dc.contributorEcheverri Ramírez, Óscar
dc.contributorValencia González, Yamile
dc.contributorGrupo de Geotecnia
dc.creatorPatiño Restrepo, Juliana
dc.date.accessioned2022-03-15T19:57:32Z
dc.date.accessioned2022-09-21T19:23:53Z
dc.date.available2022-03-15T19:57:32Z
dc.date.available2022-09-21T19:23:53Z
dc.date.created2022-03-15T19:57:32Z
dc.date.issued2021-09
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81228
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3415563
dc.description.abstractLa estabilidad de los taludes se ve afectada por diversidad de fenómenos físicos y químicos, el clima es uno de los factores más relevantes en este aspecto. En las zonas tropicales existen grandes variaciones meteorológicas durante todo el año, y son los suelos superficiales los más susceptibles a cambio de humedad y temperatura que repercuten en su comportamiento y resistencia. Para evaluar la influencia de estas variaciones, se desarrollaron varios ciclos de humedecimiento y secado para el suelo de un talud vial localizado al occidente del Valle de Aburra. Las pruebas de laboratorio se realizaron inicialmente en muestras inalteradas y compactadas y posteriormente en muestras sometidas a humedecimiento por goteo y secado al horno a 30°C. Se realiza inicialmente la caracterización física y química del suelo y se mide la curva de succión por el método del papel filtro, la permeabilidad y los parámetros de resistencia para cada ciclo de humedecimiento y secado. Los resultados mostraron que la succión del suelo disminuye gradualmente con el número de ciclos de humedecimiento y secado para ambas muestras, más notorio en la natural que en la compactada ya que esta última tiene una estructura con poros de menor tamaño y las variaciones se perciben en menor grado. Los resultados de la investigación incluyen un análisis de estabilidad de taludes donde se incluyen las propiedades hidráulicas y de resistencia de ambas muestras, obteniéndose una disminución del factor de seguridad después de los ciclos de humedecimiento y secado, en comparación con la muestra inicial, tanto para la muestra natural y compactada. Con los resultados se da un paso adelante en el estudio de los movimientos en masa detonados por lluvia ya que a través de la metodología experimental por la cual se recrean los ciclos de humedecimiento a partir de datos de campo como humedad, temperatura y precipitación, se puede anticipar la variación en los parámetros que influyen en la estabilidad del talud. 8Texto tomado de la fuente)
dc.description.abstractSlope stability is affected by a variety of physical and chemical phenomena, climate is one of the most relevant factors in this regard. In tropical areas there are great meteorological variations throughout the year, and surface soils are the most susceptible to changes in humidity and temperature that affect their behavior and resistance. To evaluate the influence of these variations, several moistening and drying cycles were developed for the soil of a road slope located west of the Aburra Valley. Laboratory tests were initially performed on undisturbed and compacted samples and subsequently on samples subjected to drip wetting and oven drying at 30 ° C. The physical and chemical characterization of the soil is initially carried out and the suction curve is measured by the filter paper method, the permeability and the resistance parameters for each wetting and drying cycle. The results showed that the soil suction gradually decreases with the number of wetting and drying cycles for both samples, more noticeable in the natural than in the compacted sample since the latter has a structure with smaller pores and the variations are perceived in less. The results of the research include a slope stability analysis that includes the hydraulic and resistance properties of both samples, obtaining a decrease in the safety factor after the wetting and drying cycles, compared to the initial sample, both for the natural and compacted sample. With the results, a step forward is taken in the study of mass movements triggered by rain since through the experimental methodology by which the moistening cycles are recreated from field data such as humidity, temperature and precipitation, it is can anticipate variation in parameters that influence slope stability.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Geotecnia
dc.publisherDepartamento de Ingeniería Civil
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAitchison, G. D., & Bishop, A. W. (1961). Pore pressure and suction in soils: Conference discussion. Pore Pressure and Suction in Soils: Conference Organised by the British National Society of the International Society of Soil Mechanics and Foundation Engineering, 150–151.
dc.relationArbhabhirama, A., & Kridakorn, C. (1968). Steady Downward Flow to a Water Table. Water Resources Research, 4(6), 1249–1257. https://doi.org/https://doi.org/10.1029/WR004i006p01249
dc.relationÁrea Metropolitana del Valle de Aburrá. (2021). SIATA Sistema de Alerta Temprana de Medellín y el Valle de Aburrá. https://siata.gov.co
dc.relationAristizábal Giraldo, E. V., González, T., Montoya, J. D., Vélez Upegui, J. I., Martínez Carvajal, H. E., & Guerra, A. (2011). Análisis de umbrales empíricos de lluvia para el pronóstico de movimientos en masa en el valle de Aburrá, Colombia. Revista EIA, 95–111.
dc.relationAristizábal Giraldo, E. V., Martínez Carvajal, H. E., & Vélez, J. I. (2010). Una revisión sobre el estudio de movimientos en masa detonados por lluvias. Revista de La Academia Colombiana de Ciencias, 34(53), 209–227.
dc.relationAristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016a). A comparison of linear and nonlinear model performance of SHIA_Landslide: A forecasting model for rainfall-induced landslides. Revista Facultad de Ingenieria, 2016(80), 74–88. https://doi.org/10.17533/udea.redin.n80a09
dc.relationAristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016b). Influences of Antecedent Rainfall and Hydraulic Conductivity on Landslides Triggered By Rainfall Occurrence Using the Model Shia_Landslide. Revista EIA, 13(26), 31–46.
dc.relationASTM D698-12(21). (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International.
dc.relationASTM D854-14. (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International.
dc.relationASTM D2216-19. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International.
dc.relationASTM D4221-18. (2018). Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer. ASTM International.
dc.relationASTM D4318-17e1. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International.
dc.relationASTM D4943-18. (2018). Standard Test Method for Shrinkage Factors of Cohesive Soils by the Water Submersion. ASTM International.
dc.relationASTM D5298-16. (2016). Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. ASTM International. https://doi.org/10.1520/D5298-16
dc.relationAzmi, M., Ramli, M. H., Hezmi, M. A., Mohd Yusoff, S. A. N., & Alel, M. N. A. (2019). Estimation of Soil Water Characteristic Curves (SWCC) of mining sand using soil suction modelling. IOP Conference Series: Materials Science and Engineering, 527(1). https://doi.org/10.1088/1757-899X/527/1/012016
dc.relationBarrera Bucio, M., & Garnica Anguas, P. (2002). Introducción a la mecánica de suelos no saturados en vías terrestres. Publicación Técnica, 198, 143.
dc.relationBishop, A. W. (1959). The principle of effective stress (Norges Geotekniske Inst, Ed.).
dc.relationBlight, G. E., & Leong, E. C. (2012). Mechanics of Residual Soils. In CRC Press (Ed.), Environmental & Engineering Geoscience. https://doi.org/10.2113/gseegeosci.v.2.255
dc.relationBrand, E. W. (1984). Landslides in Southeast Asia: A State-of-the-Art Report. 4th International Symposium on Landslides, 17–59.
dc.relationBrand, E. W., Phillipson, H. B., Borrie, G. W., & Clover, A. W. (1983). In-situ direct shear tests on Hong Kong residual soils. Int. Symp. on Soil and Rock Investigations by In-Situ Testing, 13–17.
dc.relationBrooks, R. H., & Corey, A. T. (1966). Properties of Porous Media Affecting Fluid Flow. Journal of the Irrigation and Drainage Division, 92(2). https://doi.org/10.1061/jrcea4.0000425
dc.relationBuol, S. W., Hole, F. D., & McCracken, R. J. (1983). Génesis y clasificación de suelos. Trillas.
dc.relationCamapun de Carvallo, J., De Farias Neves, G., Lemos Machado, S., Mascarenha, M., & Chagas da Silva, F. (2015). Solos não saturados no contexto geotécnico (Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica, Ed.).
dc.relationCampbell, J. D. (1974). A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci, 117, 311–314.
dc.relationCardona Giraldo, I. C. (2016). Validation of landslide assessment models by means of landslide inventories at sub-regional scales. Universidad Nacional de Colombia Sede Medellín.
dc.relationChandler, R. J., & Gutierrez, C. I. (1986). The filter-paper method of suction measurement. Geotechnique, 36(2), 265–268. https://doi.org/10.1680/geot.1986.36.2.265
dc.relationChipp, P. N., Clare, D. G., Henkel, D. J., & Pope, R. G. (1982). Field measurement of suction in colluvium covered slopes in Hong Kong. 7th South East Asian Geotechnical Conference, 22-26 November 1982, 49-62.
dc.relationDas, B. M. (2015). Fundamentos de Ingeniería Geotécnica (C. Learning, Ed.; 4th ed.).
dc.relationDepartamento Administrativo de Planeación de Medellín;, & Corporación Penca de Sábila. (2006). Plan de Desarrollo San Cristóbal 2006-2016 (pp. 12–15).
dc.relationEspitia, C. J., Quintero, J., Rodriguez, A., Bernal, F. I., Romero, F., Mojica, J., Cabezas, H., Hernández, M., Pachón, M., Múnera, M. H., & Ramirez, J. (2003). Catálogo de propiedades físicas, químicas y mineralógicas de las arcillas para cerámica roja en los centros urbanos de Medellín, Ibagué y sabana de Bogotá.hb (p. 203). Ingeominas.
dc.relationFredlund, D. G. (1987). Slope Stability Chapter 4 Slope Stability Analysis Incorporating the Effect of Soil Suction.
dc.relationFredlund, D. G. (2016). State Variables in Saturated-Unsaturated Soil Mechanics. Soils and Rocks, 39(1), 3–17. https://doi.org/10.28927/sr.391003
dc.relationFredlund, D. G., & Morgenstern, N. R. (1977). Stress State Variables for Unsaturated Soils. Journal of the Geotechnical Engineering Division, 103(5), 447–466. https://doi.org/10.1061/AJGEB6.0000423
dc.relationFredlund, D. G., Rahardjo, H., & Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. In Unsaturated Soil Mechanics in Engineering Practice. https://doi.org/10.1002/9781118280492
dc.relationFredlund, D. G., Rahardjo, H., & J.K.M., G. (1987). Non-linearity of strength envelope for unsaturated soils.
dc.relationFredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. https://doi.org/10.1139/t94-061
dc.relationGardner, W. R. (1958). Mathematics of Isothermal in Water Conduction Unsaturated Soil. Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, Riverside, California, 78–87.
dc.relationH&G Consultores. (n.d.). MapGIS. Retrieved March 18, 2015, from https://www.medellin.gov.co/MapGIS/web/swf/MAPGIS_FLEX.jsp
dc.relationHoyos Patiño, F. (2004). Suelos Residuales Tropicales (P. G. Fookes, Ed.).
dc.relationHuat, B. B. K., Ali, F. H. J., & Low, T. H. (2006). Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotechnical and Geological Engineering, 24(5), 1293–1306. https://doi.org/10.1007/s10706-005-1881-8
dc.relationJohnson, K. A., & Sitar, N. (1990). Hydrologic conditions leading to debris-flow initiation. Canadian Geotechnical Journal, 27(6), 789–801. https://doi.org/10.1139/t90-092
dc.relationKeng, J. C. W., & Uehara, G. (1974). Chemistry, mineralogy, and taxonomy of Oxisols and Uttisol s. [Soils]. In Proc Soil Crop Sci Soc Fla: Vol. v. 1974, 3.
dc.relationKim, J., Kim, Y., Jeong, S., & Hong, M. (2017). Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes. Environmental Earth Sciences, 76(23), 1–17. https://doi.org/10.1007/s12665-017-7127-2
dc.relationLi, J. H., Lu, Z., Guo, L. B., & Zhang, L. M. (2017). Experimental study on soil-water characteristic curve for silty clay with desiccation cracks. Engineering Geology, 218, 70–76. https://doi.org/10.1016/j.enggeo.2017.01.004
dc.relationLim, L. L., Chang, M. F., Fredlund, D. G., & Rahardjo, H. (1996). Effect of rainfall on matric suctions in a residual soil slope. NATL RESEARCH COUNCIL OF CANADA, OTTAWA, (CAN).
dc.relationLu, N., & Likos, W. J. (2004). Unsaturated soil mechanics. J. Wiley.
dc.relationMalaver Soto, N. M., & Tafur Tafur, R. (2018). Lineamientos básicos para la clasificación de suelos tropicales en Colombia orientado a pavimentos. Universidad Católica de Colombia.
dc.relationMalaya, C., & Sreedeep, S. (2010). A Study on Wetting Soil-Water Characteristic Curve of a Sandy Soil. Indian Geotechnical Conference, 2–3.
dc.relationMeza Ochoa, V. (2012). Suelos parcialmente saturados: De la investigación a la cátedra universitaria. Boletín de Ciencias de La Tierra, 0(31), 23–38.
dc.relationMitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior. In Soil Science (Tercera Ed, Vol. 158, Issue 1). John Wiley & Sons, Inc. https://doi.org/10.1097/00010694-199407000-00009
dc.relationMonsalve, G., Villarraga, C., & Vallejo, J. (2010). Inferences about the seismic structure of the upper lithosphere beneath the Aburrá Valley using data from accelerometer networks. Boletín de Ciencias de La Tierra, 77–94.
dc.relationNascimento, Í., Alencar, T., Santos, C., Assis, R., & Mota, J. (2018). Effect of sample re-saturation on soil-water characteristic curve. Revista Caatinga, 31, 446–454. https://doi.org/10.1590/1983-21252018v31n221rc
dc.relationNg, C. W. W., & Shi, Q. (1998). A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computers and Geotechnics, 22(1), 1–28. https://doi.org/https://doi.org/10.1016/S0266-352X(97)00036-0
dc.relationNogami, J. S., & Villibor, D. F. P. P.-S. P. (1995). Pavimentacao de baixo custo com solos lateriticos. Vilibor.
dc.relationPasculli, A., Sciarra, N., Esposito, L., & Esposito, A. W. (2017). Effects of wetting and drying cycles on mechanical properties of pyroclastic soils. Catena, 156(April), 113–123. https://doi.org/10.1016/j.catena.2017.04.004
dc.relationPerez Garcia, N., Garnica Anguas, P., & Pola Velazquez, J. C. (2013). Predicción de la curva característica con el modelo de proporcionalidad natural. Publicación Técnica, 361, 78.
dc.relationPitts, J. (1983). The form and causes of slope failures in an area of west Singapore Island. Journal of Tropical Geography, 4, 162–168.
dc.relationPitts, J. (1984). A survey of engineering geology in Singapore. J. of Southeast Asian Geotechnical Society, 15, 1–20.
dc.relationPitts, J., & Cy, S. (1987). Insitu soil suction measurements in relation to slope stability investigations in Singapore. In E. T. Hanrahan, T. L. L. Orr, & T. F. Widdis (Eds.), 9th European Conf. on Soil Mechanics and Foundation Engineering (pp. 79–82.).
dc.relationRahardjo, H., Lim, T. T., Chang, M. F., & Fredlund, D. G. (1995). Shear-strength characteristics of a residual soil. Canadian Geotechnical Journal, 32(1), 60–77. https://doi.org/10.1139/t95-005
dc.relationRidley, A. M. (1993). The measurement of soil moisture suction. In University of London. University of London.
dc.relationRidley, A. M., & Burland, J. B. (1993). A new instrument for the measurement of soil moisture suction. Géotechnique, 43(2), 321–324. https://doi.org/10.1680/geot.1993.43.2.321
dc.relationSchofield, R. K. (1935). The pF of the water in soil. 3rd Int. Congr. Soil Science, 37–48.
dc.relationSkempton, A. W., & Hutchinson, J. N. (1969). Stability of natural slopes and embankment foundations. In Sociedad Mexicana de Mecánica de Suelos (Ed.), VII Congreso Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones (pp. 291–340). https://doi.org/10.1007/978-3-319-73568-9_174
dc.relationSweeney, D. J., & Robertson, P. K. (1979). A fundamental approach to slope stability problems in Hong Kong. Hong Kong Engineer, 7, 35–44.
dc.relationTan, S. B., Tan, S. L., Lim, T. L., & Yang, K. S. (1987). Landslide problems and their control in Singapore. 9th Southeast Asian Geotechnical Conf., Southeast Asian Geotechnical Soc., 25–36.
dc.relationVan Genuchten, M. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Science Society of America Journal, 44. https://doi.org/10.2136/sssaj1980.03615995004400050002x
dc.relationVanapalli, S., Fredlund, D. G., Pufahl, D. E., & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal - CAN GEOTECH J, 33, 379–392. https://doi.org/10.1139/t96-060
dc.relationZapata, C., Houston, W., Houston, S., & Walsh, K. (2000). Soil–Water Characteristic Curve Variability. In Geotechnical Special Publication (Vol. 287). https://doi.org/10.1061/40510(287)7
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEfecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado
dc.typeTesis


Este ítem pertenece a la siguiente institución