dc.contributorDueñas Gómez, Zulma Janeth
dc.contributorPérez Martínez, Laura Victoria
dc.creatorAguilar Leon, David
dc.date.accessioned2020-03-03T14:06:21Z
dc.date.available2020-03-03T14:06:21Z
dc.date.created2020-03-03T14:06:21Z
dc.date.issued2019-12-08
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75790
dc.description.abstractMost mammals share in the early stages of life a bond given by the mother-child relationship. It has been demonstrated that the interruption of this bond given by maternal separation during lactation (SMDL) generates negative effects in the later life of the offspring in the short, medium and long term, altering the neuroendocrine and behavioral response. On the other hand, l-glutamate (GLU) and its sodium salt, monosodium glutamate (MSG) have multiple functions in vital processes: in the central nervous system of mammals acts as an excitatory neurotransmitter, due to the interaction with specific receptors distributed in the brain, however monosodium glutamate is widely used as a food additive to enhance and improve food acceptance and, in animal models, its chronic consumption has been related to neurotoxicity, among others. In a previous work of the group it was evidenced that male rats that had been submitted to SMDL increased the consumption of GMS, as well as the corporal weight, although, it did not alter the learning of a task. Considering that studies from other research groups have shown that chronic intake of MSG is toxic to several organs such as liver, brain, thymus and kidneys, the aim of this thesis is to identify in male Wistar rats whether maternal separation and oral consumption of MSG induce physiological alterations evidenced by changes in intracellular or interstitial calcium (accumulations) and morphological modifications in liver and kidney, compared to a control group. These changes are intended to be analyzed from cuts and stains with hematoxylin/eosin, as well as the identification of calcium accumulations, compared with the respective control group.
dc.description.abstractLa mayoría de los mamíferos comparten en las primeras etapas de vida un vínculo dado por la relación madre-hijo. Se ha demostrado que la interrupción de este vínculo dado por separación materna durante la lactancia (SMDL), genera efectos negativos en la vida posterior de las crías a corto, mediano y largo plazo, alterando la respuesta neuroendocrina y comportamental. Por su parte el l-glutamato (GLU) y su sal sódica, glutamato monosódico (GMS) tienen múltiples funciones en procesos vitales: en el sistema nervioso central de los mamíferos actúa como neurotransmisor excitatorio, debido a la interacción con receptores específicos distribuidos en el cerebro, sin embargo, el glutamato monosódico es ampliamente utilizado como aditivo alimentario para potenciar y mejorar la aceptación los alimentos y en modelos animales, su consumo crónico, se ha relacionado con neurotoxicidad, entre otras. En un trabajo previo del grupo se evidenció que ratas machos que habían sido sometidas a SMDL aumentaban el consumo de GMS, así como el peso corporal, si bien, no se alteraba el aprendizaje de una tarea. Teniendo en cuenta que estudios de otros grupos de investigación han mostrado que la ingesta crónica de GMS es tóxico para varios órganos como hígado, cerebro, timo y los riñones, el objetivo de este trabajo fue identificar en ratas Wistar macho si la separación materna y el consumo vía oral de GMS inducen alteraciones fisiológicas evidenciadas por cambios en el calcio intracelular o intersticial (acúmulos) y modificaciones morfológicas en hígado y riñón, comparadas con un grupo control. Esos cambios se analizaron a partir de cortes y tinciones con hematoxilina/eosina, así como de identificación de acúmulos de calcio, comparados con el respectivo grupo control.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation1. Abass,M., El-Haleem, M.A.. (2011)Evaluation of monosodium glutamate induced neurotoxicity and nephrotoxicity in adult male albino rats, J. Am. Sci. 7 .264–276. 2. Adrienne Samuels (1999). The toxicity/safety of processed free glutamic acid (MSG): A study in suppression of information, Accountability in Research, 6:4, 259-310 3. Adriani W, Caprioli A, Ghirardi O, Ali SF, Aloe L, Laviola G. (2004). The effect of early maternal separation on brain derived neurotrophic factor and monoamine levels in adult heterozygous reeler mice. Behavioural Pharmacology, 15 (341–352.). 4. Alalwani, A. (2014). Monosodium glutamate induced testicular lesions in rats (histological study). Middle East Fertility Society Journal 19, pp.274–280. 5. Al-Agha, S.Z. (2007).Histological, Histochemical and Ultrastructural Studies on the Kidney of Rats After Administration of Monosodium Glutamate, Al-Aqsa University, Gaza Palestine. 6. Al-Mamary, M., Al-Habori, M., Al-Aghbari.,A M., Baker,M.M.(2002). Investigation into the toxicological effects of Catha edulis leaves: a short term study in animals, Phytother. Res. 16. 127–132. 7. Anier K, Malinovskaja K, Pruus K, Aonurm-Helm A, Zharkovsky A, Kalda A..(2014). Maternal separation is associated with DNA methylation and behavioural changes in adult rats. Eur Neuropsychopharmacol.(3):459-68. 8. Amaya-Farfán j; Morato PN; da Silva MV.(2013) Presencia del glutamato en alimentos. In: Reyes FGR (org). Editora Plêiade, São Paulo, Brasil. p. 91-114. 9. Autumn S. Ivy, Kristen L. Brunson, Curt Sandman, and Tallie Z. Baram (2008). Dysfunctional nurturing behavior in rat dams with limited access to nesting material: a clinically relevant model for early-life stress. Neuroscience. 154(3): 1132–1142 10. Avila Rojas, H., Perez neri, I., 2016 Glutamato para principiantes Arch Neurocien vol 21 No 3. 11. Aya-Ramos L, Contreras-Vargas C, Rico JL, Dueñas Z. (2017). Early maternal separation induces preference for sucrose and aspartame associated with increased blood glucose and hyperactivity. Food Funct. Jul 19;8(7):2592-2600 12. Baad-Hansen, L., Cairns,B., Ernberg,M., Svensson,P. (2010) Effect of systemic monosodium glutamate (MSG) on headache and pericranial muscle sensitivity, Cephalagia 30 (1) pp 68–76. 13. Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A.(2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev.;89(1):27–71. 14. Beyreuther, K., Biesalski, H. K., Fernstrom, J. D., Grimm, P., Hammes, W. P., Heinemann, U Walker, R. (2007). Consensus meeting: Monosodium glutamate—An update. European Journal of Clinical Nutrition, 61(3), 304–313. Retrieved from 15. Boonate,P., Waraasawapati,S.,Hipkaeo,W., Suattra,P., Sharma,A., Selmi, C.,Prasongwattana, V., Cha’on,U. (2015). Monosodium glutamate dietary consumption decreases pancreatic -cell mass in adult wister rats, Plos One 10 (6) e0131595. 16. Boutry,C., Bos.C., Matsumoto.H., Even. P., Azzout-Marniche.D., Tome.D., Blachier.F., (2011).Effects of monosodium glutamate supplementation on glutamine metabolism in adult rats, Front. Biosci. (Elite Ed.) 3 279–290. 17. Contini, M., Fabro, A., Mille, N., Benmelej,A., Mahieu, S.(2017). Adverse effects in kidney function, antioxidant systems and histopathology in rats receiving monosodium glutamate diet. Experimental and Toxicologic Pathology . 69 pp. 547–556. 18. Choudhary, P., Malik, V.,Puri, S., Ahluwalia, P. (1996) Studies on the effects of monosodium glutamate on hepatic microsomal lipid peroxidation, calcium, ascorbic acid and glutathione and its dependent enzymes in adult male mice. Toxicol Lett .89,(1).71– 6. 19. Coyle JT. (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol; 26: 365-84. 20. Denenberg V.,Karas G. (1959) Effects of differential infantile handling upon weight gain and mortality in the rat and mouse. Science, . Vol. 130, Issue 3376, pp. 629-630
dc.relation21. Ememali,M., Danielson,E., Bamidele, T. (2015). Effect of monosodium glutamate orally administered to male wister rats on some biochemical parameters, J. Biol. Agric. Healthc. 5 pp 24–28. 22. Eweka, A., Igbigbi, P., Ucheya, R. (2011). Histochemical studies of the effects of MSG on the liver of adult wistar rats, Ann. Med. Health Sci. Res. 1 pp 21–29.
dc.relation23. Eman. A., Merhan. M., Sabreen .M. (2018). Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomedicine & Pharmacotherapy. Volume 108, December, Pages 799-808 24. Farombi, E., Onyema, O., (2006). Monosodium glutamate-induced oxidative damage and genotoxicity in rats: modulating role of vitamin C, vitamin E and quercetin, SAGE J. Hum. Exp. Toxicol. 25. 25. 13. Gartner LP, Hiatt JL. Color Atlas of Histology. 3rd ed. New York: Lippincott Williams & Wilkins Publishers; 2000. pp. 294–301. 26. Gill, S., Pulido, OM.(2001). Glutamate receptors in peripheral tissues: current knowledge, future research, and implications for toxicology. Toxicol Pathol 29: 208– 223. 27. Gill, S., Mueller ,R., McGuire, P., Refined, O. (2000).Potential target sites in peripheral tissues for excitatory neurotransmission and excitotoxicity. Toxicol Pathol ,28(2),pp.277– 85. 28. .Gregory KJ, Noetzel MJ, Niswender CM. (2013) Pharmacology of metabotropic glutamate receptor allosteri modulators: structural basis and therapeutic potential for CNS disorders. Prog Mol Biol Transl Sci ; 115:. 29. Gutman DA, Nemeroff CB.(2002). Neurobiology of early life stress: rodent studies. Semin Clin Neuropsychiatry. 2002 Apr;7(2):89-95. 30. Hancock S, Grant V. (2009) Early maternal separation increases symptoms of activity-based anorexia in male and female rats. J Exp Psychol Anim Behav Process.; 35, 394–406. 31. Hinoi, E., Takeda ,T., Ueshima, T., Tsuchihashi ,Y., Yoneda, Y. (2004) Glutamate signaling in peripheral tissues. Eur J Biochem.271pp1–13. 32. Igwebuike, U., Ochiogu,I., Ihedinihu,B., Ikokide, J., Idika, I. (2011) The effects of oral administration of monosodium glutamate (MSG) on the testicular morphology and cauda epididymal sperm reserves of young and adult male rats, Vet. Arch. 81 pp 525–534. 33. Jackson.C. (1913). Postnatal growth and variability of the body and of the various organs in the albino rat. Amer. J. Anat. 15, 1-68. 34. Meaney. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivty across generations. Annual Review of Neuroscience, 24, 1161–1192. 35. Olney, J.(1990). Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol .30,pp.47–71. 36. Ortiz,G.,Quintero-Bitzer,K., Beas Zarate,C.,Rodriguez Reynoso ,S.,Larios Arceo,F. (2006). Monosodium glutamate-induced damage in liver and kidney: a morphological and biochemical approach. Biomedicine & Pharmacotherapy Volume 60, Issue 2, pp 86-91. 37. Nakamura,H., Kawamata, Y., Kuwahara, T.,Torii,K., Sakai R.(2013). Nitrogen in dietary glutamate is utilized exclusively for the synthesis of amino acids in the rat intestine. Am J Physiol Endocrinol Metab 304: pp.100–108, 38. Okon, A.,Jacks,T., Amaza,D., Peters,T., Otong,E. (2013). Effect of monosodium glutamate (MSG) on the gross weight of the heart of albino rats Scholars, J. Appl. Med. Sci. 1 pp 44–47.
dc.relation39. Onaolapo, O., Onaolapo,A., Akanmu,M.,Ogbola,O.(2016). Evidence of alterations in brain structure and antioxidant status following ‘low-dose’ monosodium glutamate ingestión. Pathophysiology 23 pp 147–156.
dc.relation40. Ochiogu,I., Ogwu,D., Uchendu,C., Okoye,C., Ihedioha,J., Mbegbu,E. (2015). Effect of monosodium L- glutamate administration on serum levels of reproductive hormones and cholesterol, epididymal sperm reserves and testicular Histomorphology of male albino rats, Acta Vet. Hung. 63 pp 125–139.
dc.relation41. Pavlovic V, Pavlovic D, Kocic G, Sokolovic D, Sarac M, Jovic Z. (2009).Ascorbic acid modulates monosodium glutamate induced cytotoxicity in rat thymus. Bratisl Lek Listy. ; 110(4):205–9.
dc.relation42. Poli, G., Cottalasso,D., Pronzato,MA., Chiarpotto, E., Biasi,F., Corongiu, F.P., Marinari, U.M., Nanni, G., Dianzani,M.U. (1990). Lipid peroxidation and covalent binding in the early functional impairment of liver Golgi apparatus by carbon tetrachloride, Cell Biochem. Funct. 8 1–10. 43. Rita Z.Nora D.(2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 12(11): 652–669. 44. Said, S. (1999). Glutamate receptors and asthmatic airway disease. Trends Pharmacol Sci 20: 132– 134. 45. Sauganth P., Abhilash M., Mathews V., Manju A.,Harikumaran N. (2012).Ameliorative effect of α‐tocopherol on monosodium glutamate‐induced cardiac histological alterations and oxidative stress. J Sci Food Agric; 92: 3002–3006. 46. Sharma,A., Prasongwattana,V., Cha’on,U., Selmi,C., Hipkaeo,W., Boonnate,P., Pethlert,S., Titipungul,T., Intarawichian,P., Warasawapati,S., Puapiroj,A., VSitprija,V., Reungjui,S. (2013). Monosodium glutamate (MSG) consumption is associated with urolithiasis and urinary tract obstruction in rats, Plos One 26 (9) e0075546. 47. Vercoutere.B., D. Durozard.D., Baverel.G., Martin.G.(2004). Complexity of glutamine metabolism in kidney tubules from fed and fasted rats, Biochem. J. 378 485–495.
dc.relation48. Sharma A, Wongkham C, Prasongwattana V, Boonnate P, Thanan R, Reungjui S, et al.(2014) Proteomic analysis of kidney in rats chronically exposed to monosodium glutamate. PLoS One.;9(12):
dc.relation49. Schwendt, M., Jezova, D. (2001) Glutamate receptors and transporters in the brain and peripheral tissues. Cesk Fysiol .50(2), pp. 43–56.
dc.relation50. Silveira PP, Portella AK, Clemente Z, et al. (2004).Neonatal handling alters feeding behavior of adult rats. Physiol Behav.; 80, 739–745.
dc.relation51. Tawfik, MS., Al-Badr, N., (2012). Adverse effects of monosodium glutamate on liver and kidney functions in adult rats and potential protective effect of vitamins C and E, Food Nutr. Sci. 03 (05) 9.
dc.relation52. Thomas M, Sujatha KS, George S. (2009) Protective effect of Piper longum Linn. on monosodium glutamate induced oxidative stress in rats. Indian J Exp Biol.;47(3):186–92
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEfectos fisiológicos evidenciados a partir de cambios en hígado y riñón, asociados a la separación materna y al consumo de glutamato monosódico.
dc.typeOtro


Este ítem pertenece a la siguiente institución