dc.contributor | Luna Tamayo, Patricia | |
dc.contributor | Lizarazo Marriaga, Juan Manuel | |
dc.contributor | Análisis, diseño y materiales - GIES | |
dc.creator | Rivas Tabares, Miguel Ángel | |
dc.date.accessioned | 2020-12-03T17:07:10Z | |
dc.date.available | 2020-12-03T17:07:10Z | |
dc.date.created | 2020-12-03T17:07:10Z | |
dc.date.issued | 2020-12-02 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78668 | |
dc.description.abstract | The palafitic structures of the Colombian Pacific are the materialization of a way of understanding and inhabiting a territory. Despite their importance as cultural practices associated with the life and traditions of its inhabitants, little attention has been paid to assess their vulnerability from a structural point of view. Thus, this research presents the characterization of palafitic structures located in San Andrés de Tumaco through field observation, physical and mechanical characterization of two wood species (Goupia glabra, Attalea colenda) used in their construction and the typical nailed joints. A structural model was proposed to obtain their behavior under earthquake and tsunami loads and finally, the percentage of damage was evaluated from the elaboration of structural fragility curves. 120 simulations were performed varying the mechanical parameters for earthquake and 960 in the case of tsunami varying the force orientation, the mechanical properties and the code used to determine the forces. As a result, the mechanical characterization of the species, a multilinear model of plasticization of the joints and the parameters of the structural fragility curves under earthquake and tsunami loads are presented. The drifts obtained were twice the value indicated in the Hazus model. In an earthquake event, the probability of exceeding a collapse damage state is 80% for spectral accelerations greater than 0.25g. In the case of a tsunami, the probability of exceeding a collapse damage state is close to 50% when reaching flow depths greater than 4.0 m. | |
dc.description.abstract | Las viviendas palafíticas del pacífico colombiano son la materialización de una forma de entender y habitar un territorio. Pese a su importancia como prácticas culturales asociadas a la vida y las tradiciones de sus habitantes, poco han sido estudiadas para evaluar su vulnerabilidad desde el punto de vista estructural. Así, esta investigación presenta la caracterización de las estructuras de madera ubicadas en San Andrés de Tumaco mediante observación de campo, la caracterización física y mecánica de dos especies de madera (Goupia glabra, Attalea colenda) utilizadas en su construcción y las uniones clavadas típicas. Se analizó la vivienda tipo para obtener su respuesta ante cargas de sismo y tsunami y finalmente, se evaluó el porcentaje de daño a partir de la elaboración de curvas de fragilidad estructural. Se realizaron 120 simulaciones variando parámetros mecánicos para el caso del sismo y 960 en el caso del tsunami variando la orientación de la fuerza, las propiedades mecánicas y el código utilizado para determinar las fuerzas. Como resultado, se presenta la caracterización mecánica de las maderas, un modelo multilineal de plastificación de las uniones y los parámetros de las curvas de fragilidad estructural ante cargas de sismo y tsunami. Adicionalmente, las derivas obtenidas fueron dos veces mayores al valor indicado en el modelo Hazus. En un evento de sismo, la probabilidad de exceder un estado de daño de colapso es del 80% para aceleraciones espectrales superiores a 0.25g. En el caso de tsunami, la probabilidad de exceder un estado de daño de colapso es cercana al 50% al alcanzar profundidades de inundación superiores a 4.0 m. | |
dc.language | spa | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Agier, M., Álvarez, M., Hoffmann, O., & Restrepo, E. (1999). Tumaco. Haciendo ciudad (Primera ed). Universidad del Valle, Instituto Colombiano de Antropología. | |
dc.relation | ASCE7. (2016). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. https://doi.org/10.1061/9780784414248 | |
dc.relation | ASTM C469. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression1, 1 (2014). | |
dc.relation | ASTM D143: Standard Test Methods for Small Clear Specimens of Timber, 1 (2014). https://doi.org/10.1520/D0143-09.2 | |
dc.relation | ATC. (1996). ATC 40. Seismic evaluation and retrofit of concrete buildings. Volume I (Report No.). Applied Technology Council. | |
dc.relation | Baker, J. W. (2015). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31(1), 579–599. https://doi.org/10.1193/021113EQS025M | |
dc.relation | Bandara, K. M. K., & Dias, W. P. S. (2012). Tsunami wave loading on buildings: A simplified approach. Journal of the National Science Foundation of Sri Lanka, 40(3), 211–219. https://doi.org/10.4038/jnsfsr.v40i3.4695 | |
dc.relation | Calvi, G. M., Pinho, R., Magenes, G., Bommer, J. J., & Crowley, H. (2006). Development of seismic vulnerability assessment methodologies over the past 30 years. ISET Journal of Earthquake Technology, 43(472), 75–104. | |
dc.relation | Caro, C. (2010). Estructuras Tsunami-Resistentes. Revista BIT, 29(6). | |
dc.relation | CCCP. (1998). Situación de riesgo zona costera de San Andrés de Tumaco (D. G. Marítima (ed.)). Armada Nacional. | |
dc.relation | Charvet, I., & Sugawara, A. S. H. K. D. (2015). A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths , velocities and debris impact , with evaluation of predictive. Natural Hazards, 79(3), 2073–2099. https://doi.org/10.1007/s11069-015-1947-8 | |
dc.relation | Chopra, A. (2014). Dinámica de estructuras (4th ed.). Pearson. | |
dc.relation | Clemente, S. (2006). Milagro eucarístico de Tumaco. Edizioni San Clemente, 1. | |
dc.relation | Delgado Agudelo, M. A. (2013). Maderas de Colombia. WWF-Colombia - Programa Subregional Amazonas Norte & Chocó Darién, 88. http://d2ouvy59p0dg6k.cloudfront.net/downloads/maderas_de_colombia_15_version_aprobada.pdf | |
dc.relation | Dias, P., Fernando, L., Wathurapatha, S., & Silva, Y. de. (2005). Structural resistance against sliding, overturning and scouring caused by tsunamis. International Symposium Disaster Reduction on Coasts Scientific-Sustainable-Holistic-Accessible. | |
dc.relation | DIMAR. (2003). Aportes al entendimiento de la Bahía de Tumaco. Entorno Oceanográfico, costero y de riesgos. (Centro Control Contaminación del Pacífico (ed.)). Editorial Sepia Ltda. | |
dc.relation | DNP. (2016). Lineamientos para la Construcción de Vivienda Palafítica. Departamento Nacional de Planeación. | |
dc.relation | Ekwueme, C., & Hart, G. (2000). Non-Linear Analysis of Light-Framed Wood Buildings. Proc. 12th World Conference on Earthquake Engineering, Auckland, New Zealand, Paper No., 1–8. | |
dc.relation | Ellingwood, B. R., Rosowsky, D. V., Li, Y., & Kim, J. H. (2004). Fragility assessment of light-frame wood construction subjected to wind and earthquake hazards. Journal of Structural Engineering, 130(12), 1921–1930. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1921) | |
dc.relation | Espinosa Baquero, A. (2003). La sismicidad histórica en Colombia. Revista Geografica Venezolana, 44(2), 271–283. | |
dc.relation | FEMA. (2003). Multi-hazard Loss Estimation Methodoly. Earthquake Model. Hazus. MR4. Technical Manual. Federal Emergency Management Agency. | |
dc.relation | FEMA. (2011). Coastal Construction Manual. Fema P-55, II(August), 400. | |
dc.relation | FEMA. (2017). Hazus Tsunami Model Technical Guidance. November. | |
dc.relation | FEMAP646. (2008). Design of Structures for Vertical Evacuation from Tsunamis. Solutions to Coastal Disasters 2008, June, 72–81. https://doi.org/10.1061/40978(313)7 | |
dc.relation | González, A. (2014). La historia no contada del primer código de construcción en Colombia - 30 años. Revista de Ingenieria, 40, 82–84. https://doi.org/98421887 | |
dc.relation | Green, D. W., Winandy, J. E., & Kretschmann, D. E. (1999). Mechanical properties of wood. In Wood handbook—Wood as an engineering material (Forest Pro). Madison. https://doi.org/10.1126/science.46.1195.516-a | |
dc.relation | Herd, D. G., Youd, T. L., Meyer, H., C, J. L., Person, W. J., & Mendoza, C. (1981). The great tumaco, Colombia earthquake of 12 december 1979. Science (New York, N.Y.), 211(4481), 441–445. https://doi.org/10.1126/science.211.4481.441 | |
dc.relation | International Code Council. (2012). International Building Code. https://archive.org/details/gov.law.icc.ibc.2012 | |
dc.relation | Jensen Gómez, J. (2014). Vivienda en hábitats lacustres [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/45789/ | |
dc.relation | Kameshwar, S., & Padgett, J. E. (2014). Multi-hazard risk assessment of highway bridges subjected to earthquake and hurricane hazards. ENGINEERING STRUCTURES. https://doi.org/10.1016/j.engstruct.2014.05.016 | |
dc.relation | Kaynia, A. M. (2013). Guidelines for deriving seismic fragility functions of elements at risk: Buildings, lifelines, transportation networks and critical facilities, SYNER-G Reference Report 4. In JRC Scientific and Policy Reports. https://doi.org/10.2788/19605 | |
dc.relation | Koshimura, S., Namegaya, Y., & Yanagisawa, H. (2009). Tsunami Fragility — A New Measure to Identify Tsunami Damage —. Journal of Disaster Research, 4(6), 479–488. https://doi.org/10.20965/jdr.2009.p0479 | |
dc.relation | Medina, S. (2019). Zonificación de la vulnerabilidad física para edificaciones típicas en San Andrés de Tumaco, Costa Pacífica Colombiana. Universidad Nacional de Colombia. | |
dc.relation | Mosquera-Torres, G. (2010). Vivienda y Arquitectura Tradicional en el Pacífico Colombiano: Patrimonio Cultural Afrodescendiente. Catalogación de tipologías arquitectónicas y urbanísticas propias de la región Pacífica colombiana. 200. http://www.hchr.org.co/afrodescendientes/media/LibroAecid.pdf | |
dc.relation | Mosquera, J. (2020). Valoración y propuesta tecnológica de la construcción palafítica en el Pacífico colombiano. Universidad Nacional de Colombia. | |
dc.relation | Muhammad, A., Goda, K., Alexander, N. A., Kongko, W., & Muhari, A. (2017). Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios. Natural Hazards and Earth System Sciences, 17(12), 2245–2270. https://doi.org/10.5194/nhess-17-2245-2017 | |
dc.relation | Muntasir Billah, A. H. M., & Shahria Alam, M. (2014). Seismic fragility assessment of highway bridges: a state-of-the-art review. Structure and Infrastructure Engineering, 11(6), 804–832. https://doi.org/10.1080/15732479.2014.912243 | |
dc.relation | Nazri, M. (2018). Fragility Curves. In Seismic Fragility Assessment for Buildings due to Earthquake Excitation (pp. 3–30). Springer Singapore. https://doi.org/10.1007/978-981-10-7125-6_2 | |
dc.relation | Nistor, I., Palermo, D., Nouri, Y., Murty, T., & Saatcioglu, M. (2009). Tsunami-Induced Forces on Structures. Handbook of Coastal and Ocean Engineering, 261–286. https://doi.org/doi:10.1142/9789812819307_0011 | |
dc.relation | Nouri, Y., Nistor, I., Palermo, D., & Saatcioglu, M. (2007). Tsunami-induced hydrodynamic and debris flow forces on structural elements. Ninth Canadian Conference on Earthquake Engineering, 1–10. | |
dc.relation | Okada, T., Sugano, T., & T, I. (2004). Structural design method of buildings for tsunami resistance. The Building Letter, 11, 1–8. | |
dc.relation | Osorio, C. (2016). La vivienda palafítica del pacífico- Expresión y persistencia de una forma de ver el mundo. Banco de la República de Colombia. | |
dc.relation | PADT-REFORT. (2000). Manual de diseño para maderas del grupo andino. Junta del Acuerdo de Cartagena. | |
dc.relation | Parra, E. (2001, July 29). MAREMOTO ACECHA A TUMACO. El Tiempo, 1. https://www.eltiempo.com/archivo/documento/MAM-450477 | |
dc.relation | Porter, K., Kennedy, R., & Bachman, R. (2007). Creating fragility functions for performance-based earthquake engineering. Earthquake Spectra, 23(2), 471–489. https://doi.org/10.1193/1.2720892 | |
dc.relation | Quinceno, A., & Ortiz, Y. M. (2001). Evaluacion del impacto de tsunamis en el litoral Pacifico Colombiano. Parte I (Region de Tumaco). Boletín Científico CCCP, 8, 5–14. | |
dc.relation | RILEM. (1994). RILEM Technical Committees Commissions Techniques de la RILEM I09-TSA: Behavior of Timber Structures under Seismic Actions. Timber structures in seismic regions. | |
dc.relation | Rosowsky, D. V., & Ellingwood, B. R. (2002). Performance-based engineering of wood frame housing: Fragility analysis methodology. Journal of Structural Engineering, 128(1), 32–38. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(32) | |
dc.relation | Rudolph, E., & Szirtes, S. (1911). El Terremoto Colombiano del 31 de enero de 1906. Traducción: Hansjürgen Meyer, Alba de Cárdenas. Gerlands Beitrage Zur Geophysik, XI(1), 1–34. | |
dc.relation | Salazar, J. (2011). Maderas colombianas: propiedades y criterios de diseño. Universidad Nacional de Colombia. | |
dc.relation | Sánchez Escobar, R. E., Puentes Galindo, M. G., Molares Babra, R. J., De La Rosa Namén, R. A., Otero Díaz, L. J., González Rodríguez, E. M., Olabarrieta Lizaso, M., Raigosa Arango, J., Bolaños Cifuentes, R. E., Restrepo López, J. C., et al. (2013). Estudio de la Amenaza por Tsunami y Gestión del Riesgo en el Litoral Pacíco Colombiano. In Estudio de la Amenaza por Tsunami y Gestión del Riesgo en el Litoral Pacíco Colombiano. Dirección General Marítima. https://doi.org/10.26640/9789585772342.2013 | |
dc.relation | Sánchez, R., & Puentes, M. (2012). Estimación de la amenaza por tsunami en el municipio de San Andrés de Tumaco, Pacífico colombiano, utilizando información LiDAR. Bol. Cient. CIOH, 30, 29–42. | |
dc.relation | Sarria, A. (2005). El inicio de la sismología en Colombia. Entrevista a Alberto Sarria. Revista En Ingeniería, 21, 120–124. | |
dc.relation | Schiro, G., Giongo, I., Sebastian, W., Riccadonna, D., & Piazza, M. (2018). Testing of timber-to-timber screw-connections in hybrid configurations. Construction and Building Materials, 171, 170–186. https://doi.org/10.1016/j.conbuildmat.2018.03.078 | |
dc.relation | Shinozuka, M., Feng, M., Lee, J., & Naganuma, T. (2000). Statistical Analysis of Fragility Curves. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 126, 1224–1231. https://doi.org/https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224) | |
dc.relation | Suppasri, A., Fukutani, Y., Abe, Y., & Imamura, F. (2013). Relationship between earthquake magnitude and tsunami height along the Tohoku coast based on historical tsunami trace database and the 2011 Great East Japan Tsunami. 30. | |
dc.relation | Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., Shi, F., Ma, G., Thingbaijam, K. K. S., & Mai, P. M. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344–361. https://doi.org/10.1016/j.margeo.2014.09.043 | |
dc.relation | Thusyanthan, N. I., & Gopal Madabhushi, S. P. (2008). Tsunami wave loading on coastal houses: a model approach. Proceedings of the Institution of Civil Engineers - Civil Engineering, 161(2), 77–86. https://doi.org/10.1680/cien.2008.161.2.77 | |
dc.relation | Velasco, E. R., & López, G. I. (2016). Marco conceptual para investigaciones tsunamigénicas: Caso litoral pacífico Colombiano. Boletin de Geologia, 38(4), 79–106. https://doi.org/10.18273/revbol.v38n4-2016005 | |
dc.relation | Villar-Vega, M., Silva, V., Crowley, H., Yepes, C., Tarque, N., Acevedo, A. B., Hube, M. A., Gustavo, C. D., & María, H. S. (2017). Development of a fragility model for the residential building stock in South America. Earthquake Spectra, 33(2), 581–604. https://doi.org/10.1193/010716EQS005M | |
dc.relation | Yamaguchi, N., & Yamazaki, F. (2000). Fragility Curves for Buildings in Japan Based on Damage Surveys After the 1995 Kobe Earthquake. 12th World Conference on Earthquake Engineering, 1–8. | |
dc.relation | Yamin, L. E., Hurtado, A., Rincon, R., Dorado, J. F., & Reyes, J. C. (2017). Probabilistic seismic vulnerability assessment of buildings in terms of economic losses. Engineering Structures, 138, 308–323. https://doi.org/10.1016/j.engstruct.2017.02.013 | |
dc.relation | Yeh, H. H., Robertson, I., & Preuss, J. (2005). Development of design guidelines for structures that serve as tsunami vertical evacuation sites. | |
dc.relation | Yepes-Estrada, C., Silva, V., Valcárcel, J., Acevedo, A. B., Tarque, N., Hube, M. A., Coronel, G., & María, H. S. (2017). Modeling the Residential Building Inventory in South America for Seismic Risk Assessment. Earthquake Spectra, 33(1), 299–322. https://doi.org/10.1193/101915EQS155DP | |
dc.relation | Yoshimoto, M., Kumagai, H., Acero, W., Ponce, G., Vásconez, F., Arrais, S., Ruiz, M., Alvarado, A., Pedraza García, P., Dionicio, V., et al. (2017). Depth-dependent rupture mode along the Ecuador-Colombia subduction zone. Geophysical Research Letters, 44(5), 2203–2210. https://doi.org/10.1002/2016GL071929 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Evaluación de la vulnerabilidad de las viviendas de madera en San Andrés de Tumaco ante cargas de sismo y tsunami | |
dc.type | Otro | |