dc.contributorOcampo, Jhon Albeiro
dc.contributorÁlvarez Álvarez, Daniel
dc.creatorJaramillo Valencia, Angélica María
dc.date.accessioned2021-07-28T15:19:47Z
dc.date.accessioned2022-09-21T19:22:53Z
dc.date.available2021-07-28T15:19:47Z
dc.date.available2022-09-21T19:22:53Z
dc.date.created2021-07-28T15:19:47Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79860
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3415435
dc.description.abstractEl desarrollo de nuevos cultivares de yuca con alto contenido de carotenoides hace parte de una estrategia para combatir la deficiencia de vitamina A gracias a su amplio consumo a nivel mundial. Orange (OR) y fitoeno sintasa (PSY) son proteínas reguladoras en la producción de carotenoides, pero la función de OR, así como su relación con PSY, no ha sido estudiada en yuca. El objetivo de este trabajo fue estudiar la función de la proteína OR en la producción de β-caroteno en raíces de yuca y su relación con PSY. Para esto se realizó un análisis bioinformático para identificar genes codificantes de OR en yuca, y posteriormente se llevó a cabo un estudio de expresión de los genes detectados en raíces de un genotipo de yuca blanca (60444) y dos genotipos de yuca amarilla (GM5309-57 y GM3736-37). Los datos se analizaron mediante un análisis univariado de varianza y se utilizó una prueba de comparación de medias Dunnett (p˂0.05) con el programa SAS (v9.3). Los resultados mostraron la presencia de cuatro genes hipotéticos OR con porcentajes de identidad con Arabidopsis thaliana entre 65,8 y 76,3%. El nivel de transcritos de los genes OR permanecieron constantes, mientras que se encontró una mayor acumulación de proteína OR en los genotipos amarillos. Asimismo, se observó una sobreexpresión de 3,7 veces del gen PSY1 y una disminución de 4,7 y 1,6 veces para NCED y BCH, respectivamente, lo cual podría relacionarse con un posible mecanismo de atenuación del catabolismo del β-caroteno promovido por OR. Mientras que se encontraron diferencias significativas (p˂0.05) en los genotipos amarillos en comparación con el blanco para el contenido de carotenos, proteína OR y expresión génica de PSY1 y NCED, el gen BCH presentó diferencias significativas solo en uno de los genotipos amarillos. Los resultados obtenidos invitan a futuras investigaciones enfocadas al mejoramiento del contenido de carotenoides en la yuca.
dc.description.abstractThe development of new cassava cultivars with high concentration of carotenoids is part of a strategy to combat vitamin A deficiency due to its wide consumption worldwide. Orange (OR) and phytoene synthase (PSY) are regulatory proteins in the production of carotenoids, but OR function, as well as its relationship with PSY, has not yet been studied in cassava. The aim of this work has been the study if the OR protein function upon the production of β-carotene in cassava roots, as well as its relationship with PSY protein. A bioinformatic analysis was carried out to identify cassava OR genes, and a subsequent expression study of the detected genes in roots of one white (60444) and two yellow (GM5309-57 and GM3736-37) cassava genotypes was conducted. Data was analyzed with a univariate analysis of variance and a Dunnett mean comparison test (p˂ 0.05) with the SAS program (v9.3). Results showed the presence of four hypothetical OR genes with identity percentages with Arabidopsis thaliana between 65.8 and 76.3%. The transcripts levels of the OR genes remained constant, while a higher accumulation of OR protein was found in the yellow genotypes. Likewise, a 3.7-fold overexpression of PSY1 and a 4.7- and 1.6-fold decrease for NCED and BCH were observed, respectively, which could be related to a possible mechanism of attenuation of the catabolism of β-carotene promoted by OR. Whereas significant differences (p˂ 0.05) were found in yellow genotypes compared to white for carotene content, protein OR and gene expression of PSY1 and NCED. the BCH gene presented only significant differences in one of the yellow genotypes. These results encourage further research aiming to carotenoids enhancement in cassava.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas
dc.publisherFacultad de Ciencias Agropecuarias
dc.publisherPalmira Valle del Cauca
dc.publisherUniversidad Nacional de Colombia - Sede Palmira
dc.relationAhrazem, O., López, A. J., Argandoña, J., Castillo, R., Rubio-Moraga, Á., & Gómez-Gómez, L. (2020). Differential interaction of Or proteins with the PSY enzymes in saffron. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-57480-2 Álvarez, D., Voß, B., Maass, D., Wüst, F., Schaub, P., Beyer, P., & Welsch, R. (2016). Carotenogenesis Is Regulated by 5′UTR-Mediated Translation of Phytoene Synthase Splice Variants. Plant Physiology, 172(4), 2314–2326. https://doi.org/10.1104/pp.16.01262 Arango, J., Wüst, F., Beyer, P., & Welsch, R. (2010). Characterization of phytoene synthases from cassava and their involvement in abiotic stress-mediated responses. Planta, 232(5), 1251–1262. https://doi.org/10.1007/s00425-010-1250-6 Awoleye, F., van Duren, M., Dolezel, J., & Novak, F. J. (1994). Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding. Euphytica, 76(3), 195–202. https://doi.org/10.1007/BF00022164 Behnam, B., Bohorquez-Chaux, A., Fernando Castaneda-Mendez, O., Tsuji, H., Ishitani, M., & Becerra Lopez-Lavalle, L. A. (2019). An optimized isolation protocol yields high-quality RNA from cassava tissues (Manihot esculenta Crantz). FEBS Open Bio, 9, 814–825. https://doi.org/10.1002/2211-5463.12561 Beyene, G., Solomon, F. R., Chauhan, R. D., Gaitán-Solis, E., Narayanan, N., Gehan, J., … Cahoon, E. B. (2017). Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Plant Biotechnology Journal, 16(6), 1–15. https://doi.org/10.1111/pbi.12862 Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., … Uauy, R. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet, 382(9890), 427–451. https://doi.org/10.1016/S0140-6736(13)60937-X Bouis, H., Birol, E., Boy, E., Gannon, B., Hass, J., Mehta, S., … Welch, R. (2020). Food Biofortification—Reaping the Benefits of Science to Overcome Hidden Hunger. Council for Agricultural Science and Technology Issue Paper, (69). Retrieved from https://www.cast-science.org/publication/food-biofortification-reaping-the-benefits-of-science-to-overcome-hidden-hunger/ Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin, 32(1), S31–S40. https://doi.org/10.1177/15648265110321S105 Campos, K. M., Royo, C., Schulthess, A., Villegas, D., Matus, I., Ammar, K., & Schwember, A. R. (2016). Association of phytoene synthase Psy1-A1 and Psy1-B1 allelic variants with semolina yellowness in durum wheat (Triticum turgidum L. var. durum). Euphytica, 207(1), 109–117. https://doi.org/10.1007/s10681-015-1541-x Canene-Adams, K., & Erdman, J. W. (2009). Absorption, transport, distribution in tissues and bioavailability. In Carotenoids (pp. 115–148). Basel: Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7501-0_7 Carvalho, L.J.C.B., & Schaal, B. A. (2001). Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica, 120(1), 133–142. https://doi.org/https://doi.org/10.1023/A:1017548930235 Carvalho, Luiz J.C.B., Agustini, M. A. V., Anderson, J. V., Vieira, E. A., de Souza, C. R. B., Chen, S., … Silva, J. P. (2016). Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root. BMC Plant Biology, 16(1), 1–23. https://doi.org/10.1186/s12870-016-0826-0 Carvalho, Luiz Joaquim Castelo Branco, Lippolis, J., Chen, S., de Souza, C. R. B., Vieira, E. A., & Anderson, J. V. (2012). Characterization of carotenoid-protein complexes and gene expression analysis associated with carotenoid sequestration in pigmented cassava (Manihot Esculenta Crantz) storage root. The Open Biochemistry Journal, 6, 116–130. https://doi.org/1874-091X/12 Ceballos, H., Davrieux, F., Talsma, E. F., Belalcazar, J., Chavarriaga, P., & Andersson, M. S. (2017). Carotenoids in Cassava Roots. In Carotenoids. InTech. https://doi.org/10.5772/intechopen.68279 Ceballos, H., & De la Cruz, G. A. (2002). Taxonomía y Morfología de la Yuca. In B. Ospina & H. Ceballos (Eds.), La yuca en el tercer milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización (pp. 16–32). Centro Internacional de Agricultura Tropical (CIAT). Ceballos, H., Kawuki, R. S., Gracen, V. E., Yencho, G. C., & Hershey, C. H. (2015). Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theoretical and Applied Genetics, 128(9), 1647–1667. https://doi.org/10.1007/s00122-015-2555-4 Ceballos, H., Morante, N., Sánchez, T., Ortiz, D., Aragón, I., Chávez, A. L., … Dufour, D. (2013). Rapid cycling recurrent selection for increased carotenoids content in cassava roots. Crop Science, 53(6), 2342–2351. https://doi.org/10.2135/cropsci2013.02.0123 Chavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., … Tohme, J. (2016). The potential of using biotechnology to improve cassava : a review. In Vitro Cellular & Developmental Biology - Plant, 52, 461–478. https://doi.org/10.1007/s11627-016-9776-3 Chavarriaga-Aguirre, P., Prías, M., López, D., Ortiz, D., Toro-Perea, N., & Tohme, J. (2017). Molecular analysis of the expression of a crtB transgene and the endogenous psy2-y 1 and psy2-y 2 genes of cassava and their effect on root carotenoid content. Transgenic Research, 26(5), 639–651. https://doi.org/10.1007/s11248-017-0037-y Chayut, N., Yuan, H., Ohali, S., Meir, A., Sa’ar, U., Tzuri, G., … Tadmor, Y. (2017). Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux. Plant Physiology, 173(1), 376–389. https://doi.org/10.1104/pp.16.01256 Chayut, N., Yuan, H., Ohali, S., Meir, A., Yeselson, Y., Portnoy, V., … Tadmor, Y. (2015). A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC Plant Biology. https://doi.org/10.1186/s12870-015-0661-8 Colombo, C., Second, G., & Charrier, A. (2000). Genetic relatedness between cassava (Manihot esculenta Crantz) and M. flabellifolia and M. Peruviana based on both RAPD and AFLP markers. Genetics and Molecular Biology, 23(2), 417–423. https://doi.org/10.1590/S1415-47572000000200030 Crisp, P., Walkey, D. G. A., Bellman, E., & Roberts, E. (1975). A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. Botrytis DC). Euphytica, 24(1), 173–176. https://doi.org/10.1007/BF00147182 Ding, Z., Zhang, Y., Xiao, Y., Liu, F., Wang, M., Zhu, X., … Li, P. (2016). Transcriptome response of cassava leaves under natural shade. Scientific Reports, 6(1), 1–14. https://doi.org/10.1038/srep31673 Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE, 2(4), e350. https://doi.org/10.1371/journal.pone.0000350 Duputié, A., Salick, J., & McKey, D. (2011). Evolutionary biogeography of Manihot (Euphorbiaceae), a rapidly radiating Neotropical genus restricted to dry environments. Journal of Biogeography, 38(6), 1033–1043. https://doi.org/10.1111/j.1365-2699.2011.02474.x Ellison, S. L., Luby, C. H., Corak, K. E., Coe, K. M., Senalik, D., Iorizzo, M., … Dawson, J. C. (2018). Carotenoid presence is associated with the or gene in domesticated carrot. Genetics. https://doi.org/10.1534/genetics.118.301299 Ellison, S., Senalik, D., Bostan, H., Iorizzo, M., & Simon, P. (2017). Fine Mapping, Transcriptome Analysis, and Marker Development for Y 2 , the Gene That Conditions b-Carotene Accumulation in Carrot (Daucus carota L.). https://doi.org/10.1534/g3.117.043067 Esuma, W., Herselman, L., Labuschagne, M. T., Ramu, P., Lu, F., Baguma, Y., … Kawuki, R. S. (2016). Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica, 212(1), 97–110. https://doi.org/10.1007/s10681-016-1772-5 Failla, M. L., Chitchumroonchokchai, C., Siritunga, D., De Moura, F. F., Fregene, M., Manary, M. J., & Sayre, R. T. (2012). Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root. Journal of Agricultural and Food Chemistry, 60(15), 3861–3866. https://doi.org/10.1021/jf204958w FAO. (2013). Save and grow: Cassava. A guide to sustainable production intensification. Rome: Food and Agriculture Organization of the United Nations. FAO, & IFAD. (2005). A review of cassava in Africa with country case studies on Nigeria, Ghana,the United Republic of Tanzania, Uganda and Benin. Proceedings of the Validation Forum on the Global Cassava Development Strategy, 2. Retrieved from http://www.fao.org/docrep/009/a0154e/A0154E00.HTM#TOC FAOSTAT. (2020). Food and Agriculture Organization of the United Nations. Retrieved November 3, 2020, from http://www.fao.org/faostat/es/#data/QC Finkelstein, J. L., Mehta, S., Udipi, S. A., Ghugre, P. S., Luna, S. V., Wenger, M. J., … Haas, J. D. (2015). A randomized trial of iron-biofortified pearl millet in school children in India. Journal of Nutrition, 145(7), 1576–1581. https://doi.org/10.3945/jn.114.208009 Fraser, P., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3), 228–265. https://doi.org/10.1016/j.plipres.2003.10.002 Fregene, M. A., Vargas, J., Ikea, J., Angel, F., Tohme, J., Asiedu, R. A., … Roca, W. M. (1994). Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. Theoretical and Applied Genetics, 89(6), 719–727. https://doi.org/10.1007/BF00223711 Fregene, M., Angel, F., Gomez, R., Rodriguez, F., Chavarriaga, P., Roca, W., … Bonierbale, M. (1997). A molecular genetic map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics, 95(3), 431–441. https://doi.org/10.1007/s001220050580 Giuliano, G. (2017). Provitamin A biofortification of crop plants: a gold rush with many miners. Current Opinion in Biotechnology, 44, 169–180. https://doi.org/10.1016/j.copbio.2017.02.001 Haas, J. D., Luna, S. V, Lung’aho, M. G., Wenger, M. J., Murray-Kolb, L. E., Beebe, S., … Egli, I. M. (2016). Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial. The Journal of Nutrition, 146(8), 1586–1592. https://doi.org/10.3945/jn.115.224741 Hillocks, R. J., Thresh, J. M., & Bellotti, A. (2002). Cassava : biology, production and utilization. CABI Pub. Howeler, R. (2012). Recent trends in production and utilization of cassava in Asia. In R. Howeler (Ed.), The cassava handbook: A reference manual based on the asian regional cassava training course, held in Thailand (pp. 1–22). Bangkok: Centro Internacional de Agricultura Tropical (CIAT). Hu, M., Hu, W., Xia, Z., Zhou, X., & Wang, W. (2016). Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR. Frontiers in Plant Science, 7(680), 1–12. https://doi.org/10.3389/fpls.2016.00680 Jaramillo, A., Londoño, L. F., Orozco, J. C., Patiño, G., Belalcazar, J., Davrieux, F., & Talsma, E. F. (2018). A comparison study of five different methods to measure carotenoids in biofortified yellow cassava (Manihot esculenta). PLOS ONE, 13(12), e0209702. https://doi.org/10.1371/journal.pone.0209702 Jeong, H. B., Kang, M. Y., Jung, A., Han, K., Lee, J. H., Jo, J., … Kang, B. C. (2019). Single-molecule real-time sequencing reveals diverse allelic variations in carotenoid biosynthetic genes in pepper (Capsicum spp.). Plant Biotechnology Journal, 17(6), 1081–1093. https://doi.org/10.1111/pbi.13039 Käll, L., Krogh, A., & Sonnhammer, E. L. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research, 35, 429–432. https://doi.org/10.1093/nar/gkm256 Kim, H. S., Ji, C. Y., Lee, C., Kim, S., Park, S.-C., & Kwak, S. (2018). Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. Journal of Experimental Botany, 69(14), 3393–3400. https://doi.org/10.1093/jxb/ery023 Kim, S. E., Kim, H. S., Wang, Z., Ke, Q., Lee, C. J., Park, S. U., … Kwak, S. S. (2019). A single amino acid change at position 96 (Arg to His) of the sweetpotato Orange protein leads to carotenoid overaccumulation. Plant Cell Reports, 38(11), 1393–1402. https://doi.org/10.1007/s00299-019-02448-4 Kim, S. H., Ahn, Y. O., Ahn, M.-J., Lee, H.-S., & Kwak, S.-S. (2012). Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry, 74, 69–78. https://doi.org/10.1016/j.phytochem.2011.11.003 Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0 Latham, M. C. (2002). Nutricion Humana en el Mundo en Desarrollo. Colección FAO: Alimentación y nutrición N° 29. Ithaca: FAO. https://doi.org/10.1017/CBO9781107415324.004 Li, L., Paolillo, D. J., Parthasarathy, M. V., DiMuzio, E. M., & Garvin, D. F. (2001). A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). The Plant Journal, 26(1), 59–67. https://doi.org/10.1046/j.1365-313x.2001.01008.x Li, S., Yu, X., Cheng, Z., Zeng, C., Li, W., Zhang, L., & Peng, M. (2020). Large-scale analysis of the cassava transcriptome reveals the impact of cold stress on alternative splicing. Journal of Experimental Botany, 71(1), 422–434. https://doi.org/10.1093/jxb/erz444 Lindgren, L. O., Stålberg, K. G., & Höglund, A. S. (2003). Seed-specific overexpression of an endogenous arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiology, 132(2), 779–785. https://doi.org/10.1104/pp.102.017053 Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262 Lopez, A. B., Van Eck, J., Conlin, B. J., Paolillo, D. J., O’Neill, J., & Li, L. (2008). Effect of the cauliflower or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Journal of Experimental Botany, 59(2), 213–223. https://doi.org/10.1093/jxb/erm299 Lu, S., Van Eck, J., Zhou, X., Lopez, A. B., O’Halloran, D. M., Cosman, K. M., … Li, L. (2006). The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates highlevels of β-carotene accumulation. The Plant Cell Online, 18(12), 3594–3605. https://doi.org/10.1105/tpc.106.046417 Luo, X., Tomlins, K. I., Carvalho, L. J. C. B., Li, K., & Chen, S. (2018). The analysis of candidate genes and loci involved with carotenoid metabolism in cassava (Manihot esculenta Crantz) using SLAF-seq. Acta Physiologiae Plantarum, 40(4), 1–11. https://doi.org/10.1007/s11738-018-2634-7 Malik, A. I., Kongsil, P., Nguyễn, V. A., Ou, W., Sholihin, Srean, P., … Ishitani, M. (2020). Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breeding Science, 70(2), 145–166. https://doi.org/10.1270/jsbbs.18180 Minagricultura. (2018). Agronet. Retrieved November 3, 2020, from https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 Nimeth, B. A., Riegler, S., & Kalyna, M. (2020). Alternative Splicing and DNA Damage Response in Plants. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00091 Nweke, F. (2004). New challenges in the cassava transformation in Nigeria and Ghana. Intl Food Policy Res Inst., 118. Retrieved from http://ageconsearch.umn.edu/bitstream/16113/1/ep040118.pdf Okogbenin, E., Marin, J., & Fregene, M. (2006). An SSR-based molecular genetic map of cassava. Euphytica, 147(3), 433–440. https://doi.org/10.1007/s10681-005-9042-y Olsen, K. M., & Schaal, B. A. (2001). Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal of Botany, 88(1), 131–142. https://doi.org/10.2307/2657133 Palmer, A. C., Healy, K., Barffour, M. A., Siamusantu, W., Chileshe, J., Schulze, K. J., … Labrique, A. B. (2016). Provitamin A Carotenoid–Biofortified Maize Consumption Increases Pupillary Responsiveness among Zambian Children in a Randomized Controlled Trial. The Journal of Nutrition, 146(12), 2551–2558. https://doi.org/10.3945/jn.116.239202 Park, S., Kim, H. S., Jung, Y. J., Kim, S. H., Ji, C. Y., Wang, Z., … Kwak, S. (2016). Orange protein has a role in phytoene synthase stabilization in sweetpotato. Nature Publishing Group, 1–12. https://doi.org/10.1038/srep33563 Prochnik, S., Reddy Marri, P., Desany, B., Rabinowicz, P. D., Kodira, C., Mohiuddin, M., … Danforth, D. (2012). The Cassava Genome: Current Progress, Future Directions. Tropical Plant Biol, 5, 88–94. https://doi.org/10.1007/s12042-011-9088-z Pulido, P., & Leister, D. (2017). Novel DNAJ-related proteins in Arabidopsis thaliana. New Phytologist, 217(2), 480–490. https://doi.org/10.1111/nph.14827 Rabbi, I. Y., Hamblin, M. T., Gedil, M. A., Ikpan, A. S., Jannink, J.-L., & Kulakow, P. A. (2014). High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 186, 87–96. https://doi.org/10.1016/J.VIRUSRES.2013.12.028 Rabbi, I. Y., Udoh, L. I., Wolfe, M., Parkes, E. Y., Gedil, M. A., Dixon, A., … Kulakow, P. (2017). Genome-wide association mapping of correlated traits in cassava: dry matter and total carotenoid content. Plant Genome, 10(0), 0. https://doi.org/10.3835/plantgenome2016.09.0094 Raila, J., Enjalbert, F., Mothes, R., Hurtienne, A., & Schweigert, F. J. (2012). Validation of a new point-of-care assay for determination of β-carotene concentration in bovine whole blood and plasma. Veterinary Clinical Pathology, 41(1), 119–122. https://doi.org/10.1111/j.1939-165X.2012.00400.x Roa, A. C., Chavarriaga-Aguirre, P., Duque, M. C., Maya, M. M., Bonierbale, M. W., Iglesias, C., & Tohme, J. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. American Journal of Botany, 87(11), 1647–1655. https://doi.org/10.2307/2656741 Roa, A. C., Maya, M. M., Duque, M. C., Tohme, J., Allem, A. C., & Bonierbale, M. W. (1997). AFLP analysis of relationships among cassava and other Manihot species. TAG Theoretical and Applied Genetics, 95(5–6), 741–750. https://doi.org/10.1007/s001220050620 Ruiz-Sola, M. Á., & Rodríguez-Concepción, M. (2012). Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis Book, 10, e0158. https://doi.org/10.1199/tab.0158 Salcedo, A., Zambrana, C., & Siritunga, D. (2014). Comparative Expression Analysis of Reference Genes in Field-Grown Cassava. Tropical Plant Biology, 7(2), 53–64. https://doi.org/10.1007/s12042-014-9137-5 Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y., & Pfeiffer, W. H. (2013). Biofortification: Progress toward a more nourishing future. Global Food Security, 2(1), 9–17. https://doi.org/10.1016/j.gfs.2012.12.003 Sánchez, T., Ceballos, H., Dufour, D., Ortiz, D., Morante, N., Calle, F., … Davrieux, F. (2014). Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques. Food Chemistry, 151, 444–451. https://doi.org/10.1016/j.foodchem.2013.11.081 Sennepin, A. D., Charpentier, S., Normand, T., Sarré, C., Legrand, A., & Mollet, L. M. (2009). Multiple reprobing of Western blots after inactivation of peroxidase activity by its substrate, hydrogen peroxide. Analytical Biochemistry, 393, 129–131. https://doi.org/10.1016/j.ab.2009.06.004 Shewmaker, C. K., Sheehy, J. A., Daley, M., Colburn, S., & Ke, D. Y. (1999). Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. The Plant Journal, 20(4), 401–412. https://doi.org/10.1046/j.1365-313x.1999.00611.x Soto, J. C., Ortiz, J. F., Perlaza-Jiménez, L., Vásquez, A. X., Lopez-Lavalle, L. A. B., Mathew, B., … López, C. E. (2015). A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics, 16(1), 190. https://doi.org/10.1186/s12864-015-1397-4 Talsma, E. F., Brouwer, I. D., Verhoef, H., Mbera, G. N., Mwangi, A. M., Demir, A. Y., … Melse-Boonstra, A. (2016). Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial. American Journal of Clinical Nutrition, 103(1), 258–267. https://doi.org/10.3945/ajcn.114.100164 Trösch, R., Mühlhaus, T., Schroda, M., & Willmund, F. (2015). ATP-dependent molecular chaperones in plastids - More complex than expected. Biochimica et Biophysica Acta - Bioenergetics, 1847(9), 872–888. https://doi.org/10.1016/j.bbabio.2015.01.002 Tzuri, G., Zhou, X., Chayut, N., Yuan, H., Portnoy, V., Meir, A., … Tadmor, Y. (2015). A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). The Plant Journal, 82(2), 267–279. https://doi.org/10.1111/tpj.12814 Udoh, L. I., Gedil, M., Parkes, E. Y., Kulakow, P., Adesoye, A., Nwuba, C., & Rabbi, I. Y. (2017). Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava (Manihot esculenta Crantz). Molecular Breeding, 37(10). https://doi.org/10.1007/s11032-017-0718-5 von Lintig, J. (2012). Metabolism of carotenoids and retinoids related to vision. The Journal of Biological Chemistry, 287(3), 1627–1634. https://doi.org/10.1074/jbc.R111.303990 Wahyuni, Y., Anika, M., Putri, D. H., Hartati, N. S., Harmoko, R., & Sudarmonowati, E. (2020). Variation in transcriptional profiles of carotenoid biosynthetic genes in Indonesian yellow- and white-fleshed tuberous root cassava (Manihot esculenta Crantz) accessions. IOP Conference Series: Earth and Environmental Science, 439(1). https://doi.org/10.1088/1755-1315/439/1/012016 Welsch, R., Arango, J., Bär, C., Salazar, B., Al-Babili, S., Beltrán, J., … Beyer, P. (2010). Provitamin A Accumulation in Cassava ( Manihot esculenta ) Roots Driven by a Single Nucleotide Polymorphism in a Phytoene Synthase Gene. The Plant Cell, 22(10), 3348–3356. https://doi.org/10.1105/tpc.110.077560 Welsch, R., Zhou, X., Koschmieder, J., Schlossarek, T., Yuan, H., Sun, T., & Li, L. (2020). Characterization of Cauliflower OR Mutant Variants. Frontiers in Plant Science, 10(January), 1–13. https://doi.org/10.3389/fpls.2019.01716 WHO. (2009). Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO Global Database on Vitamin A Deficienc. WHO. Geneva: World Health Organization. Retrieved from http://www.who.int/nutrition/publications/micronutrients/vitamin_a_deficiency/9789241598019/en/ Wu, S., Lau, K. H., Cao, Q., Hamilton, J. P., Sun, H., Zhou, C., … Fei, Z. (2018). Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 9(1), 1–12. https://doi.org/10.1038/s41467-018-06983-8 Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P., & Potrykus, I. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287(5451), 303–305. https://doi.org/10.1126/SCIENCE.287.5451.303 Zhou, X., Welsch, R., Yang, Y., Álvarez, D., Riediger, M., Yuan, H., … Li, L. (2015). Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proceedings of the National Academy of Sciences, 112(11). https://doi.org/10.1073/pnas.1420831112 Zhu, C., Naqvi, S., Breitenbach, J., Sandmann, G., Christou, P., & Capell, T. (2008). Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18232–18237. https://doi.org/10.1073/pnas.0809737105
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia, 2021
dc.titleFunción de la proteína Orange (OR) en la producción y acumulación de β-caroteno en raíces de yuca (Manihot esculenta Crantz)
dc.typeTesis


Este ítem pertenece a la siguiente institución