8. | |
dc.relation | Schommer NN, Christner M, Hentschke M, Ruckdeschel K, Aepfelbacher M, Rohde H. Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. Infect Immun. 2011;79(6):2267–76. | |
dc.relation | Namvar AE, Bastarahang S, Abbasi N, Ghehi GS, Farhadbakhtiarian S, Arezi P, et al. Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS Hyg Infect Control [Internet]. 2014;9(3):Doc23. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4184040&tool=pmcentrez&rendertype=abstract | |
dc.relation | Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, et al. The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. 2010;75(December 2009):187–207. | |
dc.relation | Le KY, Park MD, Otto M. Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection. Front Microbiol. 2018;9(FEB):1–8. | |
dc.relation | Otto M. Phenol-soluble modulins. Int J Med Microbiol [Internet]. 2014;304(2):164–9. Available from: http://dx.doi.org/10.1016/j.ijmm.2013.11.019 | |
dc.relation | Vuong C, Dürr M, Carmondy AB, Peschel A, Klebanoff SJ, Otto M. Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermis: Quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell Microbiol. 2004;6(8):753–9. | |
dc.relation | Toltzis P. Staphylococcus epidermidis and Other Coagulase-Negative Staphylococci [Internet]. Fifth Edit. Principles and Practice of Pediatric Infectious Diseases. Elsevier Inc.; 706-712.e4 p. Available from: http://dx.doi.org/10.1016/B978-0-323-40181-4.00116-X | |
dc.relation | Kong KF, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol. 2006;296(2–3):133–9. | |
dc.relation | Tormo MÁ, Knecht E, Götz F, Lasa I, Penadés JR. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: Evidence of horizontal gene transfer? Microbiology. 2005;151(7):2465–75. | |
dc.relation | Xue T, Ni J, Shang F, Chen X, Zhang M. Autoinducer-2 increases biofilm formation via an ica - and bhp -dependent manner in Staphylococcus epidermidis RP62A. Microbes Infect [Internet]. 2015;17(5):345–52. Available from: http://dx.doi.org/10.1016/j.micinf.2015.01.003 | |
dc.relation | Marrie TJ, Nelligan, Joyce CJ. A Scanning and Transmission Electron Microscopic Study of an Infected Endocardial Pacemaker Lead. 1982;66(6):1339–42. | |
dc.relation | J URM, Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Sn S, et al. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45. | |
dc.relation | Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol. 2008;322:207–28 | |
dc.relation | Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE. Biofilms: Survival and defense strategy for pathogens. Int J Med Microbiol. 2017;307(8):481–9. | |
dc.relation | Balcázar JL, Subirats J, Borrego CM. The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol. 2015;6(OCT):1–9. | |
dc.relation | Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence [Internet]. 2011;2(5):445–59. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3322633&tool=pmcentrez&rendertype=abstract | |
dc.relation | Roilides E, Simitsopoulou M, Katragkou A, Walsh TJ. How Bio fi lms Evade Host Defenses. 2015;1–10. | |
dc.relation | Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Asif M, et al. Bacterial biofilm and associated infections. J Chinese Med Assoc [Internet]. 2017;5–9. Available from: https://doi.org/10.1016/j.jcma.2017.07.012 | |
dc.relation | Paharik AE, Horswill AR, Roy J, City I. The Staphylococcal Biofilm: Adhesins, regulation, and host response. 2016;4(2):1–48. | |
dc.relation | Sharma D, Misba L, Khan AU. Antibiotics versus biofilm : an emerging battleground in microbial communities. 2019;3:1–10. | |
dc.relation | Flemming H, Neu TR, Wozniak DJ, Carolina N, Decho A, Kreft J, et al. The EPS Matrix : The “ House of Biofilm Cells ”. J Bacteriol. 2007;189(22):7945–7. | |
dc.relation | Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: Combatting bacterial resistance in cells and in biofilm communities. Molecules. 2015;20(4):5286–98. | |
dc.relation | Kim J, Park H, Chung S. Microfluidic Approaches to Bacterial Biofilm Formation. 2012;9818–34. | |
dc.relation | Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med [Internet]. 2013;64:175–88. Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev-med-042711-140023 | |
dc.relation | Götz F. Staphylococcus and biofilms. Mol Microbiol. 2002;43(6):1367–78. | |
dc.relation | Stacy A, Mcnally L, Darch SE, Brown SP, Whiteley M, Disease I. The biogeography of polymicrobial infection. 2016;14(2):93–105. | |
dc.relation | Toole GO, Kaplan HB, Kolter R. Biofilm formation as microbial development. 2000;49–79. | |
dc.relation | Donlan RM, Costerton JW, Donlan RM, Costerton JW. Biofilms : Survival Mechanisms of Clinically Relevant Microorganisms. Clin Microbiol. 2002;15(2):167–93. | |
dc.relation | Stewart PS, William Costerton J. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8. | |
dc.relation | Davies DG, Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, et al. The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm. 2012;295(1998). | |
dc.relation | C JN. Biofilms bacterianos. 2007;61–72 | |
dc.relation | Stoodley P, Wilson S, Hall-stoodley L, Boyle JD, Lappin-scott HM, Costerton JW. Growth and Detachment of Cell Clusters from Mature Mixed-Species Biofilms. 2001;67(12):5608–13. | |
dc.relation | Oliveira WF, Silva PMS, Silva RCS, Silva GMM, Machado G, Coelho LCBB, et al. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect [Internet]. 2018;98(2):111–7. Available from: https://doi.org/10.1016/j.jhin.2017.11.008 | |
dc.relation | Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. 2019;1–23 | |
dc.relation | Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol [Internet]. 2018;1. Available from: http://www.nature.com/articles/s41579-018-0019-y | |
dc.relation | Joan A. Geoghegan1 and Yves F. Dufrêne. Mechanomicrobiology: How Mechanical Forces Activate Staphylococcus aureus Adhesion. Trends Microbiol. 2018;26(2015):645–8. | |
dc.relation | Shirtliff ME, Mader JT, Camper AK. Molecular Interactions in Biofilms. 2002;9(02):859–71. | |
dc.relation | Fitzpatrick F, Humphreys H, Gara JPO. Evidence for icaADBC -Independent Biofilm Development Mechanism in Methicillin-Resistant Staphylococcus aureus Clinical Isolates. 2005;43(4):1973–6. | |
dc.relation | Belloso WH. Historia de los antibióticos. Rev Hosp Ital Buenos Aires [Internet]. 2009;29(2):102–11. Available from: http://www.hiba.org.ar/archivos/noticias_attachs/47/documentos/7482_102-111-belloso.pdf | |
dc.relation | Zaman S Bin, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus [Internet]. 2017;9(6). Available from: http://www.cureus.com/articles/7900-a-review-on-antibiotic-resistance-alarm-bells-are-ringing | |
dc.relation | Fernández L, Hancock REW. Adaptive and Mutational Resistance : Role of Porins and Efflux Pumps in Drug Resistance. 2012;25(4):661–81. | |
dc.relation | Laxminarayan R, Laxminarayan R, Brown G, Brown G. Economics of Antibiotic Resistance: A Theory of Optimal Use. Ther Clin Risk Manag [Internet]. 2001;42(2):183–206. Available from: citeulike-article-id:2385118%5Cnhttp://dx.doi.org/10.1006/jeem.2000.1156 | |
dc.relation | Khabbaz R, Cars O, Kumar S, Perovic O, Song J-H, Thamlikitkul V, et al. IMPLEMENTATION OF THE GLOBAL ACTION PLAN ON ANTIMICROBIAL RESISTANCE. 2017;(32):1–4. Available from: http://www.who.int/antimicrobial-resistance/news/WHO-GAP-AMR-Newsletter-No-32-Nov-2017.pdf?ua=1 | |
dc.relation | Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett. 2007;271(2):147–61. | |
dc.relation | Freire-Moran L, Aronsson B, Manz C, Gyssens IC, So AD, Monnet DL, et al. Critical shortage of new antibiotics in development against multidrug-resistant bacteria - Time to react is now. Drug Resist Updat. 2011;14(2):118–24 | |
dc.relation | Olivares J, Bernardini A, Garcia-leon G, Corona F, Sanchez MB, Martinez JL. The intrinsic resistome of bacterial pathogens. 2013;4(April):1–15. | |
dc.relation | Garau G, Marie A, Guilmi D, Hall BG. Structure-Based Phylogeny of the Metallo- ẞ -Lactamases. 2005;49(7):2778–84. | |
dc.relation | Chambless JD, Hunt SM, Stewart PS. A Three-Dimensional Computer Model of Four Hypothetical Mechanisms Protecting Biofilms from Antimicrobials. 2013;72(3):2005–13. | |
dc.relation | Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol. 2012;65(2):183–95 | |
dc.relation | Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. 2001;358:135–8. | |
dc.relation | Hilchie AL, Wuerth K, Hancock REW. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Publ Gr [Internet]. 2013;9(12):761–8. Available from: http://dx.doi.org/10.1038/nchembio.1393 | |
dc.relation | Fleming A, B PRSL. On a Remarkable Bacteriolytic Element Found in Tissues and Secretions. 1922;306–17. | |
dc.relation | Travkova OG, Moehwald H, Brezesinski G. The interaction of antimicrobial peptides with membranes. Adv Colloid Interface Sci [Internet]. 2017;247(May):521–32. Available from: http://dx.doi.org/10.1016/j.cis.2017.06.001 | |
dc.relation | Biswajit Mishra and Guangshun Wang. Ab Initio Design of Potent Anti-MRSA Peptides based on Database Filtering Technology. NIH Public Access. 2012;134(30):12426–9. | |
dc.relation | Declan A. Doyle and B. A. Wallace. THE DYNAMIC NATURE OF GRAMICIDIN. 1996. 327–359 p. | |
dc.relation | Hazam PK, Goyal R, Ramakrishnan V. Peptide based antimicrobials : Design strategies and therapeutic potential. Prog Biophys Mol Biol [Internet]. 2019;142:10–22. Available from: https://doi.org/10.1016/j.pbiomolbio.2018.08.006 | |
dc.relation | Lombardi L, Falanga A, Genio V Del, Galdiero S. A New Hope : Self-Assembling Peptides with Antimicrobial Activity. 2019 | |
dc.relation | Findlay B, Zhanel GG, Schweizer F, Findlay B, Zhanel GG, Schweizer F. Cationic Amphiphiles , a New Generation of Antimicrobials Inspired by the Natural Antimicrobial Peptide Scaffold MINIREVIEW Cationic Amphiphiles , a New Generation of Antimicrobials Inspired by the Natural Antimicrobial Peptide Scaffold ᰔ. 2010;54(10). | |
dc.relation | Zeth K, Sancho-vaello E. The Human Antimicrobial Peptides Dermcidin and LL-37 Show Novel Distinct Pathways in Membrane Interactions. 2017;5(November):1–6. | |
dc.relation | Malanovic N, Lohner K. Gram-positive bacterial cell envelopes : The impact on the activity of antimicrobial peptides. Biochim Biophys Acta BBA - Biomembr [Internet]. 2016;1858(5):936–46. Available from: http://dx.doi.org/10.1016/j.bbamem.2015.11.004 | |
dc.relation | Reinhardt A, Neundorf I. Design and Application of Antimicrobial Peptide Conjugates. 2016 | |
dc.relation | Sato H, Feix JB. Peptide – membrane interactions and mechanisms of membrane destruction by amphipathic α -helical antimicrobial peptides. 2006;1758:1245–56. | |
dc.relation | Sun E, Belanger CR, Haney EF, Hancock REW. Host defense (antimicrobial) peptides [Internet]. Peptide Applications in Biomedicine, Biotechnology and Bioengineering. Elsevier Ltd; 2018. 253–286 p. Available from: http://dx.doi.org/10.1016/B978-0-08-100736-5.00010-7 | |
dc.relation | Lisowski P, Strzałkowska N, Józ A, Jarczak J, Kos EM, Krzy J, et al. Defensins : Natural component of human innate immunity q. 2013;74:1069–79. | |
dc.relation | Viviane Silva de Paula and Ana Paula Valente. A Dynamic Overview of Antimicrobial Peptides and Their Complexes. Mol Microbiol. 2018;23. | |
dc.relation | Martin L, Meegern A Van, Doemming S, Schuerholz T. Antimicrobial Peptides in Human Sepsis. 2015;6(August):1–7. | |
dc.relation | Boman HG. Peptide Antibiotics and their Role in Innate Immunity. Annu Rev Immunol. 1995;13(1):61–92. | |
dc.relation | Rivas-Santiago B, Sada E, Hernández-Pando R, Tsutsumi V. Péptidos antimicrobianos en la inmunidad innata de enfermedades infecciosas. Salud Publica Mex. 2006;48(1):62–71 | |
dc.relation | Gwyer E, Silke F, Davidson DJ. Cationic Host Defence Peptides : Potential as Antiviral Therapeutics. 2013;479–93. | |
dc.relation | Reddy KVR, Yedery RD, Aranha C. Antimicrobial peptides: Premises and promises. Int J Antimicrob Agents. 2004;24(6):536–47. | |
dc.relation | Vandamme D, Landuyt B, Luyten W, Schoofs L. A comprehensive summary of LL-37 , the factotum human cathelicidin peptide. Cell Immunol [Internet]. 2012;280(1):22–35. Available from: http://dx.doi.org/10.1016/j.cellimm.2012.11.009 | |
dc.relation | Id ZK, Naseem M, Asiri FYI, Khan RS, Sahibzada HA, Zafar MS. Significance and Diagnostic Role of Antimicrobial Cathelicidins (LL-37) Peptides in Oral Health. 2017;1–11 | |
dc.relation | Fabisiak A, Murawska N, Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol Reports [Internet]. 2016;68(4):802–8. Available from: http://dx.doi.org/10.1016/j.pharep.2016.03.015 | |
dc.relation | Borowski RG Von, Macedo AJ, Cristina S, Gnoatto B. Peptides as a strategy against bio fi lm-forming microorganisms : Structure- activity relationship perspectives. Eur J Pharm Sci. 2018;114(November 2017):114–37. | |
dc.relation | Sim J, Kim S, Lee J, Lim H, Hyung H, Park Z, et al. A significantly enhanced antibacterial spectrum of D-enantiomeric lipopeptide bactenecin. Biochem Biophys Res Commun [Internet]. 2019;514(2):497–502. Available from: https://doi.org/10.1016/j.bbrc.2019.04.153 | |
dc.relation | Peptides SA. Synthetic Antibiofilm Peptides. Biochim Biophys Acta. 2017;1858(5):1061–9. | |
dc.relation | Du Y, Bonsu E. Agents that inhibit bacterial biofilm formation. Med Chem (Los Angeles). 2015;7:647–71. | |
dc.relation | Freeman D, Falkiner F, Keane C. New method for detecting slime production by coagulase-negative staphylococci. J Clin Pathol. 1989;42:872–4. | |
dc.relation | Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, et al. Adherence of coagulase-negative Staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996–1006. | |
dc.relation | Guzmán F, Barberis S. Peptide synthesis : chemical or enzymatic. 2007;10(2). | |
dc.relation | Rodríguez V, Román JT, Fierro R, Rivera ZJ, García JE. Hydrazine hydrate : A new reagent for Fmoc group removal in solid phase peptide synthesis. 2019;60:48–51. | |
dc.relation | Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate – phenol – chloroform extraction : twenty-something years on. 2006;1(2):581–5. | |
dc.relation | Pfaffl MW. A new mathematical model for relative quantification in real-time RT – PCR. Nucleic Acids Res. 2001;29(9):16–21. | |
dc.relation | Lau SYM, Taneja AK, Hodges S. Synthesis of a Model Protein of Defined Secondary and Quaternary Structure. 1984 | |
dc.relation | Secchi C, Lúcia A, Antunes S, Reus L, Perez R, Cantarelli VV, et al. Identification and Detection of Methicillin Resistance in Non -Epidermidis Coagulase-Negative Staphylococci. 2008;12:316–20. | |
dc.relation | Salud IN de. SIVIGILA [Internet]. Available from: http://portalsivigila.ins.gov.co/sivigila/documentos/Docs_1.php | |
dc.relation | El-khier NTA, El-kazzaz SS, El-ganainy AA. Phenotypic and Genotypic Detection of Biofilm Formation in Staphylococcus epidermidis Isolates from Retrieved Orthopaedic Implants and Prostheses Phenotypic and Genotypic Detection of Biofilm Formation in Staphylococcus epidermidis Isolates from Retrieved Orthopaedic Implants and Prostheses. 2015;(July). | |
dc.relation | Haddad O, Merghni A, Elargoubi A, Rhim H, Kadri Y, Mastouri M. Comparative study of virulence factors among methicillin resistant Staphylococcus aureus clinical isolates. 2018;4–11. | |
dc.relation | T Mathur, S Singhal, S Khan, D J Upadhyay, T Fatma AR. Detection of biofilm formation among the clinical isolates of Staphylococci: An evaluation of three different screening methods. Med Microbiol. 2006;24:25–9. | |
dc.relation | Resistance D, Sheikh AF, Asareh A, Dezfuli Z, Navidifar T, Fard SS, et al. Association between biofilm formation , structure and antibiotic resistance in Staphylococcus epidermidis isolated from neonatal septicemia in southwest Iran. Infect Drug Resist. 2019;1771–82. | |
dc.relation | Kord M, Ardebili A, Jamalan M, Jahanbakhsh R, Behnampour N. Evaluation of Biofilm Formation and Presence of Ica Genes in Staphylococcus epidermidis Clinical Isolates. Osong Public Heal Res Perspect. 2018;9(4):160–6. | |
dc.relation | Manandhar S, Singh A, Varma A, Pandey S, Shrivastava N. Evaluation of methods to detect in vitro biofilm formation by Staphylococcal clinical isolates. BMC Res Notes [Internet]. 2018;4–9. Available from: https://doi.org/10.1186/s13104-018-3820-9 | |
dc.relation | Fitzpatrick F, Humphreys H, Gara JPO. The genetics of Staphylococcal biofilm formation — will a greater understanding of pathogenesis lead to better management of device-related infection ? Eur Soc Clin Infect Dis [Internet]. 2005;11(12):967–73. Available from: http://dx.doi.org/10.1111/j.1469-0691.2005.01274.x | |
dc.relation | Lee J, Bae Y, Han A, Lee S. Development of Congo red broth method for the detection of bio fi lm-forming or slime-producing Staphylococcus sp. LWT - Food Sci Technol [Internet]. 2016;73:707–14. Available from: http://dx.doi.org/10.1016/j.lwt.2016.03.023 | |
dc.relation | Şahİn R, Kalelİ İ. Comparison of Genotypic and Phenotypic Characteristics in Biofilm Production of Staphylococcus aureus Isolates. 2018;52(2):111–22. | |
dc.relation | Cruzado-bravo MLM, Cristina N, Silva C, Xavier M, Oliveira G, Silva E, et al. Phenotypic and genotypic characterization of Staphylococcus spp. isolated from mastitis milk and cheese processing : Study of adherence and biofilm formation. Food Res Int [Internet]. 2019;122(January):450–60. Available from: https://doi.org/10.1016/j.foodres.2019.04.017 | |
dc.relation | Dias T, Kaiser L, Menezes E, Regina K, Leonor E, Maciel N, et al. Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. 2013;75:235–9. | |
dc.relation | Agarwal A, Jain A. Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of Staphylococci. 2015;(August 2013). | |
dc.relation | Singh, A. K., Prakash, P., Achra, A., Singh, G. P., Das, A., & Singh RK. Standardization and Classification of In vitro Biofilm Formation by Clinical Isolates of Staphylococcus aureus. ournal Glob Infect Dis. 2017;9(3):93–101 | |
dc.relation | Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem. 2004;279(52):54881–6. | |
dc.relation | Lim Y, Jana M, Luong TT, Lee CY. Control of Glucose- and NaCl-Induced Biofilm Formation by rbf in Staphylococcus aureus. 2004;186(3):722–9. | |
dc.relation | Dobinsky S, Kiel K, Rohde H, Bartscht K, Knobloch JK, Horstkotte MA, et al. Glucose-Related Dissociation between icaADBC Transcription and Biofilm Expression by Staphylococcus epidermidis : Evidence for an Additional Factor Required for Polysaccharide Intercellular Adhesin Synthesis. 2003;185(9):2879–86. | |
dc.relation | Nasr RA, Abushady HM, Hussein HS. Biofilm formation and presence of icaAD gene in clinical isolates of Staphylococci. Egypt J Med Hum Genet [Internet]. 2012;13(3):269–74. Available from: http://dx.doi.org/10.1016/j.ejmhg.2012.04.007 | |
dc.relation | Vitko NP, Grosser MR, Khatri D, Lance TR, Richardson AR. Expanded Glucose Import Capability Affords Staphylococcus aureus Optimized Glycolytic Flux during Infection. 2016;7(3):1–11. | |
dc.relation | Waldrop R, Mclaren A, Bse FC, Mclemore R. Biofilm Growth Has a Threshold Response to Glucose in Vitro. 2014;3305–10. | |
dc.relation | Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. 2017;(October 2016):1–13. | |
dc.relation | Wang F, Wu P, Chen S, Pcr G, Mix M. Distribution of virulence genes in bacteremic methicillin-resistant Staphylococcus aureus isolates from various sources. J Microbiol Immunol Infect [Internet]. 2019;52(3):426–32. Available from: https://doi.org/10.1016/j.jmii.2019.01.001 | |
dc.relation | Evgeni V. Sokurenko, Viola Vogel and WET. Catch bond mechanism of force-enhanced adhesion: counter- intuitive, elusive but … widespread? NIH Public Access. 2008;4(4):314–23. | |
dc.relation | Valotteau C, Prystopiuk V, Pietrocola G, Rindi S, Peterle D, Filippis V De, et al. Single-Cell and Single-Molecule Analysis Unravels the Multifunctionality of the Staphylococcus aureus Collagen-Binding Protein Cna. 2017;11:2160–70. | |
dc.relation | Feuillie C, Formosa-dague C, Hays LMC, Vervaeck O, Derclaye S. Molecular interactions and inhibition of the Staphylococcal biofilm-forming protein SdrC. 2017;114(14) | |
dc.relation | Peetermans M, Vanassche T, Liesenborghs L, Claes J, Velde G Vande, Kwiecinksi J, et al. Plasminogen activation by staphylokinase enhances local spreading of S . aureus in skin infections. 2014;1–12. | |
dc.relation | Barbu EM, Mackenzie C, Foster TJ, Diseases I, Genetics M. SdrC induces Staphylococcal biofilm formation through a homophilic interaction. HHS Public Acces. 2017;94(1):172–85. | |
dc.relation | Foster TJ. The MSCRAMM Family of Cell-Wall-Anchored Surface Proteins of Gram-Positive Cocci. Trends Microbiol [Internet]. 2019;xx(xx):1–15. Available from: https://doi.org/10.1016/j.tim.2019.06.007 | |
dc.relation | Ferrata V, Foundation SM. The Role of Ionic Interactions in the Adherence of the S. epidermidis Adhesin SdrF to Prosthetic Material. NIH Public Access. 2014;338(1):24–30. | |
dc.relation | Walker JN, Pinkner CL, Lynch AJL, Ortbal S, Jerome S, Hultgren SJ, et al. Deposition of Host Matrix Proteins on Breast Implant Surfaces Facilitates Staphylococcus Epidermidis Biofilm Formation: In Vitro Analysis. 2019 | |
dc.relation | Herman-bausier P, Dufrêne YF. Atomic force microscopy reveals a dual collagen-binding activity for the Staphylococcal surface protein SdrF. 2016;(2015):611–21. | |
dc.relation | Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. 2006;1(6):2876–90. | |
dc.relation | Agudelo FAG. Evaluación de la actividad antibiopelícula de péptidos sintéticos análogos a catelicidina humana LL-37 en aislamientos clínicos de Staphylococcus spp. en Bogotá Colombia. Universidad Nacional de Colombia; 2010. | |
dc.relation | Gabrielson J, Hart M, Jarelo A, Ku I, Mckenzie D, Mo R. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. 2002;50:63–73. | |
dc.relation | McGrath CMPQW. An Evaluation of Three New-Generation Tetrazolium Salts for the Measurement of Respiratory Activity in Activated Sludge Microorganisms. Microb Ecol [Internet]. 2005;49(3):379–87. Available from: https://link.springer.com/article/10.1007%2Fs00248-004-0012-z | |
dc.relation | Giske CG, Nelson A, Ro U. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. 2010;50:211–5. | |
dc.relation | George T Yates, Smotzer T. On the lag phase and initial decline of microbial growth curves. 2007;244:511–7. | |
dc.relation | Lee H, Kim K, Lee S, Han M, Yoon Y. Growth kinetics of Staphylococcus aureus on Brie and Camembert cheeses. 2014;252–6. | |
dc.relation | Sahab S, Nor M, Karunanidhi A, Belkum A Van, Than L, Lung T, et al. Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant Staphylococcus aureus ( MRSA ). Infect Genet Evol [Internet]. 2013;18:106–12. Available from: http://dx.doi.org/10.1016/j.meegid.2013.05.002 | |
dc.relation | Ythier M, Waridel P, Panchaud A, Majcherczyk P, Quadroni M, Moreillon P. Proteomic and Transcriptomic Profiling of Staphylococcus aureus Surface LPXTG-proteins : Correlation with agr Genotypes and Adherence Phenotypes * □. 2012;1123–39. | |
dc.relation | Wolz C, Goerke C, Landmann R, Zimmerli W, Fluckiger U. Transcription of Clumping Factor A in Attached and Unattached Staphylococcus aureus In Vitro and during Device-Related Infection. 2002;70(6):2758–62. | |
dc.relation | Beenken KE, Dunman PM, Mcaleese F, Macapagal D, Murphy E, Projan SJ, et al. Global Gene Expression in Staphylococcus aureus Biofilms. 2004;186(14):4665–84. | |
dc.relation | Sthanikam Yeswanth, Abhijit Chaudhury PVGKS. Quantitative Expression Analysis of SpA , FnbA and Rsp Genes in Staphylococcus aureus : Actively Associated in the Formation of Biofilms. Curr Microbiol. 2017 | |
dc.relation | Jenkins A, Diep A, Mai TT, Vo NH, Warrener P, Suzich J, et al. Differential Expression and Roles of Staphylococcus aureus Virulence Determinants during Colonization and Disease. 2015;6(1):1–10. | |
dc.relation | Sitkiewicz I, Babiak I. Characterization of transcription within sdr region of Staphylococcus aureus. 2011;409–16. | |
dc.relation | Sellman BR, Timofeyeva Y, Nanra J, Scott A, Fulginiti JP, Matsuka Y V, et al. Expression of Staphylococcus epidermidis SdrG Increases following Exposure to an In Vivo Environment. 2008;76(7):2950–7. | |
dc.relation | Hartford O, Brien LO, Schofield K, Wells J, Foster TJ. The Fbe ( SdrG ) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. 2001;(2001):2545–52. | |
dc.relation | Bowden MG, Chen W, Singvall J, Xu Y, Peacock SJ, Valtulina V, et al. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. 2019;(2005):1453–64. | |
dc.relation | Li H, Anuwongcharoen N, Malik AA, Prachayasittikul V. Roles of D -Amino Acids on the Bioactivity of Host Defense Peptides. Int J Mol Sci. 2016;17(i):1–27. | |
dc.relation | Kelkar DA, Chattopadhyay A. The gramicidin ion channel : A model membrane protein. Biochim Biophys Acta. 2007;1768(2007):2011–25. | |
dc.relation | Young E, Rajasekaran G, Yub S. LL-37-derived short antimicrobial peptide KR-12-a5 and its D -amino acid substituted analogs with cell selectivity , anti-biofilm activity , synergistic effect with conventional antibiotics , and anti- in fl ammatory activity. Eur J Med Chem [Internet]. 2017;136:428–41. Available from: http://dx.doi.org/10.1016/j.ejmech.2017.05.028 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Efecto inhibitorio de péptidos de defensa innata derivados de LL-37 en biopelícula de Staphylococcus spp. | |
dc.type | Documento de trabajo | |