dc.relation | Ahrazem, O., López, A. J., Argandoña, J., Castillo, R., Rubio-Moraga, Á., & Gómez-Gómez, L. (2020). Differential interaction of Or proteins with the PSY enzymes in saffron. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-57480-2
Álvarez, D., Voß, B., Maass, D., Wüst, F., Schaub, P., Beyer, P., & Welsch, R. (2016). Carotenogenesis Is Regulated by 5′UTR-Mediated Translation of Phytoene Synthase Splice Variants. Plant Physiology, 172(4), 2314–2326. https://doi.org/10.1104/pp.16.01262
Arango, J., Wüst, F., Beyer, P., & Welsch, R. (2010). Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta, 232(5), 1251–1262. https://doi.org/10.1007/s00425-010-1250-6
Awoleye, F., van Duren, M., Dolezel, J., & Novak, F. J. (1994). Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding. Euphytica, 76(3), 195–202. https://doi.org/10.1007/BF00022164
Behnam, B., Bohorquez-Chaux, A., Fernando Castaneda-Mendez, O., Tsuji, H., Ishitani, M., & Becerra Lopez-Lavalle, L. A. (2019). An optimized isolation protocol yields high-quality RNA from cassava tissues (Manihot esculenta Crantz). FEBS Open Bio, 9, 814–825. https://doi.org/10.1002/2211-5463.12561
Beyene, G., Solomon, F. R., Chauhan, R. D., Gaitán-Solis, E., Narayanan, N., Gehan, J., … Cahoon, E. B. (2017). Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Plant Biotechnology Journal, 16(6), 1–15. https://doi.org/10.1111/pbi.12862
Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., … Uauy, R. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet, 382(9890), 427–451. https://doi.org/10.1016/S0140-6736(13)60937-X
Bouis, H., Birol, E., Boy, E., Gannon, B., Hass, J., Mehta, S., … Welch, R. (2020). Food Biofortification—Reaping the Benefits of Science to Overcome Hidden Hunger. Council for Agricultural Science and Technology Issue Paper, (69). Retrieved from https://www.cast-science.org/publication/food-biofortification-reaping-the-benefits-of-science-to-overcome-hidden-hunger/
Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin, 32(1), S31–S40. https://doi.org/10.1177/15648265110321S105
Campos, K. M., Royo, C., Schulthess, A., Villegas, D., Matus, I., Ammar, K., & Schwember, A. R. (2016). Association of phytoene synthase Psy1-A1 and Psy1-B1 allelic variants with semolina yellowness in durum wheat (Triticum turgidum L. var. durum). Euphytica, 207(1), 109–117. https://doi.org/10.1007/s10681-015-1541-x
Canene-Adams, K., & Erdman, J. W. (2009). Absorption, transport, distribution in tissues and bioavailability. In Carotenoids (pp. 115–148). Basel: Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7501-0_7
Carvalho, L.J.C.B., & Schaal, B. A. (2001). Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica, 120(1), 133–142. https://doi.org/https://doi.org/10.1023/A:1017548930235
Carvalho, Luiz J.C.B., Agustini, M. A. V., Anderson, J. V., Vieira, E. A., de Souza, C. R. B., Chen, S., … Silva, J. P. (2016). Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root. BMC Plant Biology, 16(1), 1–23. https://doi.org/10.1186/s12870-016-0826-0
Carvalho, Luiz Joaquim Castelo Branco, Lippolis, J., Chen, S., de Souza, C. R. B., Vieira, E. A., & Anderson, J. V. (2012). Characterization of carotenoid-protein complexes and gene expression analysis associated with carotenoid sequestration in pigmented cassava (Manihot Esculenta Crantz) storage root. The Open Biochemistry Journal, 6, 116–130. https://doi.org/1874-091X/12
Ceballos, H., Davrieux, F., Talsma, E. F., Belalcazar, J., Chavarriaga, P., & Andersson, M. S. (2017). Carotenoids in Cassava Roots. In Carotenoids. InTech. https://doi.org/10.5772/intechopen.68279
Ceballos, H., & De la Cruz, G. A. (2002). Taxonomía y Morfología de la Yuca. In B. Ospina & H. Ceballos (Eds.), La yuca en el tercer milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización (pp. 16–32). Centro Internacional de Agricultura Tropical (CIAT).
Ceballos, H., Kawuki, R. S., Gracen, V. E., Yencho, G. C., & Hershey, C. H. (2015). Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theoretical and Applied Genetics, 128(9), 1647–1667. https://doi.org/10.1007/s00122-015-2555-4
Ceballos, H., Morante, N., Sánchez, T., Ortiz, D., Aragón, I., Chávez, A. L., … Dufour, D. (2013). Rapid cycling recurrent selection for increased carotenoids content in cassava roots. Crop Science, 53(6), 2342–2351. https://doi.org/10.2135/cropsci2013.02.0123
Chavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., … Tohme, J. (2016). The potential of using biotechnology to improve cassava : a review. In Vitro Cellular & Developmental Biology - Plant, 52, 461–478. https://doi.org/10.1007/s11627-016-9776-3
Chavarriaga-Aguirre, P., Prías, M., López, D., Ortiz, D., Toro-Perea, N., & Tohme, J. (2017). Molecular analysis of the expression of a crtB transgene and the endogenous psy2-y 1 and psy2-y 2 genes of cassava and their effect on root carotenoid content. Transgenic Research, 26(5), 639–651. https://doi.org/10.1007/s11248-017-0037-y
Chayut, N., Yuan, H., Ohali, S., Meir, A., Sa’ar, U., Tzuri, G., … Tadmor, Y. (2017). Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux. Plant Physiology, 173(1), 376–389. https://doi.org/10.1104/pp.16.01256
Chayut, N., Yuan, H., Ohali, S., Meir, A., Yeselson, Y., Portnoy, V., … Tadmor, Y. (2015). A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC Plant Biology. https://doi.org/10.1186/s12870-015-0661-8
Colombo, C., Second, G., & Charrier, A. (2000). Genetic relatedness between cassava (Manihot esculenta Crantz) and M. flabellifolia and M. Peruviana based on both RAPD and AFLP markers. Genetics and Molecular Biology, 23(2), 417–423. https://doi.org/10.1590/S1415-47572000000200030
Crisp, P., Walkey, D. G. A., Bellman, E., & Roberts, E. (1975). A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. Botrytis DC). Euphytica, 24(1), 173–176. https://doi.org/10.1007/BF00147182
Ding, Z., Zhang, Y., Xiao, Y., Liu, F., Wang, M., Zhu, X., … Li, P. (2016). Transcriptome response of cassava leaves under natural shade. Scientific Reports, 6(1), 1–14. https://doi.org/10.1038/srep31673
Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE, 2(4), e350. https://doi.org/10.1371/journal.pone.0000350
Duputié, A., Salick, J., & McKey, D. (2011). Evolutionary biogeography of Manihot (Euphorbiaceae), a rapidly radiating Neotropical genus restricted to dry environments. Journal of Biogeography, 38(6), 1033–1043. https://doi.org/10.1111/j.1365-2699.2011.02474.x
Ellison, S. L., Luby, C. H., Corak, K. E., Coe, K. M., Senalik, D., Iorizzo, M., … Dawson, J. C. (2018). Carotenoid presence is associated with the or gene in domesticated carrot. Genetics. https://doi.org/10.1534/genetics.118.301299
Ellison, S., Senalik, D., Bostan, H., Iorizzo, M., & Simon, P. (2017). Fine Mapping, Transcriptome Analysis, and Marker Development for Y 2 , the Gene That Conditions b-Carotene Accumulation in Carrot (Daucus carota L.). https://doi.org/10.1534/g3.117.043067
Esuma, W., Herselman, L., Labuschagne, M. T., Ramu, P., Lu, F., Baguma, Y., … Kawuki, R. S. (2016). Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica, 212(1), 97–110. https://doi.org/10.1007/s10681-016-1772-5
Failla, M. L., Chitchumroonchokchai, C., Siritunga, D., De Moura, F. F., Fregene, M., Manary, M. J., & Sayre, R. T. (2012). Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root. Journal of Agricultural and Food Chemistry, 60(15), 3861–3866. https://doi.org/10.1021/jf204958w
FAO. (2013). Save and grow: Cassava. A guide to sustainable production intensification. Rome: Food and Agriculture Organization of the United Nations.
FAO, & IFAD. (2005). A review of cassava in Africa with country case studies on Nigeria, Ghana,the United Republic of Tanzania, Uganda and Benin. Proceedings of the Validation Forum on the Global Cassava Development Strategy, 2. Retrieved from http://www.fao.org/docrep/009/a0154e/A0154E00.HTM#TOC
FAOSTAT. (2020). Food and Agriculture Organization of the United Nations. Retrieved November 3, 2020, from http://www.fao.org/faostat/es/#data/QC
Finkelstein, J. L., Mehta, S., Udipi, S. A., Ghugre, P. S., Luna, S. V., Wenger, M. J., … Haas, J. D. (2015). A randomized trial of iron-biofortified pearl millet in school children in India. Journal of Nutrition, 145(7), 1576–1581. https://doi.org/10.3945/jn.114.208009
Fraser, P., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3), 228–265. https://doi.org/10.1016/j.plipres.2003.10.002
Fregene, M. A., Vargas, J., Ikea, J., Angel, F., Tohme, J., Asiedu, R. A., … Roca, W. M. (1994). Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. Theoretical and Applied Genetics, 89(6), 719–727. https://doi.org/10.1007/BF00223711
Fregene, M., Angel, F., Gomez, R., Rodriguez, F., Chavarriaga, P., Roca, W., … Bonierbale, M. (1997). A molecular genetic map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics, 95(3), 431–441. https://doi.org/10.1007/s001220050580
Giuliano, G. (2017). Provitamin A biofortification of crop plants: a gold rush with many miners. Current Opinion in Biotechnology, 44, 169–180. https://doi.org/10.1016/j.copbio.2017.02.001
Haas, J. D., Luna, S. V, Lung’aho, M. G., Wenger, M. J., Murray-Kolb, L. E., Beebe, S., … Egli, I. M. (2016). Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial. The Journal of Nutrition, 146(8), 1586–1592. https://doi.org/10.3945/jn.115.224741
Hillocks, R. J., Thresh, J. M., & Bellotti, A. (2002). Cassava : biology, production and utilization. CABI Pub.
Howeler, R. (2012). Recent trends in production and utilization of cassava in Asia. In R. Howeler (Ed.), The cassava handbook: A reference manual based on the asian regional cassava training course, held in Thailand (pp. 1–22). Bangkok: Centro Internacional de Agricultura Tropical (CIAT).
Hu, M., Hu, W., Xia, Z., Zhou, X., & Wang, W. (2016). Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR. Frontiers in Plant Science, 7(680), 1–12. https://doi.org/10.3389/fpls.2016.00680
Jaramillo, A., Londoño, L. F., Orozco, J. C., Patiño, G., Belalcazar, J., Davrieux, F., & Talsma, E. F. (2018). A comparison study of five different methods to measure carotenoids in biofortified yellow cassava (Manihot esculenta). PLOS ONE, 13(12), e0209702. https://doi.org/10.1371/journal.pone.0209702
Jeong, H. B., Kang, M. Y., Jung, A., Han, K., Lee, J. H., Jo, J., … Kang, B. C. (2019). Single-molecule real-time sequencing reveals diverse allelic variations in carotenoid biosynthetic genes in pepper (Capsicum spp.). Plant Biotechnology Journal, 17(6), 1081–1093. https://doi.org/10.1111/pbi.13039
Käll, L., Krogh, A., & Sonnhammer, E. L. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research, 35, 429–432. https://doi.org/10.1093/nar/gkm256
Kim, H. S., Ji, C. Y., Lee, C., Kim, S., Park, S.-C., & Kwak, S. (2018). Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. Journal of Experimental Botany, 69(14), 3393–3400. https://doi.org/10.1093/jxb/ery023
Kim, S. E., Kim, H. S., Wang, Z., Ke, Q., Lee, C. J., Park, S. U., … Kwak, S. S. (2019). A single amino acid change at position 96 (Arg to His) of the sweetpotato Orange protein leads to carotenoid overaccumulation. Plant Cell Reports, 38(11), 1393–1402. https://doi.org/10.1007/s00299-019-02448-4
Kim, S. H., Ahn, Y. O., Ahn, M.-J., Lee, H.-S., & Kwak, S.-S. (2012). Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry, 74, 69–78. https://doi.org/10.1016/j.phytochem.2011.11.003
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
Latham, M. C. (2002). Nutricion Humana en el Mundo en Desarrollo. Colección FAO: Alimentación y nutrición N° 29. Ithaca: FAO. https://doi.org/10.1017/CBO9781107415324.004
Li, L., Paolillo, D. J., Parthasarathy, M. V., DiMuzio, E. M., & Garvin, D. F. (2001). A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). The Plant Journal, 26(1), 59–67. https://doi.org/10.1046/j.1365-313x.2001.01008.x
Li, S., Yu, X., Cheng, Z., Zeng, C., Li, W., Zhang, L., & Peng, M. (2020). Large-scale analysis of the cassava transcriptome reveals the impact of cold stress on alternative splicing. Journal of Experimental Botany, 71(1), 422–434. https://doi.org/10.1093/jxb/erz444
Lindgren, L. O., Stålberg, K. G., & Höglund, A. S. (2003). Seed-specific overexpression of an endogenous arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiology, 132(2), 779–785. https://doi.org/10.1104/pp.102.017053
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262
Lopez, A. B., Van Eck, J., Conlin, B. J., Paolillo, D. J., O’Neill, J., & Li, L. (2008). Effect of the cauliflower or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Journal of Experimental Botany, 59(2), 213–223. https://doi.org/10.1093/jxb/erm299
Lu, S., Van Eck, J., Zhou, X., Lopez, A. B., O’Halloran, D. M., Cosman, K. M., … Li, L. (2006). The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates highlevels of β-carotene accumulation. The Plant Cell Online, 18(12), 3594–3605. https://doi.org/10.1105/tpc.106.046417
Luo, X., Tomlins, K. I., Carvalho, L. J. C. B., Li, K., & Chen, S. (2018). The analysis of candidate genes and loci involved with carotenoid metabolism in cassava (Manihot esculenta Crantz) using SLAF-seq. Acta Physiologiae Plantarum, 40(4), 1–11. https://doi.org/10.1007/s11738-018-2634-7
Malik, A. I., Kongsil, P., Nguyễn, V. A., Ou, W., Sholihin, Srean, P., … Ishitani, M. (2020). Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breeding Science, 70(2), 145–166. https://doi.org/10.1270/jsbbs.18180
Minagricultura. (2018). Agronet. Retrieved November 3, 2020, from https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Nimeth, B. A., Riegler, S., & Kalyna, M. (2020). Alternative Splicing and DNA Damage Response in Plants. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00091
Nweke, F. (2004). New challenges in the cassava transformation in Nigeria and Ghana. Intl Food Policy Res Inst., 118. Retrieved from http://ageconsearch.umn.edu/bitstream/16113/1/ep040118.pdf
Okogbenin, E., Marin, J., & Fregene, M. (2006). An SSR-based molecular genetic map of cassava. Euphytica, 147(3), 433–440. https://doi.org/10.1007/s10681-005-9042-y
Olsen, K. M., & Schaal, B. A. (2001). Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal of Botany, 88(1), 131–142. https://doi.org/10.2307/2657133
Palmer, A. C., Healy, K., Barffour, M. A., Siamusantu, W., Chileshe, J., Schulze, K. J., … Labrique, A. B. (2016). Provitamin A Carotenoid–Biofortified Maize Consumption Increases Pupillary Responsiveness among Zambian Children in a Randomized Controlled Trial. The Journal of Nutrition, 146(12), 2551–2558. https://doi.org/10.3945/jn.116.239202
Park, S., Kim, H. S., Jung, Y. J., Kim, S. H., Ji, C. Y., Wang, Z., … Kwak, S. (2016). Orange protein has a role in phytoene synthase stabilization in sweetpotato. Nature Publishing Group, 1–12. https://doi.org/10.1038/srep33563
Prochnik, S., Reddy Marri, P., Desany, B., Rabinowicz, P. D., Kodira, C., Mohiuddin, M., … Danforth, D. (2012). The Cassava Genome: Current Progress, Future Directions. Tropical Plant Biol, 5, 88–94. https://doi.org/10.1007/s12042-011-9088-z
Pulido, P., & Leister, D. (2017). Novel DNAJ-related proteins in Arabidopsis thaliana. New Phytologist, 217(2), 480–490. https://doi.org/10.1111/nph.14827
Rabbi, I. Y., Hamblin, M. T., Gedil, M. A., Ikpan, A. S., Jannink, J.-L., & Kulakow, P. A. (2014). High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 186, 87–96. https://doi.org/10.1016/J.VIRUSRES.2013.12.028
Rabbi, I. Y., Udoh, L. I., Wolfe, M., Parkes, E. Y., Gedil, M. A., Dixon, A., … Kulakow, P. (2017). Genome-wide association mapping of correlated traits in cassava: dry matter and total carotenoid content. Plant Genome, 10(0), 0. https://doi.org/10.3835/plantgenome2016.09.0094
Raila, J., Enjalbert, F., Mothes, R., Hurtienne, A., & Schweigert, F. J. (2012). Validation of a new point-of-care assay for determination of β-carotene concentration in bovine whole blood and plasma. Veterinary Clinical Pathology, 41(1), 119–122. https://doi.org/10.1111/j.1939-165X.2012.00400.x
Roa, A. C., Chavarriaga-Aguirre, P., Duque, M. C., Maya, M. M., Bonierbale, M. W., Iglesias, C., & Tohme, J. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. American Journal of Botany, 87(11), 1647–1655. https://doi.org/10.2307/2656741
Roa, A. C., Maya, M. M., Duque, M. C., Tohme, J., Allem, A. C., & Bonierbale, M. W. (1997). AFLP analysis of relationships among cassava and other Manihot species. TAG Theoretical and Applied Genetics, 95(5–6), 741–750. https://doi.org/10.1007/s001220050620
Ruiz-Sola, M. Á., & Rodríguez-Concepción, M. (2012). Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis Book, 10, e0158. https://doi.org/10.1199/tab.0158
Salcedo, A., Zambrana, C., & Siritunga, D. (2014). Comparative Expression Analysis of Reference Genes in Field-Grown Cassava. Tropical Plant Biology, 7(2), 53–64. https://doi.org/10.1007/s12042-014-9137-5
Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y., & Pfeiffer, W. H. (2013). Biofortification: Progress toward a more nourishing future. Global Food Security, 2(1), 9–17. https://doi.org/10.1016/j.gfs.2012.12.003
Sánchez, T., Ceballos, H., Dufour, D., Ortiz, D., Morante, N., Calle, F., … Davrieux, F. (2014). Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques. Food Chemistry, 151, 444–451. https://doi.org/10.1016/j.foodchem.2013.11.081
Sennepin, A. D., Charpentier, S., Normand, T., Sarré, C., Legrand, A., & Mollet, L. M. (2009). Multiple reprobing of Western blots after inactivation of peroxidase activity by its substrate, hydrogen peroxide. Analytical Biochemistry, 393, 129–131. https://doi.org/10.1016/j.ab.2009.06.004
Shewmaker, C. K., Sheehy, J. A., Daley, M., Colburn, S., & Ke, D. Y. (1999). Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. The Plant Journal, 20(4), 401–412. https://doi.org/10.1046/j.1365-313x.1999.00611.x
Soto, J. C., Ortiz, J. F., Perlaza-Jiménez, L., Vásquez, A. X., Lopez-Lavalle, L. A. B., Mathew, B., … López, C. E. (2015). A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics, 16(1), 190. https://doi.org/10.1186/s12864-015-1397-4
Talsma, E. F., Brouwer, I. D., Verhoef, H., Mbera, G. N., Mwangi, A. M., Demir, A. Y., … Melse-Boonstra, A. (2016). Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial. American Journal of Clinical Nutrition, 103(1), 258–267. https://doi.org/10.3945/ajcn.114.100164
Trösch, R., Mühlhaus, T., Schroda, M., & Willmund, F. (2015). ATP-dependent molecular chaperones in plastids - More complex than expected. Biochimica et Biophysica Acta - Bioenergetics, 1847(9), 872–888. https://doi.org/10.1016/j.bbabio.2015.01.002
Tzuri, G., Zhou, X., Chayut, N., Yuan, H., Portnoy, V., Meir, A., … Tadmor, Y. (2015). A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). The Plant Journal, 82(2), 267–279. https://doi.org/10.1111/tpj.12814
Udoh, L. I., Gedil, M., Parkes, E. Y., Kulakow, P., Adesoye, A., Nwuba, C., & Rabbi, I. Y. (2017). Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava (Manihot esculenta Crantz). Molecular Breeding, 37(10). https://doi.org/10.1007/s11032-017-0718-5
von Lintig, J. (2012). Metabolism of carotenoids and retinoids related to vision. The Journal of Biological Chemistry, 287(3), 1627–1634. https://doi.org/10.1074/jbc.R111.303990
Wahyuni, Y., Anika, M., Putri, D. H., Hartati, N. S., Harmoko, R., & Sudarmonowati, E. (2020). Variation in transcriptional profiles of carotenoid biosynthetic genes in Indonesian yellow- and white-fleshed tuberous root cassava (Manihot esculenta Crantz) accessions. IOP Conference Series: Earth and Environmental Science, 439(1). https://doi.org/10.1088/1755-1315/439/1/012016
Welsch, R., Arango, J., Bär, C., Salazar, B., Al-Babili, S., Beltrán, J., … Beyer, P. (2010). Provitamin A Accumulation in Cassava ( Manihot esculenta ) Roots Driven by a Single Nucleotide Polymorphism in a Phytoene Synthase Gene. The Plant Cell, 22(10), 3348–3356. https://doi.org/10.1105/tpc.110.077560
Welsch, R., Zhou, X., Koschmieder, J., Schlossarek, T., Yuan, H., Sun, T., & Li, L. (2020). Characterization of Cauliflower OR Mutant Variants. Frontiers in Plant Science, 10(January), 1–13. https://doi.org/10.3389/fpls.2019.01716
WHO. (2009). Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO Global Database on Vitamin A Deficienc. WHO. Geneva: World Health Organization. Retrieved from http://www.who.int/nutrition/publications/micronutrients/vitamin_a_deficiency/9789241598019/en/
Wu, S., Lau, K. H., Cao, Q., Hamilton, J. P., Sun, H., Zhou, C., … Fei, Z. (2018). Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 9(1), 1–12. https://doi.org/10.1038/s41467-018-06983-8
Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., & Potrykus, I. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287(5451), 303–305. https://doi.org/10.1126/SCIENCE.287.5451.303
Zhou, X., Welsch, R., Yang, Y., Álvarez, D., Riediger, M., Yuan, H., … Li, L. (2015). Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proceedings of the National Academy of Sciences, 112(11). https://doi.org/10.1073/pnas.1420831112
Zhu, C., Naqvi, S., Breitenbach, J., Sandmann, G., Christou, P., & Capell, T. (2008). Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18232–18237. https://doi.org/10.1073/pnas.0809737105 | |